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ABSTRACT 

In this paper, the global exponential stability and global 
asymptotic stability for a class of uncertain delayed neural 
networks (UDNNs) with time-varying delay and linear frac-
tional perturbations are considered.  Delay-dependent and 
delay-independent criteria are proposed to guarantee the ro-
bust stability of UDNNs via linear matrix inequality (LMI) 
approach.  Additional nonnegative inequality approach is used 
to improve the conservativeness of the stability criteria.  Some 
numerical examples are illustrated to show the effectiveness  
of our results.  From the simulation results, significant im-
provement over the recent results can be observed. 

I. INTRODUCTION 

The existence of time delays is often a source of oscilla-
tion and instability of practical systems.  Neural networks has 
been applied in many mathematical and practical applica-
tions, such as approximation, association, diagnosis, decision, 
generalization, optimization, prediction, and recognition.  
Many neural networks have been proposed in recent years, 
such as bidirectional associative memory neural networks 
[16], cellular neural networks [3], Cohen-Grossberg neural 
networks [13], and Hopfield neural networks [11].  The de-
layed neural networks (DNNs) may be used in many areas 
including the moving images processing and pattern classi-
fication.  The implementation in hardware for very large 
scale integration chip, modeling errors, parameters fluctua-

tion, and external disturbance may destory the stability of 
DNNs.  Hence stability of DNNs is very important and sig-
nificant in practical applications.  In practical analysis for 
uncertain DNNs, it is reasonable to consider the parameters 
varying in some prescribed intervals or staisfying some 
classes of parametric uncertainties.  DNNs with interval 
variations are called the interval delayed neural networks 
(IDNNs) [2, 5, 8, 9, 11, 12, 15].  In [10] and [18], DNNs with 
linear fractional parametric perturbations have been inves-
tigated.  IDNNs and DNNs with general structural perturba-
tion in [4] are speical cases of DNNs with linear fractional 
parametric perturbations.  Hence we will consider the sta-
bility analysis of DNNs with linear fractional parametric 
perturbations in this paper. 

Depending on whether the stability criterion itself contains 
the size of delay, criteria for DNN can be classified into two 
categories, namely delay-independent criteria [2, 5, 9, 12] and 
delay-dependent criteria [2, 4, 5, 8-10, 15, 18].  Usually the 
latter is less conservative when the delay is small.  In the 
Lyapunov-based delay-dependent results, the slow-varying 
constraint ( ) 1tτ <� is usually imposed on the time-varying 
delay [8, 9, 11, 15].  The constraint will be relaxed and de-
lay-dependent result will be proposed in this paper.  In [2, 12], 
algebraic stability, criteria were proposed based on Halanay 
inequality, Young’s inequality, and Lyapunov functional.  It is 
usually difficult to find feasible solutions for these algebraic 
criteria.  LMI approach is an efficient tool for dealng with 
these control problems.  The LMI problem can be solved quite 
efficiently by using the toolbox of Matlab [1].  In [4, 5, 7-11, 
13-15, 18], stability criteria for DNNs have been proposed via 
LMI approach.  Additional nonnegative inequality approach is 
used to improve the conservativeness of the obtained results 
[17].  In this paper, LMI-based delay-dependent and delay- 
independent criteria are proposed by using new Lyapunov 
functional.  In general, our approach is useful and is easy to 
generalize to other forms of UDNNs. 

The notation used throughout this paper is as follows.  For  
a matrix A, we denote the transpose by AT, spectral norm by 

,A minimal (maximal) eigenvalue by λmin(A) (λmax(A)), 
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symmetric positive (negative) definite by A > 0 (A < 0).  A ≤ B 
means that matrix B – A is symmetric positive semi-definite.  
For a vector x, we denote the Euclidean norm by x .  For  

the state xt of system, we define xt(θ ):= x(t + θ ), ∀θ ∈ [−τM, 0] 

and denote its norm by 
2 2

0
sup ( ) ( ) .
M

t s
s

x x t s x t s
τ− ≤ ≤

= + + +�   

I denotes the identity matrix.  {1, 2, ..., }n n= .  [ ]idiag a   

denotes diagonal matrix with the diagonal elements ai.  

1[ ]n
i idiag a =  denotes block diagonal matrix with diagonal  

row vector ai. 

[ , ]: { ( ) ,i.e., , , }n n
ij ij ij ijV A A A a A A A a a a i j n×= = ∈ℜ ≤ ≤ ≤ ≤ ∈  

with ( )ijA a=  and ( )ijA a= . 

II. PROBLEM FORMULATION 

Consider the following uncertain DNN with interval 
time-varying delay: 

( ) [ ] ( ) [ ] ( ) [ ] ( ( )) ,x t C C x t A A y t B B y t t Jτ= − + ∆ + + ∆ + + ∆ − +�  

0,t ≥   (1a) 

( ) ( ( )), 0y t f x t t= ≥ ,  (1b) 

( ) ( ), [ , 0],Mx t t tφ τ= ∈ −   (1c) 

where 1 2( ) [ ( ) ( ) ( )]T
nx t x t x t x t= � , n ≥ 2 is the number 

of neurons in the network, 0 ( ) ,Mtτ τ≤ ≤ ( ) ,Dtτ τ≤�  y(t) is  

the output, 1 2[ ]T
nJ J J J= �  is the external bias vector, 

C is a positive diagonal matrix, A  is the feedback matrix, B  
is the delay feedback matrix, and φ is the initial continuous 
function.  The linear fractional perturbation matrices ∆C,  
∆A, and ∆B are assumed to satisfy the following conditions: 

 ( ) , ( ) , ( ) ,C C C A A A B B BC M t N A M t N B M t N∆ = ∆ ∆ = ∆ ∆ = ∆  

  (1d) 

where 

1( ) [ ( ) ] ( ), ,T
C C C C C Ct I F t F t I−∆ = − Θ Θ Θ <  (1e) 

1( ) [ ( ) ] ( ), ,T
A A A A A At I F t F t I−∆ = − Θ Θ Θ <  (1f) 

1( ) [ ( ) ] ( ), ,T
B B B B B Bt I F t F t I−∆ = − Θ Θ Θ <  (1g) 

where MC, MA, MB, NC, NA, NB, ΘC, ΘA, and ΘB are some given 
constant matrices with appropriate dimensions.  FC(t), FA(t), 
FB(t) are some unknown matrices representing the parameter 

perturbations which satisfy 

 ( ) ( ) , ( ) ( ) , ( ) ( ) .T T T
C C A A B BF t F t I F t F t I F t F t I≤ ≤ ≤  (1h) 

The activation functions of DNN (1) given by 

 1 1 2 2( ( )) [ ( ( )) ( ( )) ( ( ))] ,T
n nf x t f x t f x t f x t= �  

are bounded and satisfy the following conditions 

 1 2
1 2

1 2

( ) ( )
0 , , , ,i i

i

f f
L i n

ξ ξ ξ ξ
ξ ξ

−≤ ≤ ∈ℜ ∈
−

 (2) 

where Li > 0, i n∈ , are some positive constants. 

Assume 1 2[ ]T n
nx x x x= ∈ℜ� � � ��  is an equilibrium point 

of system (1), then we can obtain the following system: 

( ) [ ] ( ) [ ] ( ( )) [ ] ( ( ( ))),z t C C z t A A g z t B B g z t tτ= − + ∆ + + ∆ + + ∆ −�  

  (3) 

where 

1 2( ) [ ( ) ( ) ( )] ( ) ,T
nz t z t z t z t x t x= = − ��  

1 1 2 2( ( )) [ ( ( )) ( ( )) ( ( ))] ,T
n ng z t g z t g z t g z t= �  

( ( )) ( ( )) ( ) ( ( ) ) ( ),i i i i i i i i i i ig z t f x t f x f z t x f x= − = + −� � �  

(0) 0.ig =   (4a) 

Let [ ]j jiW diag w=  and [ ]j jiY diag y= , j = 1, 2, be two 

diagonal matrices with , 0.ji jiw y >   From (2) and (4a), we 

have 

2( ( ))
0 , 0 ( ( )) ( ) ( ),

( )
i i

i i i i i i
i

g z t
L g z t z t L z t

z t
≤ ≤ ≤ ≤ ⋅  (4b) 

2 2 20 ( ( )) ( ( )) ( ) ( ),i i i i i i i ig z t L g z t z t L z t≤ ≤ ⋅ ≤ ⋅  (4c) 

1 1( ( )) ( ( )) ( ( )) ( ),T Tg z t W g z t g z t W z t≤ Γ  

2 2( ( )) ( ) ( ) ( ),T Tg z t W z t z t W z tΓ ≤ Γ Γ  (4d) 

1 1( ( ( ))) ( ( ( ))) ( ( ( ))) ( ( )),T Tg z t t Y g z t t g z t t Y z t tτ τ τ τ− − ≤ − Γ −  

2 2( ( ( ))) ( ( )) ( ( )) ( ( )),T Tg z t t Y z t t z t t Y z t tτ τ τ τ− Γ − ≤ − Γ Γ −  

  (4e) 

where ][ iLdiag=Γ . 
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Remark 1. The activation function fi(xi) = 0.5(xi + 1 −  
xi – 1) is a general form satisfying (2) with Γ = I. 
 
Definition 1 [2]. The equilibrium point x�  of system (1) is said 
to be the globally exponentially stable (GES) with conver-
gence rate α, if there are two positive constants α and Ψ  
such that  

 ( ) for all 0.tx t x e tα−− ≤ Ψ ⋅ ≥�  

Lemma 1 [10, 18]. Suppose 1( ) [ ( ) ] ( )t I F t F t−∆ = − Θ  with 
unknown matrix F(t) satisfying ( ) ( ) ,TF t F t I≤  Θ is a given 
constant matrix and satisfies ,T IΘΘ <  then for real matrices 
H, E and X with X = XT, the following statements are equiva-
lent: 
 
(I) The inequality is satisfied 

 ( ) ( ) 0,T T TX H t E E t H+ ∆ + ∆ <  

(II) There exists a scalar ε > 0, such that 

 * 0.

* *

T

T

X H E

I

I

ε

ε ε

ε

 ⋅
 
 − ⋅ ⋅Θ <
 
 − ⋅ 

 (5) 

III. GLOBAL EXPONENTIAL STABILITY 
ANALYSIS 

In this section, we present a delay-dependent criterion for 
the global exponential stability of system (1) with (2). 

 
Theorem 1. The equilibrium point x�  of system (1) with (2) 
and 1Dτ ≤  (resp., 1Dτ >  or unknown) is unique and globally 

exponentially stable (GES) with convergence rate α > 0, if 
there exist some n × n positive definite symmetric matrices  
P, Q1, Q2 (resp., Q1 = 0, Q2 = 0), R1, R2, S22, a 5n × 5n  
positive definite symmetric matrix S11, some n × n positive 
diagonal matrices V, W1, W2, Y1, Y2, some matrices U ∈ ℜn×n, 
S12 ∈ℜ5n×n, and a positive constant ε, such that the following 
LMI conditions are satisfied: 

 
11 12 1 2

1 22

22 3

0, , 0,
* *

S S
S R S

S

   Σ + Σ Σ
 = > > Σ = < 
   Σ   

�

 (6) 

where * is the symmetrical form of matrix, 

 

2
11 12

12

{ [ 0 0 0]

[ 0 0 0] },

M
M

T T

e S S I I

I I S

ατ τ−Σ = ⋅ ⋅ + ⋅ −

+ −

�

 

11 12 13 14 15

22 25

1 33 34 35

44

55

* 0 0

* * ,

* * * 0

* * * *

Σ Σ Σ Σ Σ 
 Σ Σ 
 Σ = Σ Σ Σ
 Σ 
 Σ 

 

16 17 18 19

2 36 37 38

410

511

0 0

0 0 0 0 0 0

0 0 0 ,

0 0 0 0 0

0 0 0 0 0

Σ Σ Σ Σ 
 
 
 Σ = Σ Σ Σ
 Σ 
 Σ 

 

66 69

77 710

88 811
3

99

1010

1111

0 0 0 0

* 0 0 0

* * 0 0

* * * 0 0

* * * * 0

* * * * *

Σ Σ 
 Σ Σ 
 Σ Σ

Σ =  Σ 
 Σ
 

Σ  

, 

2
11 1 2 22 2 2 ,MTPC C P P Q V W e Rατα α −Σ = − − + ⋅ + + ⋅Γ + Γ Γ − ⋅  

2
12 2 13 14 1 2, , ( ),M T Te R C U PA W Wατ−Σ = ⋅ Σ = − Σ = + Γ −  

15 16 17 18, , , ,C A BPB PM PM PMΣ = Σ = Σ = Σ =  

2
19 22 1 2 2, [(1 ) ] 2 ,MT

C DN e Q R Yατε τ−Σ = − ⋅ Σ = − ⋅ − ⋅ + + Γ Γ  

25 1 2 33 1 2( ), ( ),T
M MY Y U U R Rτ τΣ = Γ − Σ = − − + ⋅ + ⋅  

 34 35 36 37, , , ,C AUA V UB UM UMΣ = + Σ = Σ = Σ =  

38 44 1 2 410, 2 , ,T
B AUM W Q NεΣ = Σ = − + Σ = ⋅  

2
55 1 2 511 692 (1 ) , , ,M T T

D B CY e Q Nαττ ε ε−Σ = − − − ⋅ ⋅ Σ = ⋅ Σ = ⋅Θ  

710 811, ,T T
A Bε εΣ = ⋅Θ Σ = ⋅Θ  

66 77 88 99 1010 1111 .IεΣ = Σ = Σ = Σ = Σ = Σ = − ⋅  

Proof. The Lyapunov functional candidate of the system (1) 
and (2) is given by 

2
0 1 2( ) ( ) ( ) ( ) ( ),t T

t t tV z e z t Pz t V z V zα= ⋅ + +  (7a) 

2
1 1 2( )
( ) [ ( ) ( ) ( ( )) ( ( ))]

t s T T
t t t

V z e z s Q z s g z s Q g z s dsα
τ−

= ⋅ +∫  

2
1 2( ( )) ( )( ) ( ) ,

M

t s T
M Mt

e s t z s R R z s dsα
τ

τ τ
−

+ ⋅ − − ⋅ + ⋅∫ � �  

  (7b) 
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( )2
2 0

1

( ) 2 ( ) ,
i

n z tt
t i i

i

V z e v g s dsα

=

= ⋅∑∫  (7c) 

where 1[ ]nV diag v v= �  and the integral term 
( )

0
( )

i tz

i iv g s ds∫  

is nonnegative in view of (4b).  The time derivatives of 0 ( )tV z  

in (7) along the trajectories of system (3) with (4) satisfy 

2 2
0 ( ) ( ) 2 ( ) ( ) ( )t T t T

tV z e z t Pz t e z t Pz tα αα= ⋅ ⋅ + ⋅� �  

2
1 2( ) ( ) ( ) ( )t T

t te z t Pz t V z V zα+ ⋅ + +� ��  

2 [ ( )( 2 ) ( )t T Te z t PC C P P z tα α= ⋅ − − + ⋅  

2 ( ) ( ( )) 2 ( ) ( ( ( )))]T Tz t PAg z t z t PBg z t tτ+ + −  

1 2( ) ( ),t tV z V z+ +� �   (8a) 

where ,C C C= + ∆  ,A A A= + ∆  .B B B= + ∆   With 1Dτ ≤ , 

1 0,Q > 2 0,Q >  or 1,Dτ > 1 0,Q = 2 0,Q =  the time derivative 

of 1( )tV z  is bounded by 

2
1 1 2( ) [ ( ) ( ) ( ( )) ( ( ))t T T

tV z e z t Q z t g z t Q g z tα= +�  

2 ( )
1(1 ( )) ( ( )) ( ( ))t Tt e z t t Q z t tαττ τ τ−− − ⋅ ⋅ − −�  

2 ( )
2(1 ( )) ( ( ( ))) ( ( ( )))t Tt e g z t t Q g z t tαττ τ τ−− − ⋅ ⋅ − −�  

1 2( )( ) ( )T
M Mz t R R z tτ τ+ ⋅ + ⋅� �  

2 ( )
1 2( )( ) ( )

M

t s t T
Mt

e z s R R z s dsα
τ

τ−

−
− ⋅ + ⋅∫ � �  

2 ( )
2( ) ( ) ]

M

t s t T
M t

e z s R z s dsα
τ

τ −

−
− ⋅ ⋅∫ � �  

2
1 2[ ( ) ( ) ( ( )) ( ( ))t T Te z t Q z t g z t Q g z tα−≤ +  

2
1(1 ) ( ( )) ( ( ))M T

D e z t t Q z t tαττ τ τ−− − ⋅ ⋅ − −  

2
2(1 ) ( ( ( ))) ( ( ( )))M T

D e g z t t Q g z t tαττ τ τ−− − ⋅ ⋅ − −  

1 2( )( ) ( )T
M Mz t R R z tτ τ+ ⋅ + ⋅� �  

2
1( )

( ) ( )M
t T

t t
e z s R z s dsατ

τ
−

−
− ⋅ ∫ � �  

2
2( )

( ) ( ) ].M
t T

M t t
e z s R z s dsατ

τ
τ −

−
− ⋅ ⋅ ∫ � �  (8b) 

From condition in (4c), the time derivative of 2 ( )tV z  is 

bounded by 

( )2 2
2 0

1 1

( ) 4 ( ) 2 ( ( )) ( )
i

n nz tt t
t i i i i i i

i i

V z e v g s ds e v g z t z tα αα
= =

= ⋅ +∑ ∑∫� �  

( )2 2

0
1 1

4 2 ( ( )) ( )
i

n nz tt t
i i i i i i

i i

e v L sds e v g z t z tα αα
= =

≤ ⋅ +∑ ∑∫ �  

2 [2 ( ) ( ) 2 ( ( )) ( )].t T Te z t Vz t g z t Vz tα α= ⋅ ⋅ Γ + �  (8c) 

Define 

( ) [ ( ) ( ( )) ( ) ( ( )) ( ( ( )))].T T T T T TZ t z t z t t z t g z t g z t tτ τ= − −�  

By Leibniz-Newton formula and LMI (6), the following 
additional nonnegative inequality can be introduced: 

11 122

( )
22

( ) ( )
0

*( ) ( )
M

T
t

t t

S SZ t Z t
e ds

Sz s z s
ατ

τ
−

−

    
≤ ⋅     

    
∫

� �
 

2
11 12{ ( ) ( ) ( ) 2 ( ) [ ( ) ( ( ))]M T Te t Z t S Z t Z t S z t z t tατ τ τ−= ⋅ ⋅ + − −  

22( )
( ) ( ) }

t T

t t
z s S z s ds

τ−
+ ∫ � �  

2
11 12{ ( ) ( ) 2 ( ) [ ( ) ( ( ))]M T T

Me Z t S Z t Z t S z t z t tατ τ τ−≤ ⋅ ⋅ + − −  

22( )
( ) ( ) }.

t T

t t
z s S z s ds

τ−
+ ∫ � �   (8d) 

From (3), we have 

( )( ) ( )T Tz t U U z t− +� �  

( ) [ ( ) ( ( )) ( ( ( )))]Tz t U Cz t Ag z t Bg z t tτ+ − + + −�  

[ ( ) ( ( )) ( ( ( )))] ( ) 0.T TCz t Ag z t Bg z t t U z tτ+ + + − =�  (8e) 

By the inequality in [4], we have 

2
2( )

( ) ( )M
t T

M t t
e z s R z s dsατ

τ
τ −

−
− ⋅ ⋅ ∫ � �  

2
2( )

( ) ( ) ( )M
t T

t t
t e z s R z s dsατ

τ
τ −

−
≤ − ⋅ ⋅ ∫ � �  

2
2( ) ( )

( ) ( )M

Tt t

t t t t
e z s ds R z s dsατ

τ τ
−

− −
   ≤ − ⋅
      ∫ ∫� �  

2
2( ( ) ( ( ))) ( ( ) ( ( ))).M Te z t z t t R z t z t tατ τ τ−= − ⋅ − − − −  (8f) 
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From (4d) and (4e), we have 

1 1( ( )) ( ) ( ( )) ( ( )) 0,T Tg z t W z t g z t W g z tΓ − ≥  

2 2( ) ( ) ( ( )) ( ) 0,T Tz t W z t g z t W z tΓ Γ − Γ ≥  (9a) 

1 1( ( ( ))) ( ( )) ( ( ( ))) ( ( ( ))) 0,T Tg z t t Y z t t g z t t Y g z t tτ τ τ τ− Γ − − − − ≥  

2 2( ( )) ( ( )) ( ( ( ))) ( ( )) 0,T Tz t t Y z t t g z t t Y z t tτ τ τ τ− Γ Γ − − − Γ − ≥  

  (9b) 

From the inequality 1 22R S>  in (6) and conditions (8)-(9), 

we have 

2
0 1 1( ) 2 [ ( ( )) ( ) ( ( )) ( ( ))t T T

tV z e g z t W z t g z t W g z tα+ ⋅ Γ −�  

2 2( ) ( ) ( ( )) ( )]T Tz t W z t g z t W z t+ Γ Γ − Γ  

2
12 [ ( ( ( ))) ( ( ))t Te g z t t Y z t tα τ τ+ ⋅ − Γ −  

1( ( ( ))) ( ( ( )))]Tg z t t Y g z t tτ τ− − −  

2
22 [ ( ( )) ( ( ))t Te z t t Y z t tα τ τ+ ⋅ − Γ Γ −  

2( ( ( ))) ( ( ))]Tg z t t Y z t tτ τ− − Γ −  

2
1 22 1( )

( )( ) ( )
tt T T

t t
e Z Z z s S R z s dsα

τ−
≤ ⋅ ⋅Σ ⋅ + −∫ � �  

2
1 ,t Te Z Zα≤ ⋅ ⋅Σ ⋅   (10) 

where  

11

22

1 33

44

55

0

* 0 0 0

,* *

* * * 0

* * * *

TC U PA W PB Y

UA V UB

 Σ − + Γ + Γ
 Σ 
 Σ = + ΣΣ +
 

Σ 
 Σ 

�  (11) 

2
11 1 2 22 2 2 ,MTPC C P P Q V W e Rατα α −Σ = − − + ⋅ + + ⋅Γ + Γ Γ − ⋅  

22Σ , 33Σ , 44Σ , 55Σ , and Σ�  have been defined in (6).  From 

(5), the matrix in (11) can be rearranged as 

11 13 14 15

22

1 33 34 35

44

55

0

* 0 0 0

* *

* * * 0

* * * *

Σ Σ Σ Σ 
 Σ 
 Σ = Σ Σ Σ + Σ
 Σ 
 Σ 

�   

( ) 0 0

0 ( ) 0

0 0 ( )

C C

C A B A A

B B

t H

E E E t H

t H

∆   
   + ∆      
   ∆   

 

( ) 0 0

0 ( ) 0 ,

0 0 ( )

T T

C C
T

A A C A B

B B

H t

H t E E E

H t

∆   
   + ∆      
   ∆   

 (12) 

where 

0 0 0 , 0 0 0 0 ,
TT T T

C C C C CE M P M U H N = = −     

[ ]0 0 0 , 0 0 0 0
TT T T

A A A A AE M P M U H N = =  , 

[ ]0 0 0 , 0 0 0 0 .
TT T T

B B B B BE M P M U H N = =   

From conditions (1e)-(1g), we have 

( ) 0 0

0 ( ) 0

0 0 ( )

C

A

B

t

t

t

∆ 
 ∆ 
 ∆ 

 

[ ]
[ ]

1

1

1

( ) ( ) 0 0

0 ( ) ( ) 0

0 0 ( ) ( )

C C C

A A A

B B B

I F t F t

I F t F t

I F t F t

−

−

−

 − Θ   
 = − Θ
 
 − Θ
 

 

1
( ) 0 0 0 0

0 ( ) 0 0 0

0 0 ( ) 0 0

C C

A A

B B

F t

I F t

F t

−
 Θ   
    = − Θ    
    Θ    

 

( ) 0 0

0 ( ) 0

0 0 ( )

C

A

B

F t

F t

F t

 
 ⋅  
  

, 

where 

 

( ) 0 0 ( ) 0 0

0 ( ) 0 0 ( ) 0 .

0 0 ( ) 0 0 ( )

T

C C

A A

B B

F t F t

F t F t I

F t F t

   
    ≤   
      

 

By using Lemma 1, LMI condition Σ < 0 in (6) will imply 

1 0Σ <  in (10).  By the S-procedure of [6] with conditions 

(8)-(10) and 1 0Σ < , there exists a positive constant ρ > 0 such 

that  

 
22

0 ( ) ( ) .t
tV z e z tαρ≤ − ⋅ ⋅�  
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From the condition ( ) 0tV z ≤� , we have  

 0 0 0( ) ( )tV z V z≤ , 

where 

0 0( ) (0) (0)TV z z Pz=  

0 2
1 2( )

[ ( ) ( ) ( ( )) ( ( ))]s T T

t
e z s Q z s g z s Q g z s dsα

τ−
+ ⋅ +∫  

0 2
1 2( ) ( )( ) ( )

M

s T
M Me s z s R R z s dsα

τ
τ τ

−
+ ⋅ + ⋅ + ⋅∫ � �  

(0)

0
1

2 ( )
i

n z

i i
i

v g s ds
=

+ ∑∫  

max max 1 max 2[ ( ) ( ) ( )M MP Q Qλ τ λ τ λ≤ + ⋅ + ⋅ Γ Γ  

22
max 1 2 max 0( ) ( )M M s

R R V zτ λ τ λ+ ⋅ + ⋅ + Γ ⋅  

2

1 0 ,
s

zδ= ⋅  

with 

 1 max max 1 max 2( ) ( ) ( )M MP Q Qδ λ τ λ τ λ= + ⋅ + ⋅ Γ Γ  

2
max 1 2 max( ) ( ).M MR R Vτ λ τ λ+ ⋅ + ⋅ + Γ  

On the other hand, we have  

 
22 2

0 min( ) ( ) ( ) ( ) ( ) .t T t
tV z e z t Pz t P e z tα αλ≥ ⋅ ≥ ⋅ ⋅  

Consequently, we have 

 1
0

mim

( ) ( ) , 0.
( )

t

s
z t x t x z e t

P
αδ

λ
−= − ≤ ⋅ ⋅ ≥�  

From Definition 1, this implies that the equilibrium point x�  
of system (1) is globally exponentially stable with con- 
vergence rate α.  Next we will prove the uniqueness of the 

equilibrium point ,x�  i.e., the equilibrium point z� = [0  …  0]T 
of (3).  Assume z�  is an equilibrium point of the system (3).  
Then we have 

 ( ) ( ) 0.Cz Ag z Bg z− + + =� � �  

Multiplying both sides of preceding equation by 2 Tz P� , we 
have 

 ( ) 2 ( ) 2 ( ) 0.T T T Tz PC C P z z PAg z z PBg z− − + + =� � � � � �  

From (9) and Σ�  in (6), we have 

2
1 1[ 2 2 (1 )MT T

Dz PC C P P V Q e Qατα α τ−− − + ⋅ + ⋅Γ + − ⋅ − ⋅�  

2 22 ( ) ] 2 [ ] ( )TW Y z z PA PB g z+ Γ + Γ + +� � �  

1 2 1 2 1 12 [ ( ) ( )] ( ) ( )[ 2 2 ] ( )T Tz W W Y Y g z g z W Y g z+ Γ − + Γ − + − −� � � �  

2
2 2( )[ (1 ) ] ( ) 0,MT

Dg z Q e Q g zατ τ−+ − ⋅ − ⋅ ≥� �  

[ 0 ( ) ( )] [ 0 ( ) ( )] 0.T T T T T T T T Tz z g z g z z z g z g zΣ ≥�� � � � � � � �  

This implies 

1[ 0 ( ) ( )] [ 0 ( ) ( )] 0,T T T T T T T T Tz z g z g z z z g z g zΣ ≥� � � � � � � �  

where 1Σ  is defined in (11).  Note that the condition 0Σ <  in 

(6) is equivalent to 1 0Σ <  in (11), this will imply the result 

( ) [0 0] .Tz g z= =� � �   Hence the equilibrium point z =�  

[0 0]T
�  is unique i.e., x�  is the unique equilibrium point 

of uncertain DNN (1).  This completes the proof.  □ 
 
By setting α = 0 and R1 = R2 = U = S = 0 in Theorem 1, we 

may obtain the following delay-independent asymptotic sta- 
bility condition (independent of τM) for system (1) with (2). 

 
Corollary 1.  The equilibrium point x�  of system (1) with (2) 
and τD ≤ 1 (resp., τD > 1 or unknown) is unique and globally 
asymptotically stable (GAS), if there exist some n × n positive 
definite symmetric matrices P, Q1, Q2 (resp., Q1 = 0, Q2 = 0), 
some n × n positive diagonal matrices W1, W2, Y1, Y2, and a 
positive constant ε, such that the following LMI conditions are 
satisfied: 

11 13 14 15 16 17 18

22

33 39

44 410

55 58

66 69

77 710

88

99

1010

ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0 0

ˆ* 0 0 0 0 0 0 0 0

ˆ ˆ* * 0 0 0 0 0 0

ˆ ˆ* * * 0 0 0 0 0

ˆ ˆ* * * * 0 0 0 0ˆ
ˆ ˆ* * * * * 0 0 0

ˆ ˆ* * * * * * 0 0

ˆ* * * * * * * 0 0

ˆ* * * * * * * * 0

ˆ* * * * * * * * *

 Σ Σ Σ Σ Σ Σ Σ
 

Σ 
 

Σ Σ 
 Σ Σ 
 Σ Σ
 Σ =
 Σ Σ
 

Σ Σ


Σ
 Σ
 Σ 

0,<








 

  (13) 

where 
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11 1 2 13 1 2
ˆ ˆ2 , ( ),TPC C P Q W PA W WΣ = − − + + Γ Γ Σ = + Γ −  

14 15 16 17
ˆ ˆ ˆ ˆ, , , ,C A BPB PM PM PMΣ = Σ = Σ = Σ =  

18 22 1 2 24 1 2
ˆ ˆ ˆ, [(1 ) ] 2 , ( ),T

C DN Q Y Y Yε τΣ = − ⋅ Σ = − − ⋅ + Γ Γ Σ = Γ −  

33 1 2 39 44 2 2
ˆ ˆ ˆ2 , , 2 (1 ) ,T

A DW Q N Y Qε τΣ = − + Σ = ⋅ Σ = − − − ⋅  

410 58 69 710
ˆ ˆ ˆ ˆ, , , ,T T T T

B C A BNε ε ε εΣ = ⋅ Σ = ⋅Θ Σ = ⋅Θ Σ = ⋅Θ  

55 66 77 88 99 1010
ˆ ˆ ˆ ˆ ˆ ˆ .IεΣ = Σ = Σ = Σ = Σ = Σ = − ⋅  

Remark 2. In Corollary 1 with α = 0 and R1 = R2 = U = S = 0, 
the obtained result is delay-independent of τM.  Hence the 
result “τM < ∞” can be guaranteed when the LMI (13) is 
feasible. 

IV. NUMERICAL EXAMPLES 

Example 1.  Consider the UDNNs in (1) with (2) and the 
following parameters: (Example 2 of [10]) 

1 0
,

0 1
C

 
=  
 

 
1 0.5

,
0.5 1.5

A
− 

=  − 
 

2 0.5
,

0.5 2
B

− 
=  − 

 

0 0
,

0.1 0.1C A BM M M
 

= = =  − − 
 

1 0
,

0 0.5CN
 

=  
 

 
0.5 0

,
0 1AN

 
=  
 

 
0.1 0.1

,
0 0BN

 
=  
 

 

0.4 0
,

0 0.8

 
Γ =  

 
 0.3.C A BΘ = Θ = Θ =  (14) 

With τD = 0.2, LMI conditions in Corollary 1 have a feasi-
ble solution: 

0.8112 0.1937
,

0.1937 0.9452
P

 
=  
 

 1

0.3581 0.0991
,

0.0991 0.2138
Q

 
=  
 

 

2

2.9551 0.6585
,

0.6585 3.1723
Q

− 
=  − 

 
0.8847 0

,
0 0.8847

V
 

=  
 

 

1

2.3825 0
,

0 1.9513
W

 
=  
 

 2

0.1643 0
,

0 0.0368
W

 
=  
 

 

1

0.6111 0
,

0 0.165
Y

 
=  
 

 2

0.3178 0
,

0 0.0491
Y

 
=  
 

 0.2989.ε =  

The system (1) with (2), (14), and τD = 0.2, is asymptoti-
cally stable and the equilibrium point x�  is unique.  With τD = 
1, LMI conditions in Corollary 1 are not feasible.  Hence 
Theorem 1 should be used to show delay-dependent results.   

Table 1.  Some comparisons for system (1) with (2) and (14). 

Some upper bounds of the time delay for the stability of system (1) 
with (2) and (14) 

Results [10] Our results 

τD = 0 
(Constant) 

τM < ∞ τM < ∞ (GAS) 

τD = 0.5 τM = 2.9653 τM < ∞ (GAS) 

τD = 0.9 τM = 0.8629 τM < ∞ (GAS) 

α = 0, τM = 5000000 (GAS) τD = 1 or 
unknown 

Not provided 
α = 0.1, τM = 215 (GES) 

 
 

With α = 0.1, τD = 1, τM = 215, LMI conditions in Theorem 1 
still have a feasible solution.  The system (1) with (2), (14),  
τD = 1, and τM = 215, is exponentially stable with convergence 
rate α = 0.1.  In order to show the improvement, we summarize 
some comparisons in Table 1. 

 
Example 2. Consider the UDNNs in (1) with (2) and the fol-
lowing parameters: (Example 1 of [14]) 

1.2769 0 0 0

0 0.6231 0 0
,

0 0 0.923 0

0 0 0 0.448

C

 
 
 =
 
 
 

 

0.0373 0.4852 0.3351 0.2336

1.6033 0.5988 0.3224 1.2352
,

0.3394 0.086 0.3824 0.5785

0.1311 0.3253 0.9534 0.5015

A

− − 
 − − =
 − − −
 − − − 

 

0.8674 1.2405 0.5325 0.022

0.0474 0.9164 0.036 0.9816
,

1.8495 2.6117 0.3788 0.8428

2.0413 0.5179 1.1734 0.2775

B

− − 
 − =
 −
 − − 

 

1

2

3

4

0 0 00.1137 0 0 0

0 0 00 0.1279 0 0
,

0 0 00 0 0.7994 0

0 0 00 0 0 0.2368

L

L

L

L

  
  
  Γ = =
  
  

   

 

0,C A B C A BM M M N N N= = = = = = 0.C A BΘ = Θ = Θ =  

  (15) 

Some comparisons of proposed results are shown in Table 
2. 

With ( )( ) 0.5 1 1i i i i if x L x x= × + − − , i = 1, 2, 3, 4, τ(t) = 

50, J = 0, ( ) [10 10 5 5] , [ 50, 0]Tx t t= − − ∈ − , the system 

state trajectories are shown in Fig. 1, where 0 is the unique 
equilibrium point. 
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Table 2.  Some comparisons for system (1) with (2) and (15). 

Some upper bounds of the time delay for the stability of system (1) 
with (2) and (15) 

Results [7] [14] Our results 

τD = 0 1 ≤ τ (t) ≤ 3.5841 1 ≤ τ (t) ≤ 3.8363 τM < ∞ (GAS) 

τD = 0.5 1 ≤ τ (t) ≤ 2.5802 1 ≤ τ (t) ≤ 2.7299 τM < ∞ (GAS) 

τD = 0.9 1 ≤ τ (t) ≤ 2.2736 1 ≤ τ (t) ≤ 2.3811 τM < ∞ (GAS) 

α = 0, 
τM = 12016155 

(GAS) 
τD = 1 or 
unknown 

1 ≤ τ (t) ≤ 2.2393 1 ≤ τ (t) ≤ 2.3114 
α = 0.1, τM = 229 

(GAS) 
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-10

-8

-6

-4

-2

0

2

4

6

8

10

t

x1
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Fig. 1.  The system state trajectories of DNN (1) with (15). 

 

V. CONCLUSIONS 

In this paper, the global stability and uniqueness of equi-
librium point for a class of uncertain delayed neural networks 
with time-varying delay and linear fractional perturbations has 
been investigated.  Based on the LMI approach and some 
proposed additional nonnegative inequalities, some delay- 
dependent and delay-independent criteria have been proposed 
to guarantee the exponential stability and asymptotic stability 
of UDNN, respectively.  Some numerical examples by using 
the proposed results have shown great improvement over 
recent published results. 
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