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ABSTRACT 

This paper investigated the dynamic characteristics and the 
cutting stability of a dynamically loaded worktable on elastic 
supports in a surface grinder.  The operation of worktables is 
usually dynamically loaded in various positions, which results 
in a complex system of governing equations.  In this study, the 
assumptions of elastic and rigid body modes of a free-free 
beam were specified in analyzing the worktable.  By com-
bining the Lagrange energy method with the technique of 
assumed mode expansion, the system of equations was de-
veloped.  The absolute value of the maximum negative real 
part of the overall dynamic compliance (MNRPODC) and the 
limiting chip width were used as the performance indicators to 
evaluate the structural characteristics of the worktable during 
simulated machining.  The 3D stability lobe diagram was then 
computed.  The cutting stability was verified by comparing the 
results obtained in time-domain analysis with the lobe diagram.  
The procedure presented in this study to improve the dynamics 
performance of a surface grinder can also be implemented in a 
similar fashion for many other machine tool applications. 

I. INTRODUCTION 

A machine tool is a complex mechanical system in which 
the machining performance is closely related to the tool’s 
dynamic characteristics.  Metal cutting usually causes excess 
vibration between the workpiece and the cutting tool which is 
known as machine tool chatter.  The machine tool chatter, with 
its self-excited vibration caused and sustained by the cutting 
force during the cutting process, can cause severe adverse 

effects on the workpiece surface precision and reduce tool 
lifetime.  Therefore, a machine tool with adequate static and 
dynamic characteristics can promote the machined precision 
of workpieces while ensure the safety, stability, and reliability 
of the machine tool. 

In the literature [1, 14, 15, 17, 19] researchers usually use 
the width of cut (blim) under no chatter condition (i.e., maxi-
mum stability) as the dynamic performance indicator in the 
analysis for a machine tool.  For instance, Tlusty [16] pro-
posed that blim in the stability analysis of regenerative chatter 
vibration is determined by the absolute value of the Maximum 
Negative Real Part of the Overall Dynamic Compliance 
(MNRPODC); that is, blim = 1/(2 × Kf × |MNRPODC|), where 
Kf is the cutting stiffness per unit width of cut.  In a system the 
cutting stability is inversely proportional to the |MNRPODC|.  
This study, therefore, applied blim to evaluate the cutting sta-
bility of the dynamically loaded non-rigid worktable on elastic 
supports. 

The dynamic response of a beam structure (non-rotating 
structure) due to moving loads has been used to predict the 
dynamic behavior of vehicles when traveling on bridge struc- 
tures [12, 13] The analysis is an analogy to the loading of 
machine tool’s worktable.  On the other hand, the effects of 
moving loads on rotating shafts or structure are studied.  For 
example, Katz et al. [10] investigated the dynamic response of 
a beam model, based on the Euler, Rayleigh and Timoshenko 
theories.  The beam is loaded with a constant velocity moving 
force.  Argento and Scott [3] generalized Katz’s procedure to a 
rotating beam subjected to an accelerating distributed surface 
force.  Gu et al. [7] applied the analysis procedure to the study 
of dynamic characteristics of the ball-screw feed drive system 
in a machine tool.  In addition, many studies on the stiffness or 
structural vibrations and optimization of machine tools have 
been conducted by experimental, analytical, or numerical 
methods in past decades.  Among these researchers, Yoshi-
mura [20, 21] accomplished substantial analyses on the 
structural dynamic for machine tools.  Zhang, et al. [22]  
applied CAE (Computer Aided Engineering) techniques to 
predict the overall structural dynamic characteristics.  They 
conclude that the vibration on the weaker segment of the 
structure has a significant effect on the dynamic instability of  

Paper submitted 01/21/13; revised 08/01/13; accepted 09/05/13.  Author for 
correspondence: Kuo-Chiang Cha (e-mail: ckc001@mail.cgu.edu.tw). 
1 Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, 
Taiwan, R.O.C. 

2 Chung-Shan Institute of Science and Technology, Tao-Yuan, Taiwan, R.O.C. 



248 Journal of Marine Science and Technology, Vol. 22, No. 2 (2014) 

 

k1

kg cg

kR

sp

cRkL cL

L/2

Grinding wheel

c1
y1

m1

F

F

Lξ

Rξ

ξ

y(ξ, t)ξ
Movable beam only

(E, ρ, I, A, L, cB)

 
Fig. 1.  Worktable model on elastic supports at various positions. 

 
 

a machine tool.  In recent years, the authors have applied 
theories to develop different models of surface grinder, such as 
the lumped-mass parametric model with eight degrees of 
freedom and the elastic-supported rigid-worktable model with 
three degrees of freedom.  To achieve the goal of improving 
overall dynamic performance and cutting stability, the former 
model is constructed to a prediction model for the structural 
stability using back propagation neural network [8], the latter 
model is used to study the dynamic characteristics and the 
cutting stability of the dynamically loaded rigid worktable on 
elastic supports [4].  Furthermore, there are rarely studies on 
the structural dynamic characteristics and cutting stability 
analysis of the non-rigid worktable with the elastic-supported 
due to variable-positions of the worktable. 

II. BASIC THEORY 

The model used for analyzing the dynamically loaded 
worktable on elastic supports is shown in Fig. 1.  The work-
table is modeled as an elastic beam sitting over the elastic 
supports separated by a span sp, where the spring and damping 
constants of the left and the right supports are kL, cL, kR and cR, 
respectively.  It is assumed that the vibration in the vertical 
direction (direction y) affects the machining precision most; 
thus, only the motion in that direction was considered in this 
study.  The surface grinder model consists of two parts: a 
grinding wheel and a worktable module.  The former is com-
posed of a grinding wheel (m1), and a bearing supported 
spindle (k1 and c1).  The latter is modeled by a free-free beam 
with elastic supports.  The contact stiffness between the 
grinding wheel and the elastic beam is kg and the contact 
damping is cg.  The coordinate of the worktable is denoted by ξ.  
In the simulation the cutting point is located initially at ξ = L/2 
as start of machining, and the model is similar to a bridge 
model where a single-axle vehicle is moving over the cross- 

pier but opposite movement mechanism.  In the past there 
were many models being proposed regarding the dynamics 
coupling response of vehicles moving on a simply supported 
bridge [5, 6, 9].  The model developed in this study is similar 
to these proposed models, except that the two ends of the span 
are supported on elastic support.  The equations of the system 
are derived based on the technique of assumed mode expan-
sion, in which the n elastic modes of the free-free beam and the 
two rigid body modes (translation and rotation) on the plane 
for the worktable are superposed, with the combination of 
other parts in the system.  The derivation and methods de-
veloped are not commonly used in the past literature; therefore, 
the derivation is first verified by comparing the dynamic re-
sponse of the rigid worktable model [4], also developed by the 
author, before applying the developed model to the analysis of 
structural static and dynamic characteristics and cutting sta-
bility of the dynamically loaded worktable at different posi-
tions during machining. 

1. Modelling and Formulation [10] 

Assume that the worktable is based on the Euler-Bernoulli 
beam theory with free-free conditions, where the beam is of 
uniform-section homogenous material with length L, and E is 
the Young’s modulus of the beam, ρ is the density, A is the 
cross-section area, I is the area moment of inertia of the beam's 
cross section, and cB is the beam damping.  The differential 
equation for the transverse free vibration at various positions 
and time is as follows: 

 
2 2 2

2 2 2 0.B

y y y
EI c A

t t
ρ

ξ ξ
 ∂ ∂ ∂ ∂+ + =  ∂∂ ∂ ∂ 

 (1) 

For the free-free boundary conditions the moment and the 
shear stress at the both ends of the worktable are set to zero, 
i.e., y′′(0, t) = 0, y′′(L, t) = 0, y′′′(0, t) = 0, y′′′(L, t) = 0.  In the 
assumed modes method, the solution of the free vibration 
problem is approximated by a linear combination of n admis-
sible functions, φi(ξ), as 

 
1

( , ) ( ) ( ).
n

i i
i

y t q tξ φ ξ
=

=∑  

where qi (t) are time dependent generalized coordinates. 
Therefore, the normalized eigenfunction φi(ξ) from Eq. (1) 

can be obtained as follows: 

{( ) 1 cosh( ) cos( )i i iL L Lφ ξ λ ξ λ ξ= +  

}sinh( ) sin( ) , 1, 2, , .i i iL L i nσ λ ξ λ ξ− + =   �  (2) 
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Table 1.  Value of λi associated with each normal mode. 

Mode number (i) Value of λi 

1 4.730040744862704 

2 7.853204624095837 

3 10.995607838001671 

4 14.137165491257464 

5 17.278759657399480 

… … 

n (n + 0.5) π 
 
 
Here, Table 1 shows value of λi associated with each mode. 
The two normalized rigid body modes (translation and ro-

tation) of a free-free beam on a plane can be expressed as 
follows: 

 
1 12 1

( ) ; ( ) .
2H S L LL

ξφ ξ φ ξ  = = − 
 

 (3) 

Use assumed mode expansion approach to combine the n 
free-free elastic beam modes in Eq. (2) and the generalized 
coordinates of the two rigid body modes in Eq. (3), y(ξ, t) can 
be expressed as follows: 

 
1

( , ) ( ) ( ) ( ) ( ) ( ) ( ).
n

i i S S H H
i

y t q t q t q tξ φ ξ φ ξ φ ξ
=

= + +∑  (4) 

Before the system equations can be derived by using the 
Lagrange method, the kinetic energy T, the potential energy U, 
and the dissipative energy R should be expressed as follows: 

2 2
1 1
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The Lagrange equations can be expressed as: 

( )1 1 1

( )
0,

( ) ( )

d T T U R

dt y t y t y t

 ∂ ∂ − ∂− + =  ∂ ∂ ∂ � �
 

( )
0, 1, 2, ..., .

( ) ( ) ( )i i i

d T T U R
i n

dt q t q t q t

 ∂ ∂ − ∂− + = = ∂ ∂ ∂ � �
 (6) 

Assume that the grinding wheel maintains contact with the 
worktable and there exists a unit force (F = 1) with equal 
magnitude but opposite direction between the tool and the 
workpiece, when the dynamically loaded worktable on elastic 
supports is moving [1, 16].  By using “VariationalCalculus” 
library in Maple software [18], one can derive the equations of 
motion for the discretized with n + 3 degree-of-freedom sys-
tem on various worktable positions (ξ).  These equations can 
be expressed in a matrix form as: 

 [ ]{ } [ ]{ } [ ]{ } { } { }1 1 1M C K fγ γ γ ψ+ + = =�� �  (7) 

where [M], [K], and [C] denote mass, stiffness and damping 
matrices, respectively.  And 

{ } { }1 1 1 2, , , , , , ,
T

n H Sy q q q q qγ = �  

{ } { }1 2{ } ( ) 1, ( ), ( ), , ( ), ( ), ( ) .
TT

n H Sf ψ ξ φ ξ φ ξ φ ξ φ ξ φ ξ= = − �  

All the derived elements in the matrices are summarized as 
follows: 

 
a) The parametric expression of elements in mass matrix [M]: 

 [ ] { }( )1diag , , , , .M m A A Aρ ρ ρ= �  (8) 

b) The parametric expression of elements in stiffness matrix 
[K]: 

1

1 1,1 1,2 1, 1, 1,

2 2,2 2, 2, 2,

, , ,

, ,

,
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  (9) 

 Here 

 , ( ) ( ) ( ) ( )jk jk k k g j k R j R k RB S k kδ φ ξ φ ξ φ ξ φ ξ= + +  

 ( ) ( ); , 1, 2, ..., 2.L j L k Lk j k nφ ξ φ ξ+ = +  

 δj,k is the Kronecker delta function, which is denoted by  
δj,k = 0, j ≠ k, and δj,k = 1, j = k.  Where 

 [ ] { }( )1 1,1 2,2 ,diag , , , , , 0, 0 ,n nS k S S S= �  

 4
, ( / ) , 1, 2, , .k k iS EI L k nλ= = �  
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 The equations of tie and support vectors are defined as 
follows: 

 Tie vector:  

 { } { }1 2( ) 1, ( ), ( ), , ( ), ( ), ( ) .
T

n H Sψ ξ φ ξ φ ξ φ ξ φ ξ φ ξ= − �  

 Support vector: 

 { } { }1 2( ) 0, ( ), ( ), , ( ), ( ), ( )
T

n H Sκ ξ φ ξ φ ξ φ ξ φ ξ φ ξ= �  

{ }{ } { }{ }0 ( ) ( ) ( ) ( )
T T

R R R L L LK k kκ ξ κ ξ κ ξ κ ξ= +    

{ }( )1 1,1 ,+ diag , , , , 0, 0 ,n nk S S�  

[ ] { }{ }0 ( ) ( ) .
T

gK K k ψ ξ ψ ξ= +    

 In the case of a free-free beam, if λ = 0 a rigid-body mode is 
resulted, i.e., 

 , ( 1),( 1) , ( 2),( 2) 0H H n n S S n nS S S S+ + + += = = = . 

 The terms in [K0] are time invariant, and the second term of 
[K] is time dependent. 

c) The parametric expression of elements in damping matrix 
[C] 
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  (10) 

 Here  

( ) ( ) ( ) ( )jk jk B g j k R j R k RG c c cδ φ ξ φ ξ φ ξ φ ξ= + +  

( ) ( ), , 1, 2, ..., 2.L j L k Lc j k nφ ξ φ ξ+ = +  

{ }{ } { }{ }0 ( ) ( ) ( ) ( )
T T

R R R L L LC c cκ ξ κ ξ κ ξ κ ξ= +    

{ }( )1diag , , , ,B Bc c c+ �  

[ ] { }{ }0 ( ) ( ) .
T

gC C c ψ ξ ψ ξ= +    

 Where cB is beam damping, and note that the damping in a 
rigid body modes cannot be neglected, which may affect the 
system response significantly.  Also noted that the terms in 

[C0] are time invariant, and the second term of [C] is time 
dependent. 

2. State-Space Representation of the System [23] 

A state space model is a set of first-order differential equa-
tions composed of state variables and system input and output 
by which the motion state is described.  The construction of a 
state space model facilitates the time domain and frequency 
domain analysis based on the system identification toolbox in 
Matlab.  In this study, {γ} is the state vector as Eq. (11): 

 { } 1

1

.
γ

γ
γ
 

=  
 �

 (11) 

Substitute Eq. (11) into Eq. (7), the state equation can be 
expressed as: 

 { }
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1 1 1
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0 0
.
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I
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ψ
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− −
   

  
   

�

��������� �����

 (12) 

The response between the tool and the workpiece at dif-
ferent worktable positions can then be expressed as follows: 

{ } { }1( , ) ( )
T

r tξ ψ ξ γ=  

1
1

( ) ( ) ( ) ( ) ( ) ( ) ( ).
n

S S H H i i
i

q t q t q t y tφ ξ φ ξ φ ξ
=

= + + −∑  (13) 

By combining Eqs. (12) and (13) one can obtain the state 
equation and the response equation simultaneously as follows: 

 
{ ( )} [ ]{ ( )} [ ]{ ( )}
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c c

c c

t A t B f t
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γ γ

γ

= +


= +

�

 (14) 

where 

1 1 1

0 0
, ,c c

I
A B

M K M C M ψ− − −

   
= =         − −   

 

0 , [0].T
c cC Dψ = =         

When calculating the accurate system dynamic compliance 
between the tool and the workpiece, some mechanism should 
be provided to properly adjust the frequency step surrounding 
the structural natural and the anti-resonant frequency, so that 
the maximum negative real part of the overall dynamic com-
pliance can be computed by using the matrices [Ac], [Bc], [Cc] 
and [Dc]. 

A Matlab command, ss2tf, can convert the state equations 
to a transfer function for any given input.  The eigenvalues and 
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the eigenvectors of the matrix [Ac] are the mode characteristics 
of the structural system.  It is well known that a continuous 
time state space can be expanded to a discrete-time state space 
by sampling.  If ∆t is the sampling time interval in the ana-
log-to-digital conversion, then the vectors in Eq. (14) can be 
discretized as follows: 

1 1

1 1

( )
{ } ,

( )
k

k
k

k t

k t

γ γ
γ

γ γ
∆   

= =   ∆  � �
 

{ } { } { } { }( ) , ( ) .k kk t r r k tψ ψ= ∆ = ∆  (15) 

Eq. (15) can be re-written as follows: 

{ } [ ]{ } [ ]{ }1 ,k k kA Bγ γ ψ+ = +  

{ } [ ]{ } [ ]{ },k k kr C Dγ ψ= +  

[ ] [ ] 1
, [ ] .cA t

c cA e B A I A B
−∆  = = −         (16) 

3. The Stability Lobe Diagram and Time Domain Analysis 

In general, the chatter mechanism consists of three types of 
self-excited vibrations: regenerative chatter, mode coupling, 
and falling characteristics of cutting force.  Among these  
types, the regenerative chatter is most often treated in the 
literature.  A theoretical analysis is provided which is analo-
gous to the other cutting process explained elsewhere.  The 
analysis takes into account some features specially for grind-
ing.  Several assumptions and simplifications are made in this 
study, mainly: 

 
a) The structural weakest parts of a grinding machine are 

usually the grinding wheel and worktable.  They are the 
source of vibration as well as the focal points of the analysis 
for the dynamics characteristics in which the grinding 
machine is treated as a vibratory system (Fig. 1). 

b) As the basic principle regenerative chatter is assumed act-
ing in the closed-loop between the grinding process and the 
vibratory system of the machine (similar to the turning 
process model used in Fig. 3 of Ref. [4]). 

c) The grinding process takes place in one plane. 
d) The variable component of the grinding force depends only 

on vibration in the direction normal to the cutting surface.  
The grinding force varies proportionally and instantane-
ously with the variation of chip thickness. 

e) A linear vibration system is assumed.  The flexibility of the 
grinding wheel is taken into account by assuming that the 
grinding force is acting at the both ends of a linear spring 
between the grinding wheel and the workpiece.  The varia-
tion of the depth of cut and the grinding force are assumed 
to be linear. 

f) The frequency of the vibration and the mutual phase shift of 
undulations in subsequent overlapping cuts are not influ-

enced by the relationship of wavelength to the length of cut 
g) It is also assumed that the grinding wheel is in contact with 

the workpiece all the time during machining.  This as-
sumption is valid for at least the greatest part of rough 
grinding.  With this assumption the linearity of the vibration 
to grinding force relation is preserved. 

 
Suppose that a workpiece is an elastic component which is 

in the traverse direction and the cutting force f(t) in the feed 
direction induces the workpiece to vibrate, the so-called 
chatter.  Also, the surface of the workpiece is assumed smooth 
before machining.  Due to the elastic vibration effect, the 
surface of the workpiece may exhibit waviness after being 
machined.  In the next turn or cut, both the inner and outer 
surface of the workpiece will generate waviness, where the 
inner waviness is caused by tool’s cutting, which is called the 
inner modulation r(t), while the outer waviness is due to the 
vibration caused by previous turn cut, which is called the outer 
modulation r(t – τ).  Therefore, the resulting chip thickness is 
not a constant; instead, it is a function of vibration frequency 
and workpiece speed.  Tobias introduced the concept of the 
stability lobe diagram in 1965 [17]. 

The stability lobe diagram has been widely used to describe 
the dynamic characteristics of cutting process for machine 
tools as well as a useful tool to predict the cutting stability 
during planning stage of machining.  One of the important 
properties of the stability lobe diagram is that the stability lobe 
represents a “convex” relationship between the cutting speed 
(the rotational velocity of the workpiece or the spindle) and  
the width of cut with maximum stability blim.  When the ma-
chining occurs in the zone under the convex envelope in the 
stability lobe diagram the machining process is stable.  The 
position of the envelope is relevant to the tool’s material, 
geometry and material of workpiece.  The convex shape in-
dicates a higher stability (i.e., larger blim) under some spindle 
speeds, and it can be obtained by using the equation [1, 14, 15] 
as follows: 

[ ]lim

1
b ,

2 cos( )Re ( )fK Gβ ω
−=  

[ ]
[ ]

1 Re ( )
, 2 2 tan .

2 Im ( )
c

Gf
N

G

ωε ε π
π ω

−  
= + = −   Ω  

 (17) 

where Kf is the specific force (N/mm2), β is the angle between 
the cutting force and the normal force generating from the 
surface of workpiece (in this study, the worktable is assumed 
infinitely stiff in tangential direction, i.e. β = 0); G(ω) is the 
system frequency response function; N is the integer number 
of waves of vibration imprinted on the workpiece surface in 
one revolution, and ε/2π is any additional fraction of a wave, 
where ε is the phase (rad) between current and previous tool 
vibrations; fc is the chatter frequency; Ω is the spindle velocity 
(cps, rev/s). 
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In a regenerative chatter model, the dynamic chip thickness 
can be expressed as follows: 

 [ ]( ) ( ) ( ) .oh t h r t r t τ= − − −  (18) 

In Eq. (18), h0 is the theoretical chip thickness, which is the 
same as the feed rate in the machine tool.  [r(t) – r(t – τ)] is a 
dynamic chip thickness produced due to vibrations at the 
present time t and one spindle revolution period (τ) before.  
The dynamic cutting force can be expressed as follows: 

 ( ) ( ) ( ) .f w of t K b h r t r tτ= + − −    (19) 

Where bw is the width of cut.  Suppose that the system is a 
system with multiple degrees of freedom as shown in Eq. (7).  
With the excitation force in Eq. (19), a time domain based 
analysis and simulation can be performed by using Eq. (16), 
which is discretized from its continuous time system coun-
terpart. 

A numerical integration procedure for the time delay dif-
ferential equations is based on the PIM (precise integration 
method) approach [23]. 

III. NUMERICAL ANALYSIS AND  
DISCUSSION 

The coefficient of merit (CoM) is one of the important in-
dicators to measure the structural stability of machine tools.  
There exists a close relationship between the CoM and the 
MNRPODC.  This study utilizes MNRPODC to evaluate the 
cutting stability of the dynamically loaded worktable on elas-
tic supports. 

1. Parameters Setting of Dynamically Loaded Worktable 

The related data used in Fig. 1 is described as follows.  The 
span sp between these two supports is 0.7 m.  The left and  
right springs kL, kR are the same, which is 7.5E7 N/m, and the 
damping coefficients, cL, cR are the same, which is 750 Ns/m.  
The mass of grinding wheel m1 is 2.5 kg.  The interface pa-
rameters are as follows: the bearing supported stiffness k1 of 
the spindle is 6.9E7 N/m, and the damping c1 is 690 Ns/m,  
The contact stiffness kg between the grinding wheel and the 
elastic beam is 6E6 N/m and the contact damping cg is 60 
Ns/m, the length of the worktable: L = 1.4 m, the material 
Young’s modulus: E = 2.07E11 Pa, the density: ρ = 7.8E3 
kg/m3, the cross section area of the free-free beam: A = 
0.01374 m2 (0.07 m × 0.196 m), the cross section area mo- 
ment of inertia: I = 5.61E-6 m4, the beam damping: cB = 1750 
Ns/m2, the mass of the worktable is approximately 150 kg.  
The analysis is mainly based on the parameters associated 
with this prototype model; additionally, assume that there are 
10 elastic modes of the beam, then there are 13 generalized 
coordinates in the system, which are denoted by {γ1}

T =  
{y1, q1, …, q10, qH, qS}, respectively.  The analysis and dis-

cussion are described as follows. 

2. Theory Verification 

The concept is based on the following scenario.  When the 
cutting point is at the initial position (ξ = L/2), and as the 
worktable moves toward one direction for a certain distance, 
the tool maintains contact with the workpiece and there exists 
a pair of unit force (F = 1) with same magnitude but opposite 
directions between the tool and the workpiece (as shown in  
Fig. 1).  The evaluation of the response and the dynamic 
characteristics associated with the relative displacement gen-
erated between the tool and the workpiece is similar to the 
analysis of the dynamic model of changing position after the 
grinding wheel module and the support spring of worktable 
module move toward the other direction for the same distance.  
This analysis is, however, only applicable when the worktable 
is moving within the range sp/2 ≤ ξ ≤ (L – sp/2); otherwise, the 
structure will become unstable (i.e., the worktable moves out 
of the left or right support spring). 

The model of a prototype with rigid-worktable, also de-
veloped by the author, was used to verify the proposed theory 
through numerical analysis.  As described in the literature [4], 
this model is a set of system equations with three degrees of 
freedom and the setting of the system parameters are as fol-
lows: as Fig. 2 in the literature [4], the mass of worktable:  
m2 = 150 kg; the rotational inertia of worktable: J1 = 24.56 
kg.m2; the damping of worktable: cB = 0 Ns/m2; the stiffness 
of bearing support: k3 = 6.9E7 N/m; the damping of bearing 
support: c3 = 690 Ns/m; a0 = -0.35 m; b0 = 0.35 m.  Three 
cases are considered, they are: (a) when the worktable is at 
the center position (Lx = 0.0 m); (b) when the worktable 
moves toward the left (Lx = 0.1 m); (c) when the worktable 
moves toward the right (Lx = -0.1 m), and the parameters of 
the left and right support springs are different (where k1 = 
12.5E7 N/m, c1 = 1250 N/m, k2 = 7.5E7 N/m, and c2 = 750 
Ns/m).  The analysis results in Fig. 2 and Fig. 3 show that  
the first three natural frequencies and their MNRPODC in  
the rigid beam model are nearly identical to that in the elastic 
beam model.  This indicates that the concept used in this 
study is valid. 

3. Static Stiffness Analysis 

Once the worktable moves to a position ξ, a pair of loads 
having the same magnitude but in opposite direction is intro-
duced between the grinding wheel and the workpiece.  The 
system static stiffness ks which is defined as the reciprocal of 
the relative displacement generated between the grinding 
wheel and the workpiece can be obtained by the analysis 
shown below. 

When ω = 0, and there is no inertia force and damping  
force, the system of equations of motion (Eq. (7)) can be sim-
plified as: 

 [ ]{ } { }1 } { .K fγ ψ= =  (20) 
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Fig. 2.  The Nyquist plots by 3-DOF rigid beam [4] for the specific cases. 

 
 

-3 -2.5 -2 -1.5 -1 -0.5 0
Re (m/N) × 10-7

0.5 1 1.5 2 2.5 3

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-6

-5.5

× 10-7

Im
 (m

/N
)

Nyquist analysis by 13-DOF elastic-worktable (beam) model
(nM = 10, E = 2.07e18 N/m2, cB = 0.0)

ξ = 0.7 m, kR = kL = 7.5e7 N/m
MNRPODC = -2.504e-7 m/N
ξ = 0.8 m, kR = kL = 7.5e7 N/m
MNRPODC = -1.862e-7 m/N
ξ = 0.6 m, kR = 12.5e7, kL = 7.7e7 N/m
MNRPODC = -1.19e-7 m/N

 
Fig. 3. The Nyquist plots by 13-DOF elastic beam model for the same 

conditions as Fig. 2 cases. 
 
 
And the response of the system in the machining is: 

{ } { }11 ( , ) ( )
T

sk r tξ ψ ξ γ= =  

1
1

( ) ( ) ( ) ( ) ( ) ( ) ( ).
n

S S H H i i
i

q t q t y t q tφ ξ φ ξ φ ξ
=

= + − +∑  (21) 

The result of the above equation shows that the static 
stiffness and the parameter kg are related to the worktable 
position ξ.  As shown in Fig. 4, the curves are symmetric to the 
center of the worktable (ξ = 0.7 m) and is slightly rippled  
with nearly fixed value.  The values of static stiffness are 
maximum at both ends (ξ = 0.35 m and ξ = 1.05 m).  All the  
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Fig. 4.  The correlation between the ks and ξ for various kg. 
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Fig. 5. MNRPODC, natural frequencies and MNRPODC emerged fre-

quency, as a function of ξ. 
 
 

curves except the one in red color are not shown in accordance 
with the true scale in this figure, but they are all equally spaced 
with ∆kg. 

4. Dynamic Performance Analysis 

With sp = 0.7 m (i.e. the feasible range: 1.05 m ≥ ξ ≥ 0.35 
m), as the worktable moves along different positions, based on 
the parameters for the prototype model, the first five natural 
frequencies of the system, the MNRPODC performance curve, 
and the MNRPODC emerged frequency are computed, The 
results are shown in Fig. 5 and a detailed discussion of the 
results is noted below. 

 
a) The trend of the MNRPODC performance curve is closely 

related to the natural frequency and the MNRPODC 
emerged frequency.  As shown in Fig. 5, all curves are 
symmetric to the center of the worktable (i.e., ξ = 0.7 m), 
and all natural frequencies, except for the fifth fre- 
quency that only has a minimal change, change as the 
worktable moves to a different location.  The change in  
the MNRPODC emerged frequency, as the frequency  
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Fig. 6. Correlation of the system dynamic compliance, contact stiffness, 

and contact damping. 

 
 

 hops from one to another, is the key reason that causes  
the MNRPODC curve to change significantly.  All the 
MNRPODC emerged frequencies are slightly higher than 
any natural frequencies in the system. 

b) The center part of the MNRPODC performance curve 
(0.798 m ≥ ξ ≥ 0.602 m) is concave, and the MNRPODC 
emerged frequency on this part is slightly higher than the 
third natural frequency.  The center of the MNRPODC 
curve usually has the lowest value.  At this center, the first 
frequency (128.9 Hz) and the second frequency (151.5 Hz) 
are the closest with only 22.6 Hz apart, and the structure is 
the least stable (prone to chatter).  This result is different 
from the frequency difference obtained in a similar but rigid 
model analysis [4], which is nearly 0 Hz. 

c) In addition to the concave at the center part, at the left  
and right part of the MNRPODC curve, there exists a re-
spective peak connecting smoothly toward two sides.   
The main reason is as follows.  The MNRPODC emerged 
frequency, starting from the two sides (0.56 m ≥ ξ ≥  
0.35 m and 1.05 m ≥ ξ ≥ 0.84 m), hops from the frequency 
slightly higher than the second frequency up to the fre-
quency slightly higher than the fifth frequency at two parts 
(0.588 m ≥ ξ ≥ 0.574 m and 0.826 m ≥ ξ ≥ 0.812 m),  
followed by hopping down to the frequency slightly higher 
than the third frequency at the center part (0.798 m ≥ ξ ≥ 
0.602 m). 

5. The Effects of kg and cg on the System Performance 
MNRPODC 

When the cutting point is at the initial position (ξ = L/2),  
Fig. 6 shows the 3D diagram of the correlation of kg – cg – 
MNRPODC where the contact stiffness kg increases from  
1E5 N/m to 4E7 N/m, and the contact damping cg increases 
from 0 Ns/m to 400 Ns/m.  The result shows that if kg and 
become larger, the |MNRPODC| becomes smaller, which 
indicates that the structure is more stable with better cutting 
performance.  The description is as follows. 
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Fig. 7. The effect of the kg on MNPRODC at different worktable posi-

tions ξ. 
 
 

0.3
-2.6

-2.2

-2.4

-1.8

-2

-1.4

-1.6

M
N

R
PO

D
C

 (m
/N

)

-1.2

-1

-0.8

The effect of the contact damping cg on MNRPODC
at different worktable positions, ξ

assume: kg = 6e6 N/m, for the specified cg’s

0.35 0.4 0.45 0.5 0.55 0.6 0.65
Worktable positions, ξ (m)

0.7 0.75 0.8 0.85 0.9

cg = 0.0

cg = 60 Ns/m (Prototype)

cg = 120 Ns/m

cg = 180 Ns/m

cg = 240 Ns/m

cg = 300 Ns/m

cg = 360 Ns/m

cg = 420 Ns/m

0.95 1 1.05 1.1

× 10-7

 
Fig. 8. The effect of the cg on MNPRODC at different worktable posi-

tions ξ. 
 
 

a) When cg is 60 Ns/m, Fig. 7 shows the effect of the contact 
stiffness kg on the system performance, at different work-
table positions.  As shown in the figure, the MNRPODC 
curve increases as the contact stiffness increases.  Specifi-
cally, when kg = 6E6 N/m, the correlation of the system 
dynamic performance, the natural frequency, and the 
MNRPODC emerged frequency is the same as in Fig. 5, 
and the behavior of other curves with different kg is  
similar. 

b) When kg = 6E6 N/m, Fig. 8 shows the effect of the contact 
damping cg on the system performance, at different work-
table positions.  As shown, the system performance 
MNRPODC curve increases as the contact damping in-
creases; that is, the performance of the MNRPODC curve 
improves as the contact damping increases. 

6. Chatter Stability Lobes [1, 2, 15] 

Fig. 9 shows the 3D stability lobe diagram of the correlation  
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Fig. 9.  Three-dimensional stability lobe diagram for Ω – blim – ξ. 
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Fig. 10.  Stability lobe diagrams for various ξ. 

 
 

of Ω – blim
 – ξ, where the hard spots on the workpiece are 

assumed to generate regenerative chatter effect, as described 
in the above theory, and the computation is based on the 
prototype parameters with the cutting force coefficient Kf = 
2.3 E9 N/mm2 (1035 carbon steel) [14, 15].  In this figure, the 
chatter zone is above the outer curve surface and the stable 
zone under the inner curve surface.  The description is as 
follows. 

 
a) The view along the ξ axis from Fig. 9 and Fig. 10, com-

prising the stability lobe diagram with various ξ, shows that 
when the worktable is within the range 1.05 m ≥ ξ ≥ 0.35 m, 
the area above all lobe curves is the chatter zone, and the 
area below all lobe curves is the stable zone.  The area be-
low blim = 0.911 mm is the absolute stable zone because  
no chatter is generated for any spindle speed.  When 
worktable position is at ξ = 0.7 m, the MNPRODC is the 
minimum (-2.386E-7 m/N), and the MNPRODC emerged 
frequency is 202.8 Hz, which is slightly higher than the 
third natural frequency, which is 201.2 Hz.  As shown in 
Fig. 5, the first frequency and the second frequency are  
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Fig. 11. Time domain displacement and force for bw = 2.5 mm, h0 = 5 µm,  

Ω = 520 cps. (unstable point A in Fig. 10) 

 
 

 the closest, and The limiting critical width blim,cr for any spin- 
dle speed can be directly obtained with blim,cr = 1/(2 × Kf × 
|MNPRODC|max). 

b) As shown in Fig. 10, point A is located in the chatter zone.  
Moving point from A to point B, C, or D, which holds stable 
cutting conditions, can suppress chatter and thus improve 
machining efficiency.  This observation is verified by the 
time-domain analysis as follows. 

7. Time Domain Simulation [14] 

If the cutting force is based on the above-mentioned re-
generative chatter effect, then its solution is determined by the 
present and previous vibration, i.e., r(t) and r(t – τ) in the 
dynamic equations.  Therefore, the chatter representation 
equation is a time delay differential equation.  However, if the 
vibration is too large, that is [r(t) – r(t – τ)] > h0, then the tool 
may jump out resulting in zero cutting thickness and zero 
cutting force.  Additionally, due to the tool jumping out, the 
effect of vibration waviness on the workpiece, caused by  
the last turn, on the computation of present cutting thickness 
becomes more complex (i.e., multiple regenerative effect)  
Fig. 10 shows all the lobes generated within worktable posi-
tion range 1.05 m ≥ ξ ≥ 0.35 m, based on the prototype pa-
rameters, where point A is located in the chatter zone, and 
point B, C, and D are in the stable zone, respectively.  Fig. 11 
shows the time-domain analysis of the waviness on the work- 
piece surface and the cutting force at point A with operating 
condition bw = 2.5 mm, h0 = 5 µm, Ω = 520 cps, and as shown 
in the figure, the results are divergent. 

In Fig. 12, the results of the time-domain analysis of the 
waviness on the workpiece surface and the cutting force at 
point B with operating condition bw = 1.5 mm, h0 = 5 µm, Ω = 
520 cps are stable and convergent.  Fig. 13 shows that the 
results are stable and convergent regarding the time-domain  
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Fig. 12. Time domain displacement and force for bw = 1.5 mm, h0 = 5 µm, 
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analysis of the waviness on the workpiece surface and the 
cutting force at point C, under operating condition bw = 2.5  
mm, h0 = 5 µm, Ω = 445 cps.  Fig. 14 shows that the results  
of the time domain analysis of the waviness on the work- 
piece surface and the cutting force at point D are stable and 
convergent, under operating condition bw = 2.5 mm, h0 = 5 µm, 
Ω = 595 cps.  These simulation results verify the cutting sta-
bility and suggested some measures to work around chatter 
during the cutting process: by reducing the width of cut  
(point B), by reducing speed (point C), and by increasing 
speed (point D).  Additionally, these measures can be used to 
prevent chatter. 
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Fig. 14. Time domain displacement and force for bw = 2.5 mm, h0 = 5 µm, 

and Ω = 595 Hz (Stable point D in Fig. 10). 

IV. CONCLUSION 

This study propose a procedure to evaluate the dynamic 
performance and the cutting stability of a dynamically loaded 
worktable on elastic supports in a surface grinder.  By com-
bining the Lagrange energy method with the technique of as- 
sumed mode expansion that superposing the elastic and rigid 
body modes of a free-free beam, the system dynamic equa-
tions in a symbolic form are derived.  The |MNRPODC| and 
the blim are used as the performance indicators to evaluate the 
effect of the parameters, such as the contact stiffness and the 
contact damping between the tool and the workpiece, on sys-
tem performance.  The structural static and dynamic charac-
teristics of the dynamically loaded worktable under various 
positions and the stability are also analyzed.  Major results are 
summarized as follows: 

 
a) Although the equations of motion for the models of the 

elastic-worktable and rigid-worktable are not the same, 
their numerical simulation results, under some conditions, 
are very similar.  This validates the system of equations 
derived in this study.  However, the analysis is only appli-
cable when the worktable is moving within the range  
sp/2 ≤ ξ ≤ (L – sp/2); otherwise, (i.e., the worktable moves 
out of the left or right support spring), the structure be-
comes unstable. 

b) The contact stiffness kg increases or reduces ∆kg, the static 
stiffness at any position increases or reduces ∆kg at the same 
time.  The behavior is the same as the fixed value in the 
analysis of the rigid model [4] except having slightly rip-
pled with nearly fixed value. 

c) In general, if the contact stiffness kg increases, the static 
stiffness of the worktable increases and the performance of 
the MNRPODC curve within the moving range of the 
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worktable increases; additionally, if the contact damping  
cg increases, the performance of the MNRPODC curve 
within the moving range of the worktable increases ac-
cordingly.  Both kg and cg have significant impact on the 
improvement of system stability. 

d) The trend of the MNRPODC performance is closely re- 
lated to the system natural frequency and the MNRPODC 
emerged frequency.  The MNPRODC performance curve  
in the prototype model changes depending on the location 
of the worktable.  The center part of the curve is concave 
and the curve is symmetric to the center.  The limiting 
critical width blim,cr for any spindle speed in the absolutely 
stable zone of the Lobe diagram can be obtained with  
blim,cr = 1/(2 × Kf × |MNPRODC|max). 

e) Stability lobe diagram may clear up the complex overlap-
ping in the curves between the chatter zone and stable zone.  
The cutting stability was verified by time domain analysis.  
Additionally, from the lobe diagram, the proper operating 
range can be determined, for example, increase of width of 
cut or speed with avoidance of chatter zone, shall improve 
machining efficiency effectively. 

NOTATION 

A cross-sectional area of beam (m2) 
[Ac] the continuous time system matrix 
a0 parameter between k1 and the mass centre of 

the worktable at location Lx = 0 (m) as Fig. 2 in 
Ref. [4] 

b0 parameter between k2 and the mass centre of 
the worktable at location Lx = 0 (m) as Fig. 2 in 
Ref. [4] 

blim the limiting chip width (m) 
blim,cr the limiting critical chip width for any spindle 

speed (m) 
bw the chip width (m) 
[Bc] the continuous time input matrix 
[C] damping matrix (Ns/m) 
[Cc] the output matrix 
c1 the equivalent bearing damping (Ns/m) 
cB the beam damping (Ns/m2) 
cg the contact damping between the grinding 

wheel and the workpiece (Ns/m) 
cL, cR the damping of the left and right supports 

(Ns/m)  
[Dc] the direct transmission matrix 
E the Young’s modulus (N/m2) 
{f} force vector 
fc the chatter frequency (Hz) 
G(ω) the oriented transfer function between the tool 

and workpiece 
h0 the mean chip thickness, or commanded feed 

per revolution for the grinding (µm) 
I moment of inertia of beam cross-section about 

bending axis (m4) 

Im(G) the imaginary of the oriented transfer function 
between the tool and workpiece 

Lx movement location of the mass centre of the 
worktable to the origin (m) as Fig. 2 in Ref. [4] 

[K] stiffness matrix (N/m) 
Kf the specific force or cutting force coefficient 

(N/mm2) 
k1 the equivalent bearing stiffness (N/m) 
kg the contact stiffness between the grinding 

wheel and the workpiece (N/m) 
kL, kR the spring constants of the left and right sup-

ports (N/m) 
ks the static stiffness between the tool and work-

piece (N/m) 
L length of beam (m) 
MNRPODC the maximum negative real part of the overall 

dynamic compliance 
m1 mass of the grinding wheel (kg) 
[M] mass matrix (kg) 
N the largest possible integer such that ε/2π < 1 
R the damping dissipated energy of the system 

(Nm) 
Re(G) the real part of the oriented transfer function 

between the tool and workpiece 
{r} output vector 
sp span between supports (m) 
T the kinetic energy of the system (Nm) 
t time (sec) 
U the potential energy of the system (Nm) 
y1 displacement of mass center of the grinding 

wheel (m) 
y(ξ, t) transverse displacement (m) 
Ω the spindle speed (cps) 
ε the phase (rad) between current and previous 

tool vibrations 
τ period between two cuts (s) 
ω angular velocity (rad/s) 
ξ a coordinate along the neutral axis of the beam 

(m) 
ρ mass density of beam (kg/m3) 
φ(ξ) normalized eigenfunction (m−1/2) 
φH(ξ), φS (ξ) normalized translation and rotation eigenfunc-

tion of rigid beam 
{ψ(ξ)} tie vector 
{κ(ξ)} support vector 
{γ} the state vector 
{γ 1} generalized coordinate vector (m3/2)  
δ j,k Kronecker delta 
λ i roots of frequency equation for free-free beam 
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