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ABSTRACT 

The gyroless attitude control method and kalman algorithm 
procedures presented in this paper are applicable to asym-
metrical microsatellites of any shape with large mass variation 
and without angular rate sensors.  The attitude sensors include 
a three-axis magnetometer, a horizon sensor, and a coarse sun 
sensor (CSS), which together serve as an analytic platform and 
help in ensuring the stability of attitude controls. 

The attitude control problem of microsatellites has become 
a focal point because microsatellite fabrication processes are 
short, costless, and can be flexibly used for various purposes.  
The center of mass of the microsatellite can be offset because 
of fuel consumption during propulsion, irrespective of the ex-
istence of interference from the external orbital environment, 
such as gravity gradient torque and solar radiation torque.   
For a microsatellite with a discoid and asymmetrical shape, 
attitude control is difficult.  One of the solutions to overcome 
the difficulty is to design a robust controller that assists the 
attitude pointing of the satellite to satisfy requirements in the 
presence of internal parameter perturbations and external 
disturbances.  The robust nonlinear state feedback used in  
the design of the propulsion mode attitude control for 
FORMOSAT-3 was applied in this study, and the feasibility of 
the controller was cross-validated through time and frequency 
domain stability analyses. 

The time-domain performance indexes (e.g., rise time, maxi- 
mum overshoot, and stabilization time) of the designed state 
feedback gain were consistent with a robust stability margin of  
the stable performance index in the frequency domain.  Fur-
thermore, to reduce the weight and manufacturing cost of the 
satellite, an extended Kalman filter algorithm was used to 

obtain the gyroless satellite attitude rate.  Other sensors, such 
as the CSS and earth horizon sensor were adopted to help 
sense satellite attitude controls. 

I. INTRODUCTION 

The discoid and asymmetrical satellite propulsion mode 
attitude control with large mass change developed a real-time 
dynamic simulation system and the technology.  A processor 
used for attitude control was used to test the processor in the 
loop to determine the suitability of the processor for a mi-
crosatellite system.  The establishment of an analytic method 
and control technique is necessary for attitude stabilization of 
microsatellites of all shapes and with large mass variation. 

The basic attitude sensors of a satellite include a combina-
tion of attitude and rate sensors.  The attitude sensors include  
a coarse sun sensor (CSS), a horizon sensor, a magnetometer, 
and a star tracker.  The attitude rate sensor used is the gyro.  
The gyro is expensive, and it is unreliable because of refer-
ence point drift and is a major source of measurement error.  It 
is more likely to be faulty compared with attitude sensors.  
With the increasing use of satellite technology, satellite con-
struction cost must be reduced.  Furthermore, with advances in 
software and algorithmic techniques, software-based proc-
essing of attitude data for obtaining attitude rate information 
has become reliable.  Thus, the gyro has been removed by en-
gineers.  Consequently, gyroless design has become the trend in 
recent research [7, 12].  The following activities were per-
formed in the present study: 

 
1) An extended Kalman filter (EKF) algorithm was used for 

gyroless satellite attitude determination.  The EKF structure 
is simple, and the hardware configuration requirement is 
not strict.  It is especially applicable to low-cost micro- 
satellites [3, 10]. 

2) A robust controller satisfying the interference condition 
requirement was designed for performing attitude pointing 
control when changes occur in the center of mass [13]. 

3) The sun azimuth vector is the third available reference 
vector that is used most in attitude determination methods.  
A sun sensor determines the orientation of the sun in a 
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sensitive coordinate system according to the change in the 
solar radiation intensity following a change in the satellite 
attitude [11]. 

4) In some cases, some sensors fail or the measurement ac-
curacy decreases considerably; therefore, the attitude in-
formation cannot be obtained completely.  Consequently, 
the single-point deterministic attitude computation is no 
longer possible.  It is then necessary to introduce filtering in 
the attitude determination loop to enhance the robustness 
of the system.  This study used a EKF algorithm for six- 
dimensional attitude estimation based on two/three obser-
vation vectors without using an angular rate sensor. 
 
The remainder of this paper is organized as follows: Section 

II describes the concept of satellite attitude and Section III 
presents a microsatellite attitude control model.  The robust  
nonlinear state feedback is explained in Section IV, Section V 
introduces extended Kalman filtering and a EKF algorithm, 
Section VI describes the measurement reference model, Sec-
tion VII discusses an analysis of the attitude determination 
subsystem, and the last section is the conclusion. 

II. DESCRIPTION OF SATELLITE ATTITUDE 

1. Coordinate System and Orbit Parameters 

The coordinate systems and orbit parameters used in this 
study are as follows. 

 
1) Geographic coordinate system: The origin of the geo-

graphic coordinate system is the location of the satellite on 
the earth’s surface; the x axis points to the east, the y axis 
points to the north, and the z axis points to the earth’s center 
(i.e., the local vertical direction).  The x, y, and z axes form a 
right-handed coordinate system.  Quantities related to this 
coordinate system are marked with subscript g. 

2) Local vertical local horizontal coordinate system: The ori-
gin is the satellite center of mass.  The x axis points in the 
satellite flight direction, the y axis points in the negative 
direction of the normal to the orbital plane, and the z axis, 
which is defined according to the right-hand rule, points to 
the earth’s center.  The orbit system is an important refer-
ence for attitude control.  Quantities related to this coordi-
nate system are marked with right subscript o. 

3) Body coordinates: The origin is located at the satellite 
center of mass.  The three coordinate axes coincide with the 
principal axis of inertia of the satellite body.  The satellite 
body system and the orbit system are identical when the 
three-axis attitude of the satellite is stable.  Quantities re-
lated to the satellite body system are marked with right 
subscript b. 

4) Earth-centered inertial (ECI) coordinate system: The origin 
is located at the earth’s center of mass, the x axis points to 
the vernal equinox; the z axis points to the north pole along 
the earth’s spin axis, and the y axis is defined by the 

right-hand rule.  Quantities related to this coordinate system 
are marked with right superscript i. 

5) Earth-centered Earth-fixed (ECEF) coordinate system: The 
origin is located at the earth’s center, the x axis points to the 
Greenwich zero meridian in the equatorial plane, the z axis 
points to the north pole along the earth’s spin axis, and the y 
axis is defined by the right-hand rule.  Quantities related to 
this coordinate system are marked with right subscript e. 
 
For the motion of a satellite in a circumterrestrial orbit, the 

ECI coordinate system is used to study the motion, and the 
orbit system is considered as the reference coordinate system 
for describing the satellite, with the three axes stably pointing 
to the earth.  Coordinate systems are switched as required.  For 
example, the geomagnetic field and sun vector models in this 
study were switched to the orbit system. 

2. Description of Quaternion Attitude 

The quaternion-based satellite attitude consists of one sca-
lar part and three vector parts, defined as [12] 

 0 1 2 3 0
Tq q i q j q k q q       q  (1) 

where q0 is the quaternion scalar part and q is the vector part.  
The four parameters meet the following constraint condition:  

 
3

2

0

1i
i

q


  (2) 

Therefore, only three of the four quaternion variables are 
independent.  According to the definition of Euler’s rotation 
and quaternion, the conversion of the attitude between the 
orbit system and the satellite body system is described by a 
quaternion.  The attitude rotation matrix for the conversion 
from the orbit system to the satellite body system is  

     
     
     

2 2
1 2 0 3 1 3 0 22 3

2 2
1 2 0 3 2 3 0 11 3

2 2
1 3 0 2 2 3 0 1 1 2

1 2 2 2

2 1 2 2

2 2 1 2

b
o

q q q q q q q qq q

C q q q q q q q qq q

q q q q q q q q q q

   
 

    
 

     

 (3) 

The quaternion attitude matrix consists of a quadratic term 
involving the quaternion q; therefore, the quaternion q = 

 
0

TTq q     can be used to obtain the attitude matrix shown 

in Eq. (3).  The nonuniqueness of the quaternion is consistent 
with the nonuniqueness of the Euler axis/angle.  For instance, 
if the Euler rotation angles are 0 and 2, the corresponding 

quaternions are  1 0 0 0
T

 and   ,1 0 0 0
T

  respec-

tively.  However, both quaternions physically represent the 
same attitude and the same rotation.  This study used a positive 
value of the quaternion for calculations.  If Eq. (3) is written in 
vector form, then 
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  2

3 0q qb
oC I q      (4) 

or 

  2
3 00

2qq 2 qq qb TT
oC I qq     (5) 

where q represents the skew symmetric matrix  

 
3 2

3 1

2 1

0

q 0

0

q q

q q

q q



 
   
  

 (6) 

3. Properties of Attitude Rotation Matrix 

The attitude rotation matrix b
oC  in Eq. (3) can be expressed 

as 

  1 2 3
b
oC  c c c  (7) 

where  1 2 3 ,
T

i i i ic c cc  i = 1, 2, 3, represents the direct 

cosine vector.  b
oC  is an orthogonal matrix, and its properties 

are presented below: 

   1 Tb o o
o b bC C C


   

     2 2 2

1 2 3 2 3 1 3 1 2 1 2 3, , , 1i i ic c c        c c c c c c c c c  

and 

      2 2 2

1 2 3 1j j jc c c    (8) 

The projection of the angular rate in the satellite body sys-

tem to the orbit system is defined as b
o .  The following rela-

tionship can be deduced for the attitude rotation matrix b
oC : 

    ,b b b bb
o o i i o i ooC C  

 
     c c c  (9) 

III. ATTITUDE CONTROL MODEL OF 
MICROSATELLITE 

1. Microsatellite Thrust-Torque Deduction 

Figs. 1(a) and (b) show a discoid and asymmetrical mi-
crosatellite.  The four thrust nozzles of the microsatellite are in 
the xz plane at inclination , and the nozzles point to the 
y-direction, laid in square at intervals of d.  The fuel tank is in 
the xz plane l of the nozzle and is at distance y from the cen-
troid position of the microsatellite.  The body coordinates of 
the microsatellite FORMOSAT-3 are shown in Fig. 1(c); ,  

y-z plane 
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d
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d

dx
1 2

34
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•
•

x
y

θ
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z

ϕ

(c)
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Fig. 1.  Geometric graph of a micro-satellite. 

 
 

d, and l represent the uncertainties in nozzle inclination, 
relative distance between nozzles and the fuel tank, and cen-
troid position offset, respectively.  The nozzle thrust direction 
and the force-arm-generated torque are determined as follows:  

1 2,s x c y s z s x c y s zF f e f e f e F f e f e f e      
      

 

3 4,s x c y s z s x c y s zF f e f e f e F f e f e f e      
      

 

   1
sin ,   cos

2
s cf f          (10) 

     1 x x x y y y zr d d e l l e d d e           
 

     2 x x x y z z zr d d e l l e d d e            
 

     3 x x x y z z zr d d e l l e d d e            
 

     4 x x x y z z zr d d e l l e d d e           
 (11) 

Here, 

 0.2, 0.2, 0.2, and 0.2.x z

x z

d d l
d d l




        (12) 

If  +  is very small, the torque u can be obtained as 
follows: 
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1
1 1 1 1

2
2 2 2 2

3
3 3 3 3

4

x

y

z

u

u

u

u

u
u

u

u

    
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   

   

   

   

                                

β  (13) 

where 

, 1, 2, 3i i i i        

1 2 3, 2 ,
2 2

l l
d d d

          

 1

1

2
d l l l              

 2 2 l l l            

 3

1

2
d l l l              (14) 

2. On/Off-Modulated Thrust Control 

From the controller commands transform into pulse width 
modulation, the thrust control process is as follows [9]: 

 
1) The thruster generates commands u. 
2) Convert u(n) from variable thrusts for a fixed total sample 

period to fixed thrusts for variable times: t_on = (sample 
time/thrust magnitude)  u. 

3) Limit on-times to  half the sample period. 
4) Compute a bias term and add the bias to all on-times such 

that at least one thruster is on for the complete sample  
period. 
 
According to the pulse width modulation duty rule, the 

sample period can be divided into two types of modulation:  
off and on modulation.  In this processing, off-modulation is 
adopted.  A block diagram of pulse width modulation used for 
microsatellite attitude control is shown in Fig. 2.  At least one 
thruster is operating during off modulation, and at least one 
thruster is turned off during on modulation. 

IV. ROBUST NONLINEAR STATE  
FEEDBACK 

The kinematic equation of a microsatellite is written as 

 0

0

q q1 1

2 20 qT T

q I

q

      
          
 ω ω
q ω

ω
 

 1

2
Q q ω   (15) 

where 

max(ton,i)
i

tmax = min(ton,i)
i

tmin =

2 − tmaxtbias = Ts

2Ts

Mthruster McommandTs
→

ton,i = ton,i − tmin
ton,i = ton,i + tbias

on-modulation off-modulation 

ton,iMthruster

Ts →

Mcommand

2Ts

2Ts−

 
Fig. 2.  Block diagram of on/off-modulated thrust control. 

 

   0q1

2 qT

q I
Q

 
 

 
q  

In attitude control design, the system should be stable and 
the excursions of the angular rate and control input should be 
minimized.  This prompts the use of the following penalty 
function, which is to be minimized: 

 
 2

1 2 0

3

T J q  




 
 
  

ω ω
z

u
 

where 1, 2, and 3 are weighting coefficients introduced for 
controlling the trade-off between performance and control 

effort.  The function 0( )q  is defined as 1
0 0( ) 2cosq q  . 

The attitude control problem can then be formulated as 

          1 1f f g g     x x x x x w  

    2 2g g  x x u  (16) 
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   1

h
h

 
  
 

x
z x

u
 

where 0q
TT T q   x ω is the state x, and w is the distur-

bance.  The parameters f, g1, and 
2g  are uncertain smooth 

vector fields and mappings.  J = J1JJ1.  For small per-
turbations, f, g1, g2, h1, f, g1, and g2 can be expressed as  

       
1 1 1

1 2

q q
, ,

0 0

J J J J B
f g g

Q

        
       
      

x x x
q ω

 

   2
1 1 2 0q qTh J q   x  

 
1 1 1q q q q q q

0

J J J J J J J J
f

          
   

 
x  

     1

1 2, , etc.
0 0

J J B J B B
g g

       
      

   
x x  

1. Robust Nonlinear State Feedback Theory 

Consider a nonlinear state-space system G0 with 

 ( ) ( )x f x g x w   (17a) 

 ( )hz x  (17b) 

where x is the state vector, w is the exogenous disturbance to 
be rejected, and z is the penalized output signal.  We assume 
that f(x), g(x), and h(x) are C functions and x = 0 is the equi-
librium point of the system, that is, f(0) = h(0) = 0. 

Given a positive number  > 0, the system in Eq. (17) has a 
finite L2  gain less than  for all w  L2[0,T] with 0  T < , 

    2 22

0 0

.
T T

z t dt w t dt   (18) 

Lemma 1 Assume that f(x) = 0, g1(x) = 0, and g2(x) = 0  
in Eq. (16).  If ( f(x), h1(x)) is zero-detectable and a positive 
definite function V(x) exists so that the Hamilton–Jacobi par-
tial differential inequality 

1 1 2 2 1 12

1 1 1
0

2 2
T T T T T
x x xH V f V g g g g V h h 

 
     

 
 (19) 

holds [2, 9, 12], then the system has a finite L2 gain less than  
.  Once V(x) is obtained, the control signal u can be synthe-
sized as 

 2
T

xu g V   (20) 

where 

 
1 2

.

T

x
n

V V V
V

x x x

   
     

  

Theorem 1 Consider the nonlinear uncertain system in Eq.  
(16) and that the system parameters satisfy the following 
equation [7, 8]: 

              1 1 1 1, ,T T Tf x x x g x g x G x G x        

and 

        2 2 2 2 ,T Tg x g x G x G x    

where ( ) n mx   , 1( ) mx   , and ( ) in p
iG x  , i = 1, 2, 

are known vectors.  For these vectors, we assume that there 
exist scale functions ( ) 0x   with ( )x  described by 

( ) ( )x x   , where (0) 0  .  Under this assumption, Eq. 

(16) satisfies the following conditions: 
 

(i) 1( ( ) ( ), ( ))f x f x h x   is zero-state detectable. 

(ii) there exists a smooth function ( ) 0x    so that the 

following Hamilton–Jacobi partial differential inequality 
holds: 

   1 1 2 22

1 1
1 1

2
T T T T

x x xV f V g g g g V 


 
    

 
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1 1 1 1

2
T T T T

x xV G G G G V
  

 
  

    
 

 

1 1

1 1
0

2 2
T Th h


       (21) 

This inequality has a smooth positive solution ( ),V x  where 
x  X, and X is a neighborhood of the origin in n.  Then, the 
state feedback law 

   2
T

xu x g V   (22) 

ensures that the system in Eq. (16) has a robust performance. 

V. EXTENDED KALMAN FILTER 

For enhancing the accuracy and performance of the filter, a 
UKF algorithm was used in the satellite attitude determination 
process [1, 4].  The normal method involves the use of the 
extended Kalman filter (EKF), which leads to the following 
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problems: 1) the higher-order terms in the Taylor expansion of 
a nonlinear function cannot be neglected, and 2) linearization 
causes major errors in the system, even rendering the filter 
unstable in the iterative process.  Moreover, the Jacobian ma-
trix derivation of a nonlinear function is difficult with nu-
merous problems. 

The state equation and the measurement equation of the 
EKF have the following standard forms: 

  1 , ,k k k kf x x u w  (23a) 

  ,k k khz x v  (23b) 

where xk is the n-dimensional state vector of the system; Pk, the 
variance; uk the r-dimensional input vector; f the n-dimensional 
vector function; h, the m-dimensional vector function; wk, the 
p-dimensional stochastic process noise; Q, the variance matrix; 
vk, q-dimensional random noise; and R, the variance matrix. 

The difference between the UKF and the EKF is that the 
UKF uses sampling point conversion to calculate the state  
and measure the average and variance of forecast values.  In 
the sampling point conversion process, the average value and 
variance of estimates are used to generate a group of discrete 
sampling points, and these points are spread using the state 
equation and measurement output equation.  The average value 
and variance of the forecast values are then generated through 
weighted summation.  The generation of sampling points is as 
follows: 

 

The augmented state variable is ˆ , ,
TT T T

k k k
   x x w v . 

1) Select ε sampling points 

 0,
ˆ

k kx   (24a) 

   , 0
ˆ ,  1, 2, ,

T

i k k k
i

x n P i n       (24b) 

   , 0
ˆ ,   1, 2, ,

T

i n k k k
i

x n P i n        (24c) 

2) Calculate weights 
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where  2
0 1 ;nn    1 and  are undetermined parameters. 
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Fig. 3.  Flow chart of the extended Kalman filter algorithm. 

 
 

The parameter 1 is set as a small positive number (e.g., 104  
1  1), and it determines the range of sampling points circling 
ˆ.x   The influence of the higher-order terms of the nonlinear 

equation can be reduced by controlling 1.  The accuracy of the 
variance can be increased by controlling 2.  The optimal 2 is 
2 for a Gaussian distribution.  The parameter  is a scale factor 
that has a value of 2 when the system is invariable.  Let  = 3 – 

n if  is a multivariable.  The term   0 k
i

n P  represents 

the ith row of a matrix root.  The flow chart of the extended 
Kalman filter algorithm is shown in Fig. 3. 

VI. MEASUREMENT REFERENCE MODEL 

1. Geomagnetic Field Model 

The International Geomagnetic Reference Field (IGRF) 
model [5] was used in this study as the mathematical simula-
tion model of the geomagnetic field of a gyroless satellite.  In 
Eq. (26), r is the distance between the satellite and the earth’s 
center in the ECEF coordinate system,  is the longitude of  
the satellite in the ECEF coordinate system,   is the colatitude 
of the satellite in the ECEF coordinate system (90 minus 
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latitude), R is the semimajor axis of the earth (6371.2 km),  

g and h are the Gaussian coefficients of the IGRF model, m
nP  

is the Legendre function with m  n.  Because the Gaussian 

coefficients m
ng  and m

nh  used in the IGRF model are derived 

from measured geomagnetic field values through least square 
matching, the Gaussian coefficients should be remeasured and 
updated approximately every 5 years [5, 13].  The order number 
of the Gaussian coefficients of the IGRF model is 10.  There-
fore, n in Eq. (26) can be 1 to  and m ranges from 0 to n. 

 , ,V Rr      

      
1

1 0

cos sin
nn

m m m
n n n

n m

R
g m h m P

r
  




 

   
 

  (26) 

The geomagnetic field vector Bg can be derived from the 
negative gradient of the geomagnetic field potential function V 
in Eq. (26): 

 g V B  (27) 

The relational expression of geomagnetic field vector Bg 
and satellite position, i.e. the component of magnetic field V in 
the north, east and earth directions in the geographic coordi-
nate system.  The relationship between the geomagnetic field 
vector and the satellite position can be obtained as 

1 1

sin

T
T

g x y z

V V V
B B B

r r r  
             

B  (28) 

The IGRF describes the geomagnetic field intensity in the 
ECEF coordinate system, the relation of geomagnetic field 
vector Bg in the spherical coordinates of geomagnetic field and 
the ECI coordinate system i shows as long as the north, east 
and earth geomagnetic coordinates circle around oY axis by 
(180 – ) in turn, and circle around oY by , the ECI coor-

dinate system is obtained.  The transition matrix i
gC  for 

transformation from the geographic coordinate system to the 
ECI coordinate system is 

    180 ,i i
g x y i g gC C C C    B B  (29) 

In Eq. (29),  = ( + G) is the right ascension, and G is the 
Greenwich right ascension of the meridian or GST. 

For simulation analysis, the IGRF model was used to 
simulate the real geomagnetic field.  The tenth-order spherical 
order number was selected for the simulation, ensuring suffi-
ciently high geomagnetic field accuracy.  It is determined 
according to the performance of the magnetometer and the 
attitude determination accuracy in the simulation.  To confirm 
whether the aforementioned result is correct, the magnetic  

Longitude--deg

La
tit

ud
e-

-d
eg

Bz  at alt = 500 km, year/month: 2011.12 NTeslas

-150 -100 -50 0 50 100 150

-80
-60
-40
-20

0
20
40
60
80

-5
-4
-3
-2
-1
0
1
2
3
4
× 104

 
Fig. 4. Magnetic field distribution at the altitude of a microsatellite in 

orbital coordinates. 
 
 

field intensity of tenth-order IGRF in the orbit system is shown 
in Fig. 4. 

2. Magnetometer Model 

Three magnetometers were fixed for obtaining measure-
ments of the local magnetic field intensity along the three axes 
of the body coordinate system.  A three-axis magnetometer 
was fixed parallel to the satellite body axis to measure the 

body yaw angle.  Assume 
T

g x y zB B B   B  to be the geo- 

graphic coordinates of the geomagnetic field.  Further, let i
gC  

and o
iC  be the transition matrix for the conversion of the geo-

graphic coordinate system into the ECI coordinate system and 
the transition matrix for conversion from the ECI coordinate 
system to the orbital coordinate system, respectively.  The 
component of the geomagnetic field vector in the orbit system 
can be expressed as 

 o i
o i g gC CB B  (30) 

The component of the geomagnetic field in the satellite 
body system can be obtained from measured and estimated 
magnetic field values:  

 b o i
b o i g g bC C C  B B  (31) 

where b is the zero-mean white noise, that is,  

  2~ 0,b g   (32) 

3. Sun Vector Model 

The satellite attitude was estimated from the vector obser-
vations obtained from the sun sensor.  The method presented 
in [6] was used in this study, and a sun model was constructed 
on the basis of the relationship between the earth and the sun.  
Because the angle between sunrays and the equatorial plane of  
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Fig. 5. Sun vector in the inertial system within one year from vernal 

equinox. 

 
 

the earth changes periodically within the Tropics of Capricorn 
and Cancer (23) during the course of a year, the elevation of 
sunrays in the ECI coordinate system is 

 

223
sin

180 365s

T    
 

 (33) 

where T is the time elapsed since vernal equinox.  The sun 
azimuth for a period of a year starting from vernal equinox can 
be given as 

 

2

365s

T   (34) 

when the earth passes by the vernal equinox, the unit vector in 
the direction of sunrays in the ECI coordinate system is  

  0 1 0 0 .i
T

s   

Then, the sun vector at any time is 

0( ) ( ) , ,i i o io
y s z s is C C s s C s       

( ) ( ) ( )o
i z x zC C v C i C    (35) 

where is  is the sun vector in the ECI coordinate system,  
os  is the sun vector in the orbit system, o

iC  is the transition 
matrix for converting the ECI coordinate system into the orbit 
system.  According to the sun model, the sun vectors in the 
ECI and orbit coordinate systems within one year from the 
vernal equinox are shown in Fig. 5. 

4. CSS Reading Algorithm 

CSS Reading Algorithm (sun vector Computation by CSS 
Reading Algorithm) 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5
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30
Sun Vector Error: 5%, CSS FOV: 70° (Case1)

Samples Point  
Fig. 6.  CSS reading error of 5% for a FOV of 70°. 

 

1) CSS Geometric Configuration and Sun Vector 

If the microsatellite uses eight CSSs to calculate the sun 
vector, on the basis of the present orientation configuration and 
field-of-view (FOV) values of the CSS, there will be at most 
four CSSs irradiated by the sun, and this number may decrease 
to three and two CSSs.  Thus, the algorithm varies in the three 
cases of different numbers of CSSs irradiated by the sun. 

Let the real sun vector be  

 _ _ _

T

real x real y real zreal S S S   S  (36) 

The relationship between the current generated by the eight 
CSSs and the sun vector is  

0i realI I NS  

0norm i real I I I NS  (37) 

where  1 2 8

T

i I I I I  is the current generated by the 

various CSSs when irradiated by the sun; I0, the maximum 
current output of the CSSs (for FORMOSAT-3, I0 = 167 mA); 
and N, the normal vector orientation of the eight CSSs. 

 1 2 3 4 5 6 7 8
T N N N N N N N N   N  

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

a a a a a a a a

b b b b b b b b

c c c c c c c c

 
   
  

 (38) 

2) Cases of Four, Three, and Two CSSs Irradiated by the Sun 

There were 2000 data samples for the regime analysis of a 
5% reading error of the CSSs (in relation to reading) and 70 
FOV of the CSSs, as shown in Fig. 6.  (Note: The read noise  

of a sensor is the noise for a normal Gaussian distribution.) 
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Fig. 7.  Attitude measurement by the static horizon sensor. 

 

5. Earth Horizon Sensor Model 

The static infrared horizon sensor is also known as radiant 
heat balance earth sensor.  The static horizon sensor is fixed to 
the side of the satellite facing the earth, and it consists of 14-16 
m filter lenses and four thermopile detectors.  The angles be- 
tween the spectral axes of the four detectors and the principal 
optic axis can be set according to the distance of the satellite 
from the earth, and it is set to ensure that the center of the earth 
disc is in the FOV of the four detectors, as shown in Fig. 7.  
When the satellite attitude shows a deviation, the output of the 
four probes will change accordingly.  Then, 

 2 4

2

  
  (39a) 

 1 3

2

  
  (39b) 

where  is the roll attitude angle of the satellite and  is the 
pitch attitude angle. 

VII. ATTITUDE DETERMINATION AND 
SUBSYSTEM ANALYSIS 

1. CSS + Scanning Horizon Sensor + Three-Axis  
Magnetometer Satellite Attitude Estimation  

1) Attitude Estimation State Variable 

The nine-dimensional attitude estimation state variable was 
used for the microsatellite: 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ
T

                x  (40) 

2) Direct Observation Equation 

If the attitude is measured using the CSS, horizon sensor, 
and magnetometer instead of a gyro, the measurement outputs 
of these instruments are directly considered as the observations.  
The filter output value should be compared with the observed 

value, and therefore, the most straightforward observation 
vector can be chosen as the measured value of the sun vector Sb, 
horizon sensor Eb, and three-dimensional geomagnetic field 
vector Bb in the satellite body system, that is, 

TT T T
b b bz    S E B  

T

bx by bz bx by bz bx by bzS S S E E E B B B     (41) 

The corresponding measure equation is 
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( ) ( )
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o o
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o o
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z h C

C

 
 

    
  

x S

x v x E

x B

 (42) 

where 
TT T T

S E B
   v v v v  is the measurement noise of the 

CSS, horizon sensor, and magnetometer.  So, Eo, and Bo are the 
sun vector, earth radiation vector, and geomagnetic field vec-
tor, respectively, determined from the orbital location look-up 
table of the microsatellite. 

3) Simulation Results and Analysis  

The gyroless EKF designed was simulated.  As the satellite 
experiences large-angle attitude motion and attitude stabiliza-
tion motion in the attitude capture process, its attitude changes 
frequently.  Therefore, the attitude changes in the satellite atti- 
tude capture process are used for attitude filter estimation, 
from the filtered values of the measurements of the CSS + 
scanning horizon sensor + three-axis magnetometer on a gy-
roless EKF. 

4) Simulated Conditions 

The magnetometer measurement error was 500 nT, the so-
lar sensor measurement error was 10%, and the three-axis 
initial attitude of the microsatellite was different. 

5) EKF Initial Attitude  

The satellite mission orbit information was as follows: 
satellite altitude, 500 km; longitude, 108; latitude, 35; and 
sampling time, 4 s; and off-modulator magnitude, 2.  The satel-
lite attitude motion trajectory is shown in Fig. 8.  The CSS 
tasks decreased from four to two at 200 s, and the CSS did not 
work when the satellite entered the earth’s shadow area at 600 
s.  The EKF involving a direct observation equation was used 
in the simulation. 

In Fig. 8(a), the estimated time response of the microsatel-
lite body rate is shown along with the difference between the 
measured and the estimated body rates when the number of 
CSSs was reduced from four to two at 200 s and from two to 
zero at 600 s.  In Fig. 8(b), the time response of the estimated 
microsatellite Euler angle is shown with the difference be-
tween the measured and estimated values of the angle when  
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Fig. 8.  Time response of satellite body rate, Euler angle and angular integration. 

 
 
the number of CSSs was reduced from four to two at 200 s and 
from two to zero at 600 s.  The time response of estimated 
angular integration is shown in Fig. 8(c); the estimated values 
and the difference between the measured and estimated values 
when the number of CSSs was reduced from four to two at 200 
s and from two to zero at 600 s are also shown.  Finally, the 
time response of the microsatellite thrusters actual and esti-
mated command of u for the two instances of a decrease in the 
number of CSSs are shown in Fig. 8(d). 

VIII. CONCLUSION 

The simulation results show that when the combination of 
the CSS, scanning horizon sensor, and three-axis magnetome-
ter functions normally, the estimation of a large-angle attitude 
change has a relatively small error.  The maximum error is 10°.  
When the number of CSSs is reduced, the error is relatively 
large.  When the attitude changes, the maximum instantaneous 
error is 32°.  In the academic theory and engineering practice, 
on the whole, a systematic analysis is feasible. 
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