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ABSTRACT 

The increases in catalytic photolysis efficiency of the sur-
face modified ATO (anodic titanium oxide) by Ag or/and Au 
nanoparticles were attributed to the greater light absorbance 
than that of the sole ATO.  In addition to the enhanced inherent 
ATO absorbance at 365 nm inasmuch as the surface-plasmon 
enhancement of the band emission, additional light absorb-
ance peak occurred at the wavelength around 430 nm, 530 nm 
and 500 nm for nano Ag modified TiO2, nano Au modified 
TiO2, and composite nano Ag/Au modified TiO2, respectively.  
All surface modified ATO catalysts exhibited stronger bacte-
ricidal effect under UV exposure than under visible light ex-
posure for 24 hrs.  Even for a short time of one hour, survival 
of E. coli decreased drastically from 106 CFU under the dark 
control to 102 CFU under the UV exposure, which was about 
four powers of exponent reduction.  Surfaces modified ATO 
catalysts need to take longer time exposure under visible light 
irradiation than under UV irradiation to achieve the similar 
photocatalytic efficiency. 

I. INTRODUCTION 

TiO2 (Titanium dioxide) is one of the most widely studied 
semi-conducting photocatalysts for the degradation of organic 
contaminants from water and air, because of its physical and 
chemical stability, high catalytic activity, high oxidative power, 
low cost, and ease of production [10, 11, 18, 19].  Most un-
wanted and harmful organic compounds in contaminated air or 
water can be removed by photo-induced electro-chemical 
decomposition on the surface of TiO2 as the photocatalyst [10].  
TiO2 photocatalysts have been found capable of killing cancer 
cells, bacteria, viruses, and algae under UV illumination [6, 11, 
49].  Anodization of Ti substrates in a fluoride containing 
electrolyte leads to self-organization of the nanostructure [2, 
39, 40].  These self-organized TiO2 nanotubes exhibit very 
high photocatalytic efficiency that can be used to decompose 
organic compounds in the contact mode or in flow-through 
UV irradiated membranes [1, 41].  The decomposition effi-
ciency can be further enhanced by using a bias voltage [71],  
or by coating the nanotubes with noble metal nanoparticles 
[47].  Most recently, it has been reported that living cancer 
cells that adhere, spread and grow on the nanotubular layers of 
TiO2 surface were killed by photocatalysis.  The dimensions  
of the nanotubes play a role in cell adhesion and spreading 
[48].  One possible application of the isolated nanotubes for 
cancer treatment is to administrate them to tumor cells, fol-
lowed by focused UV-light radiation to the cells [28, 54]. 

The wide band gap of TiO2 (3.2 eV) limits its use of visible 
light from natural solar light or room-light.  Because the ma-
jority of sunlight consists of visible light, only 3-5% of them 
are UV light.  Therefore, for the practical application of TiO2, 
it is better to use visible light instead of UV light for photo-
catalysis.  Numerous studies have been carried out to develop 
or improve the efficiency of TiO2 photocatalysis by visible 
light radiation [3, 21, 34, 50, 60, 66], such as doping with 
metal and non-metal ions (e.g. Ag, Au, Pd, C, S, Pt, Fe, V, N,  
P) [7, 32, 35, 36, 63, 67, 70], dye sensitization (Ru, Z907, 
Z910, CYC-B1) [23], and semiconductor coupling.  Doping 
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with silver is of considerable interest, since silver can trap the 
excited electrons from TiO2 and leave holes for the degrada- 
tion of organic species [29, 56].  Basically, doping with silver 
effectively narrows the band gap of TiO2 (<3.0 eV).  It also 
results in the extension of their wavelength response toward 
the visible region [4, 16, 24].  Moreover, silver particles can 
facilitate the electron excitation by creating a local electric 
field [8], and the plasmon resonance effect on metallic silver 
particles shows a reasonable enhancement of this electric field 
[23].  The effect of Ag doping through sol-gel process on 
titania photocatalytic activity by UV light irradiation have  
also been studied [69].  It has been found that Ag doping 
promoted the transformation of rutile to anatase, subsequently 
increased the specific surface area to improve photocatalytic 
activity and enhance the electron-hole pair separation [54].  
Low concentration of metal resulted in the formation of small 
amount of active electron accumulating centers whereas high 
concentration of silver resulted in the formation of new centers 
of photogenerating electrons and holes, which substantially 
increased photocatalytic activity [38]. 

The processes occurring on the surface of the photocata-
lysts may be represented by the following explanation.  Since 
Ag and TiO2 have different electron energy, a Schottky  
barrier is formed between them in Ag/TiO2 catalyst.  Electrons 
pass from TiO2 with low electron yield energy (3.2 eV) to 
silver with high electron yield energy (3.0 eV).  Free electron 
are formed on the surface of TiO2 modified with silver parti-
cles when exposed to light, and these electrons migrate to 
metal particles and then to the electron acceptor (dissolved O2) 
[15].  Metallic nanoparticles have attracted intensive attention 
due to their unusual optical properties as well as their novel 
chemical and catalytic properties.  For example, Haruta et al. 
(1989) discovered the catalytic activity of nano-sized Au 
clusters on the metal oxides, such as TiO2, Fe2O3 and Co2O3 
[15].  Among these metal oxides, TiO2 was one of the best 
supports for Au nanoparticles.  TiO2 with gold nanoparticles 
showed high activity in photo chemical catalysis due to the 
improvement of photoelectron chemical activity [34].  Over 
the past few years, many effective approaches have been em-
ployed to prepare Au/TiO2 composite materials, such as by 
impregnation [9, 30, 37, 52], deposition-precipitation [43, 53, 
68], or vacuum evaporation [42, 46].  Several kinds of active 
oxidative species, such as OH • and O2- radicals, and free  
and trapped holes were involved in the initiation of photo-
catalytic oxidation reactions [27, 44, 45].  Involvement of 
these active oxidative species explained the superiority of 
TiO2 photocatalyst to oxidize most organisms, to kill microbes, 
and to mineralize chemicals with the aid of molecular oxygen.  
These reactions mainly occurred on or very close to the sur-
face of the TiO2 photocatalysts.  This allows important appli-
cations in the disinfection of air, water, and surfaces with TiO2 
photocatalysts.  Kikuchi et al. (1997) studied the killing of 
Escherichia coli on TiO2 thin films [31].  Kühn et al. (2003) 
observed that the killing efficiency on bacteria were dependent 
on the thickness and structure of the cell wall [33].  Bacteria 

having thin cell wall, such as E. coli and Pseudomonas 
aeruginosa, were killed much faster than microorganisms 
having thick eukaryotic cell wall, such as Candida albicans 
[33].  Sunada et al. (1998) observed that not only bacteria were 
killed on the TiO2 surface, but also the toxic ingredients could 
be decomposed [57].  If UV illumination continued for a suf-
ficiently long time, bacteria were mineralized completely into 
CO2, H2O, and other mineral substances [25, 55, 58, 62].  This 
is a unique property of photocatalytic sterilization not ob-
served in other bactericidal agents.  Besides bacteria, viruses 
and fungi also could be killed and totally mineralized by 
photocatalytic action [11, 58].  However, fungi were some-
times killed much more slowly than bacteria because of their 
cell structures [58]. 

Development of photocatalysts exhibiting high reactivity 
under visible light (λ > 400 nm) should allow the main part of 
the solar spectrum, or the poor illuminated interior light ap-
plicable.  The purpose of this study is to develop a surface 
modified TiO2 nanotube array which could kill E. coli under 
exposure of visible lights of longer wavelength.  In this study, 
photocatalytic efficiency of nano particles of silver or/and 
gold modified nanotubular TiO2 under UV and visible light 
were systematically investigated and compared. 

II. EXPERIMENTAL PROCEDURE 

1. Surface Modification of Nanotubular ATO 

Titanium foil (99.7% purity, 0.127 mm thick; Aldrich, USA) 
was annealed in an air furnace at 450°C for 3 h to release stress 
and then rinsed in deionized water (DI).  A platinum (Pt) sheet 
(2 cm × 2 cm) was used as the cathode to anodize the Ti anode 
(4 cm × 4 cm) at room temperature (25°C).  Separation dis-
tance between the anode and the cathode was fixed at 1.5 cm.  
An ordered channel-array of nanotube layer with a length of 
10 µm was formed on the surface of titanium foil by achieving 
in electrolyte composed of 0.5 wt% ammonium fluoride 
(NH4F, 99.9%) mixed with ethylene glycol(C2H4(OH)2) at  
60 V for a period of 1 hr.  After anodization, the samples were 
annealed at 450°C for three hrs to form a perfect channel-array 
of nanotubular anatase.  Similar to the anodization experi-
mental setup, the annealed foil was used as the cathode and 
platinum as the anode, separated by a distance of 1cm, and the 
foil was immersed into the electrolyte containing suspended 
nano silver [22] or/and nano gold [5] particles.  Nano silver 
or/and nano gold particles were uniformly adsorbed on the 
titania nanotubular surface by electrophoresis under applied 
electric field.  The electrophoretic process was performed at 
30 V for nano silver particle adsorption or at 10 V for nano 
gold particle adsorption for 15 min.  The composite nano 
Ag/Au adsorption process followed the aforementioned pro-
cedure for each specimen. 

2. Characterization of Methodology 

The structures of various samples were identified using  
an x-ray diffractometer (XRD) with Cu kα radiation (λ = 
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1.54056Å).  The 2θ range of XRD scan was from 20° to 80°  

in the measurements.  The surface morphology of the samples 
was observed by using a scanning field-emission electron 
microscope (Hitachi FE-SEM 4800) with an acceleration 
voltage of 15 kV.  The presence of nano Ag and nano Au 
particles was confirmed by energy dispersive X-ray analyzer 
(EDX).  The band gap of photoluminescence (PL) for various 
samples was measured by using a He-Cd laser with an exci-
tation wavelength of 340-640 nm as the light source.  The 
Raman spectra were obtained using a solid-state green light 
laser (532 nm) (model Ranishaw 1000B) with an excitation 
power intensity of 4 mW and 15 s acquisition time.  The Ultra 
violet-Visible (UV-VIS) absorption spectra were recorded at 
wavelengths of 200 nm to 800 nm on a Cary 500 Scan UV- 
VIS-NIR Spectrophotometer with an integrating sphere at-
tachment using a pure titanium foil instead of polyterafluore-
thylene powder as a reference.  The surface topography and 
size of nano particle of selected samples were investigated 
with an atomic force microscope (AFM, DI 3100, Veeco, USA) 
operating in a tapping mode. 

3. Preparation of Bacterial Culture 

For viability assays, a typical procedure of photocatalytic 
treatment is used as following.  E. coli cultivated overnight 
were washed and re-suspended in Phosphate Buffer Saline 
solution (PBS; which contains 4 g NaCl, 0.1 g KCl, 0.1 g 
KH2PO4, and 0.571 g Na2HPO4 • 2H2O in 1 liter, pH 7.0) to 
about 109 cfu/ml.  The cell suspensions, which were irradiated 
by a visible-light source (0.0078 W/cm2) or a UV-light source 
(0.038 W/cm2) in the presence of the Ag on TiO2, Au on TiO2, 
or Ag/Au on TiO2 photocatalyst, were pipetted onto sterile 
petri dishes.  At regular time intervals, 20 ml aliquots of the 
irradiated cell suspensions were withdrawn.  After appropriate 
dilutions with buffer, aliquots of 20 ml together with 2.5 ml 
top agar were spread onto agar medium plates and incubated at 
37°C for 0~24 hr.  The number of viable cells in terms of 
colony-forming units (CFU) was counted. 

4. Bactericidal Tests under UV or Visible Light 

Among the six 50 ml solution-samples containing 3 ml of 
109 cfu/ml of E. coli, four were exposed to the TiO2, Ag/TiO2, 
Au/TiO2, and AgAu/TiO2 catalysts respectively, and the other 
two were served as control.  One was used for the “light con-
trol” (not exposed to ATO catalyst but light only) and the other 
for the “dark control” (not exposed to both ATO catalyst and 
light).  They were employed to elucidate the photocatalytic 
effect of various ATO catalysts.  After disinfection in 95% 
ethanol, the various nanotube catalysts, such as TiO2, Ag/TiO2, 
Au/TiO2, and AgAu/TiO2, were added individually into each 
beaker filled with E. coli solution.  Then they were irradiated 
with three different light conditions, UV-A (wavelength of A = 
365 nm), visible light, and darkness, respectively for 24 hrs 
after stabilization for a period of 24 hrs.  The distance between 
the solution and the light source was fixed at approximately  
10 cm.  After photocatalytic treatment for 24 hrs, the solutions  
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Fig. 1. SEM top views of (a) TiO2 nanotube layer formed by anodization 

(b) Ag on TiO2 (c) Au on TiO2 (d) Ag/Au on TiO2 (e) and (f) EDX 
spectra of nano silver and gold particles adsorbed on the surface 
of the mouth of the nanotube respectively.  

 
containing survival bacteria were incubated for another 12 hrs.  
Optical density of each bacterial solution was measured by 
using enzyme-linked immunosorbent assay (Elisa, Synergy- 
Mx- Monochromator made by Biotek, USA) in order to ex-
amine the quantitative disparity between the death and viable 
cells.  The intensity of the UV-A light was 0.038 mW/cm2, as 
measured by using a UV photometer.  The intensity of the 
visible light was 0.0078 mW/cm2, as measured by using a 
sunlight photometer (1Sun = 100 mW/cm2). 

III. RESULTS AND DISCUSSION 

1. Characterization of the Surface Modified ATOs 

TiO2 with the anatase structure is more effective in photo-
catalysis than P25 nanoparticle oxide [12] with a major rutile 
structure.  A modified TiO2-nanometer tubular array can be 
loaded with nano sized precious metal, and these precious 
metal loaded ones can be activated by the light of a longer 
wavelength other than the ultraviolet light.  The SEM images 
of various nanotubular arrays in Fig. 1 revealed that the di-
ameter of the nanotubes was 100 nm with a wall thickness of 
about 20 nm, and the average length of nanotubes was about 
10 µm (Fig. 1(a)).  That figure also showed the adsorptive 
silver nanoparticles (Fig. 1(b)), gold nanoparticles (Fig. 1(c)), 
and the composite Ag/Au nanoparticles (Fig. 1(d)) on the 
nanotubular wall surface.  Average size of the synthesized 
nano silver, nano gold particles and composite nano silver/ 
gold particles was 10 ± 2 nm, 13 nm ± 3 nm, and 18 ± 3 nm, 
respectively (Fig. 1).  Composition of EDX profiles for the 
adsorbed nano Ag and nano Au particles on the mouth sur-
faces of the nanotubes were shown in Figs. 1(e) and 1(f). 
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Fig. 2. AFM images of Ag/TiO2, (a) 3D morphology, (b) size and height of 

nano silver particles. 

 
 
Further, AFM image of a scan area (500 nm × 500 nm) 

taken from the surface of Ag/TiO2 showed that nano silver 
particles set on a non-smooth nanotubular surface depicted  
in Fig. 2(a), by focusing on Ag nanoparticles.  The height of 
Ag particle is about 13 nm measured from cross section  
image (Fig. 2(b)), corresponding to the aforementioned syn-
thesized nanoparticle size.  Thus this result clarifies that no 
anxiety about nanoparticle cluster or pile-up one on top of 
another occurring. 

All various cases of XRD pattern plots were summarized in 
Fig. 3.  The results showed that a nanotubular array of ATO 
was fully consisted of anatase (Fig. 3).  Nano Ag and Au par-
ticles fully adsorbed on the mouth surface of the arrayed 
nanotubular wall (Fig. 1) without affecting the anatase struc-
ture were confirmed by the XRD patterns in Fig. 3.  Similarly, 
as in Fig. 4 the Raman spectra of ATO and various catalysts, 
taken from the range of 100 cm-1 to 1000 cm-1, showed the 
standard peaks of anatase were at the wave numbers of 196, 
395, 516, and 640 cm-1, and which were consistent with the 
data in the literature [43].  The magnitude of the intensity 
raised in order of ATO, nano Ag, nano Au, and composite 
nano Ag/Au adsorption on ATO (Fig. 4).  Surface-enhanced 
Raman spectroscopy (SERS) was a widely used technique for 
obtaining vibration spectra on some roughened metal surfaces, 
such as those loaded with nanoparticles.  When the incident  
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Fig. 3. XRD diffraction of ATO, Ag on TiO2, Au on TiO2, composite 
Ag/Au on TiO2.  A: anatase. 
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Fig. 4. Overlapping Raman spectra of the various catalysts of ATO, Ag 

on TiO2, Au on TiO2, and Ag/Au on TiO2. 

 
 

light struck and excited on the metal surface, the electric field 
was enhanced by the surface plasmons.  The Raman signals of 
particles attached to the surface could thus be read to identify 
their chemical composition [64]. 

2. Light Absorbance of the Surface Modified ATOs 

The light absorbance is a key factor in the efficiency of a 
photocatalyzer.  In this study, PL spectra under low tempera-
ture 10 k were used to study the excitation wavelength and  
the band gap energy (Fig. 5).  The anatase of ATO has an 
excitation wavelength of 377 nm (corresponding 3.3 eV band 
gap energy), which fits UV photocatalysis.  The increase in 
intensity at 399 nm for the nano Ag adsorbed ATO might be 
deduced from the surface-plasmon enhancement of band gap 
emission by nano particles [65].  In addition to the increase  
in luminous intensity by surface-plasmon enhancement, band 
gap emission at 375 nm and one more peak appeared for ab-
sorptive nano Au particles on an ATO surface at a longer 
wavelength of 530 nm (2.3 eV), were consistent with the re-
sults in the literature [26].  Two maximum luminous intensity 
peaks occurred in the case of composite nano Ag/Au  
particles adsorbed on an ATO surface at 402 nm and 530 nm  
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Fig. 5. The comparison of PL Spectra of the arrayed TiO2 nanotubes 

with/without adsorptive different nanoparticles, excited at a low 
temperature of 10 K in the wavelength. 
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Fig. 6. The comparison of UV-VIS Spectra of the arrayed TiO2 nano-

tubes with/without different adsorptive nanoparticles in the wave- 
length. 

 
 

(i.e. 3.0 eV and 2.3 eV), with relatively lower band gap emis-
sion energy due to the highest surface-plasmon enhancement 
of band gap emission (Fig. 5). 

Furthermore, the absorption spectra of various ATO sam-
ples were measured from UV to the visible light range with  
a UV-VIS spectrophotometer.  The results in Fig. 6 illustrated 
that the maximum absorbance peak occurred at a wavelength 
from 355 nm to 365 nm were originated from the ATO.  Ad-
ditional peak at 430 nm was from the absorptive Ag nanopar-
ticles on the ATO surface, and the peak at the longer wave-
length of 530 nm was from the adsorptive Au nanoparticles on 
the ATO surface (Fig. 6).  The light absorbance value of ATO 
with the adsorptive Ag nanoparticles was better than that  
with the adsorptive Au nanoparticles (Fig. 6).  The composite  
nano Ag/Au particles adsorbed on ATO surface exhibited the 
highest of light absorbance about 0.75 at the wavelength of 
500 nm, which was in the middle of a broad wavelength range 
covering from 430 nm to 530 nm.  It was the consequence of 
the superimposing effect of two absorption peaks from Ag and 
Au nanoparticles, in addition to the inherent ATO absorbance 
at 365 nm (Fig. 6). 
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Fig. 7. Photocatalysis of various surfaces modified ATO on the E. coli 

bactericidal action under (a) UV-A light (b) visible light exposure. 

 

3. Bactericidal Effect of the Surface Modified ATOs 

Plots of the optical density (OD600) versus the irradiation time 
were used to evaluate the bactericidal efficiency of photo-
catalysis in terms of the survival of E. coli, by various modi-
fied ATO catalysts under the different treatments (Fig. 7).  The 
results showed that the bactericidal efficiency by UV-A ex-
posure was strongly enhanced by the adsorptive nano Ag 
or/and nano Au particles (Fig. 7).  The bactericidal efficiency 
was excellent under UV-A light irradiation for all surface 
modified ATO photocatalysts by Ag, Au, or composite Ag/Au 
nanoparticles.  Bactericidal effect by visible light irradiation 
was also enhanced to contain level for all surface modified 
ATO catalysts (Fig. 7).  Although bactericidal effect on E. coli 
cells under visible light exposure is not as effective as under 
UV-A exposure (Fig. 7) for each ATO photocatalysts.  The 
photocatalyst of composite Ag/Au nanoparticles adsorbed  
on the ATO surface for visible light irradiation had the best 
bactericidal result after 24 hrs of irradiation.  The increases in 
efficiency of the bactericidal effect in vitro was, in rising order, 
dark control, light control, TiO2 (ATO), Au on TiO2, Ag on 
TiO2 and composite Ag/Au on TiO2. 

Bactericidal activities based on optical density (OD) meas-
urement were semi-quantitative evaluation (Fig. 7).  Manual 
counting of the survival E. coli (Fig. 8) has completed a more 
accurate result of photocatalytic bactericidal effect under ul-
traviolet and visible light irradiation for 1 hr.  Each experiment  
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Fig. 8. Effect of (a) ultraviolet light and (b) commercial 13-Watts visible 

light irradiation for one hour on bactericidal effect against Es-
cherichia coli by photocatalytic activities of different modified 
ATO surface. 

 
 

had been done in triplicate (Fig. 8).  The most effective 
photocatalytic bactericide was the surface modified ATO with 
nano Ag adsorption (Fig. 8(a)).  The results showed bacterial 
colonies decreased drastically from 106 CFU under the dark 
control to 102 CFU under the UV exposure, which are about 
four powers of exponent reduction in the survival E. coli 
within only 1 hr (Fig. 8(a)).  For comparison, any of the se-
lected photocatalysts was unable to demonstrate a rapid bac-
tericidal effect under the visible light irradiation for 1 hr  
(Fig. 8(b)).  In other words, these surfaces modified ATO 
photocatalysts have to take longer time under visible light 
irradiation than under UV irradiation to achieve a significant 
photocatalytic activity in current stage.  In the future, the im-
provement of bactericidal effect under visible light irradiation 
is another important key issue. 

The increase in photocatalytic efficiency of the nano Ag 
or/and nano Au absorptive ATO photocatalysts suggested that 
the stronger photolysis was result from the high electron 
conductivity of nano Ag or/and nano Au, combined with the 
quantum effects of the nano-sized TiO2 tubes.  The increase of 
the PL (Fig. 5) emission peak intensity and the UV-VIS (Fig. 6) 
absorption peak intensity were caused by the nano Ag or/and 
nano Au adsorption due to the surface-plasmon enhancement 
of ATO band gap emission.  The so-called redshift of the ad-
ditional second peak was result from the nanoparticles induced 
band emission having a narrow band gap, thus with the con-

sequence of having more photoelectrons from ATO (TiO2) 
conveyed to the buffer solution to enhance the multiplication 
in the number of hydroxyl radicals and super oxides [61].  
From the literatures [13, 14, 17, 20, 51, 59], E. coli cells 
treated with photo excited ATO were effectively killed due to 
the accumulation of reactive oxygen species (ROS) on the 
surfaces of cell membranes and in the cytoplasm.  According 
to these characteristics, it had been assumed that the mecha-
nism of photo excited ATO in bactericidal photocatalysis 
might be a series of oxidized chain reactions, inducing cell 
death by reactive oxygen species. 

IV. CONCLUSIONS 

The additional peak of light absorption at wavelength of 
430 nm and 530 nm for surface modified ATO by Ag and Au 
nanoparticles might be deduced from the surface-plasmon 
enhancement of band gap emission by these nanoparticles.  
The composite nano Ag/Au particles adsorbed on ATO sur- 
face exhibited the highest of light absorbance (about 0.75)  
at the wavelength of 500 nm, it also had a broad wavelength 
range covering a range from 430 nm to 530 nm.  Its bacteri-
cidal activity was the consequence of the superimposing ef- 
fect of two absorption peaks from foregoing mentioned Ag 
and Au nanoparticles and the enhanced inherent ATO ab-
sorbance at 365 nm. 

The bactericidal efficiency tests (based on OD) showed that 
photocatalysis of these surface modified ATO photocatalysts 
after UV irradiation for 24 hrs were strongly enhanced.  For 
comparison, the bactericidal efficiency of these ATOs under 
visible light irradiation only increased to certain level.  Bac-
tericidal effect of these ATOs under visible light irradiation 
was in the increasing order of TiO2, nano Au adsorptive TiO2, 
nano Ag adsorptive TiO2, and composite nano Ag/Au adsorp-
tive TiO2. 

A more accurate bactericidal results by manual counting the 
number of the survival E. coli showed CFU/ml decreased 
drastically from 106 under the dark control to 102 under the UV 
exposure, which was about four powers of exponent reduction 
in the survival E. coli within only one hour for nano Ag 
modified ATO catalysts.  For comparison, it was unable to 
demonstrate a rapid bactericidal effect under the visible light 
irradiation at the same short time period.  In other words, these 
surfaces modified ATO catalysts of this study had to take 
longer time under visible light irradiation than UV irradiation 
to achieve a significant photocatalytic activity in current stage. 

The increases in catalyzed photolysis efficiency of the 
surface modified ATO by Ag or/and Au nanoparticles were 
attributed to the enhancement of much greater light absorb-
ance than the sole ATO. 
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