
Volume 22 Issue 3 Article 8

A PARTICLE SWARM OPTIMIZATION-LIKE ALGORITHM FOR CONSTRAINED A PARTICLE SWARM OPTIMIZATION-LIKE ALGORITHM FOR CONSTRAINED
MINIMAL SPANNING TREE PROBLEMS MINIMAL SPANNING TREE PROBLEMS

Chun-Chao Yeh
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C,
ccyeh@mail.ntou.edu.tw

Ying-Che Chien
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan, R.O.C

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Controls and Control Theory Commons

Recommended Citation Recommended Citation
Yeh, Chun-Chao and Chien, Ying-Che (2014) "A PARTICLE SWARM OPTIMIZATION-LIKE ALGORITHM FOR
CONSTRAINED MINIMAL SPANNING TREE PROBLEMS," Journal of Marine Science and Technology: Vol. 22: Iss. 3,
Article 8.
DOI: 10.6119/JMST-013-1119-2
Available at: https://jmstt.ntou.edu.tw/journal/vol22/iss3/8

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol22
https://jmstt.ntou.edu.tw/journal/vol22/iss3
https://jmstt.ntou.edu.tw/journal/vol22/iss3/8
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol22%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol22%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol22/iss3/8?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol22%2Fiss3%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Marine Science and Technology, Vol. 22, No. 3, pp. 341-351 (2014) 341
DOI: 10.6119/JMST-013-1119-2

A PARTICLE SWARM OPTIMIZATION-LIKE
ALGORITHM FOR CONSTRAINED MINIMAL

SPANNING TREE PROBLEMS

Chun-Chao Yeh and Ying-Che Chien

Key words: evolutionary algorithm, ant colony optimization, genetic
algorithm, constrained minimal spanning tree.

ABSTRACT

Previous studies have discussed various constrained mini-
mal spanning tree (MST) problems. In this paper, we propose
an efficient algorithm for solving a class of constrained MST
problems. The proposed PSO (Particle Swarm Optimization)-
like strategy for solving constrained MST problems identifies
optimal MSTs under degree and delay constraints. The solu-
tion quality and computation time of the proposed PLCMST
(PSO-Like algorithm for Constrained MST problems) algo-
rithm is compared with two other algorithms: one based on
ant colony optimization, and the other based on a genetic
algorithm strategy. Our experimental results show that the
PLCMST outperforms the other two approaches, particularly
when using dense graphs.

I. INTRODUCTION

Network optimization problems have been widely studied
in various research fields, such as telecommunications and
transportation sciences. Optimal routing problems, such as
involved in constructing a minimal-cost broadcast tree cov-
ering all subscription nodes in a network, are typical optimi-
zation problems encountered in communications networks
[10, 24, 43]. Depending on the type of service, various per-
formance metrics and/or technical constraints must be con-
sidered simultaneously to identify a solution. For example,
hop count, bandwidth, reliability, and traffic loading are widely
used performance metrics in Internet routing problems. In
communications systems, technical constraints, such as link
capacity and transmission rate, are intrinsic because of the
limitations of system components. In addition, various quality

of service (QoS) requirements must be considered to accom-
modate specific applications or services. Typical QoS con-
siderations associated with Internet multimedia traffic include
minimal bandwidth, maximal delay, and maximal jitter guar-
antee. Moreover, QoS requirements define service level agree-
ments between customers and service providers; accordingly,
additional constraints should be imposed on network optimi-
zation problems as necessary.

Among the various types of network optimization prob-
lems, minimal spanning tree (MST) problems are one of the
most critical models. Unconstrained MST problems can be
solved effectively by using existing methods, such as the al-
gorithms proposed by Prim [29] or Kruskal [19]. However,
because complex systems may require some constraints to be
imposed on the spanning trees; consequently, the problem
typically become intractable. This paper focuses on a set of
constrained MST problems, in which node-degree and path-
delay constraints require consideration. Typical applications
of such constrained MST problems include network multicast
problems [24, 25, 41] and topology control in wireless com-
munications networks [14, 22]. Similar situations can occur
in logistics and transportation problems, when n objects must
be transported from one location to m cities under the con-
straints of maximal path delay and the maximal number of
route-link branches between any two locations.

MST problems with node-degree or path-delay constraints
have been widely researched; however, few studies have con-
sidered these two constraints simultaneously. Tseng et al.
proposed a genetic algorithm (GA) [39] and ant colony opti-
mization (ACO) strategy [40] for solving constrained MST
problems. Chen et al. [8] proposed a GA to solve a degree-
and-delay-constrained (DDC) Steiner tree problem, which is
a general MST problem. As a solution for constrained MST
problems, this study proposes a novel evolutionary algorithm
(EA) based on a particle swarm optimization (PSO) strategy.
We compare the solution quality and computation time of the
proposed method with those of two other algorithms based on
GA [39] and ACO [40] strategies. The results show that our
proposed method outperforms the other two algorithms in
solving almost all problems in this study.

Previous studies have used soft-computing approaches (e.g.,

Paper submitted 08/30/12; revised 05/28/13; accepted 11/19/13. Author for
correspondence: Chun-Chao Yeh (e-mail: ccyeh@mail.ntou.edu.tw).
Department of Computer Science and Engineering, National Taiwan Ocean
University, Keelung, Taiwan, R.O.C.

342 Journal of Marine Science and Technology, Vol. 22, No. 3 (2014)

PSO, GAs, and ACO) to solve many complex problems, par-
ticularly nondeterministic polynomial-time (NP)-hard prob-
lems. Kuo et al. [20] showed that PSO algorithms can be used
to solve global optimization problems efficiently. Jovanovic
and Tuba [16] improved an existing ACO algorithm to solve
a minimal connected dominating set problem. This type of
problem is modeled as a solution for identifying a minimal
set of relay nodes in a mobile ad hoc network. In [16], a
pheromone correction strategy was incorporated into an ACO
algorithm to prevent the algorithm from becoming trapped in
local optima. Recently, a survey was conducted on applying
ACO algorithms in telecommunications networks [5].

The remainder of this paper is organized as follows. Sec-
tion II provides a detailed review of constrained MST prob-
lems, as well as other related problems. In Section III, the
problems discussed in this paper are described and mod-
elled. Section IV presents the proposed PSO-like algorithm
(PLCMST) for solving constrained MST problems. The
simulation results are summarized in Section V, and a con-
clusion is given in Section VI.

II. CONSTRAINED MINIMAL
SPANNING TREE

This section provides a review of constrained MST prob-
lems and other relevant optimization problems. Although
MST problems can be solved efficiently by using existing
algorithms, the original setting of an MST problem may be too
primitive for complex application scenarios; consequently, it
may be necessary to constrain the problem. Previous studies
have investigated various types of constrained optimization
problems based on trees or paths [27, 28, 37]. The following
subsections briefly review some of those problem models.
This study focuses on models that are suitable for optimizing
either spanning trees or Steiner trees. A Steiner tree connects a
set of designated nodes, but not necessary all nodes in a net-
work (as is the case with spanning trees). In a Steiner tree, the
nodes designated for coverage are called terminal nodes; the
nodes covered by the Steiner tree that are not terminal nodes are
called Steiner nodes. Identifying a minimal-cost Steiner tree is a
complex task that is considered an NP-hard problem [12].

1. Degree-Constrained Minimal-Cost Trees

Given a weighted undirected graph G = (V, E) and positive
integer K, a degree-constrained MST is a spanning tree in
which each node degree is equal to or less than K. A degree-
constrained MST problem is NP-hard [12], implying that a
low probability exists for developing an efficient solution. To
solve this type of problem, various heuristic algorithms have
been proposed, such as those based on ACO [3, 7], GAs [36],
and PSO [6]. Krishnamoorth et al. [18] compared three heu-
ristic schemes for solving the problem; simulated annealing,
GA, and a problem space search (PSS)-based method. They
showed that the PSS method outperformed the other two
schemes marginally. Behle et al. [4] employed branch-and

cut algorithms to solve a degree-constrained MST problem.
Narula et al. [26] proposed a branch-and-bound algorithm as
well as a primal and dual heuristic procedure to solve this type
of problem.

To solve degree-constrained minimal-cost Steiner tree prob-
lems, Ravi et al. [31] proposed an approximation algorithm
for solving degree-constrained minimal-cost Steiner tree prob-
lems. The approximation algorithm for constructing a Steiner
tree in which the degree of any node v in the output Steiner tree
is O(d(v) log k), and the maximal cost of the tree is (log k)
multiplied by the output of a minimal-cost Steiner tree obeying
the degree bound d(v) for each node v, where k is a constant
related to a property of the input graph.

The minimal-degree-constrained MST (MDMST) is a simi-
lar problem model. An MDMST problem requires a minimal-
cost spanning tree, such that each node is either a leaf, or it has
a degree of at least d. Here, the input parameter d denotes the
minimal node degree of nonleaf nodes in the tree. According
to [2], the MDMST problem is NP-hard for cases where d ≥ 3.
Martinez et al. [23] proposed a parallel Lagrangian relaxation
algorithm to solve a degree-constrained MST problem.

2. Delay-Constrained Minimal-Cost Trees

Given a weighted undirected graph G = (V, E) and positive
integer d, a delay-constrained MST is a spanning tree in which
the path delay from root node s to each node v is equal to or
less than d (the path delay is defined as the sum of all edge
delays along the path from s to v). Salama et al. [33] proved
that the delay-constrained MST problem is NP-hard by re-
ducing it to a known NP-hard problem (i.e., the exact cover by
3-sets problem).

A general model of this type of problem is based on a
Steiner tree, in which a set of designated nodes (not necessary
all nodes in the tree) should be connected. A delay-constrained
minimal-cost Steiner tree problem is a critical model for mul-
ticast routing applications in communications networks where
communication delay requires consideration. Various ap-
proaches have been proposed to solve this type of problem,
including the extended Prim-Dijkstra tradeoff [1], greedy
randomized adaptive search procedure [35], branch-and-cut
algorithm [21], PSO strategy [30], and hybrid scatter search
method [42].

The bandwidth-delay-constrained least-cost Steiner tree
(BDC-LST) is a similar problem model, in which a least-cost
Steiner tree connecting all designated nodes in an input graph
is constructed under the constraints of path delay and path
bandwidth. Similar to the definition of path delay, for each
designated node v in the Steiner tree, the path bandwidth of the
path from root node s to node v is defined as the minimal
edge-bandwidth of all edges along the path from s to v. The
BDC-LST bandwidth constraint requires the path delay of all
designated nodes in the BDC-LST tree to be equal to or more
than the bandwidth limit b. The BDC-LST problem model is
typically used in multicast routing applications, particularly in
communications networks where bandwidth and delay are

 C.-C. Yeh and Y.-C. Chien: A PSO-Like Algorithm for Constrained MST Problems 343

sensitive to communication quality (e.g., delivering a multi-
cast stream from a source node to a set of subscriber nodes
over interconnected networks). Ghaboosi and Haghighat [13]
proposed a Tabu search scheme for solving delay-constrained
MST problem.

3. Other Constrained Minimal-Cost Trees

In addition to degree and delay, various other constraints
have been imposed on minimal-cost tree constructions, some
of which are detailed as follows.

A. Bounded-diameter minimal spanning tree:

Given a weighted undirected graph G = V, E) and positive
value D, a bounded-diameter MST (BD-MST) is a spanning
tree with a diameter equal to or less than D. Here, the diameter
dia(G) of G denotes the longest path between any two nodes
in G. The BD-MST problem is NP-hard for cases where 4 ≤
D ≤ (n−1) [12]. To solve a BD-MST problem, Gruber et al.
[15] proposed a neighborhood search scheme to improve the
local optima in variable neighborhood search (VNS), EAs,
and ACO algorithms. Compared with the VNS and ACO
approaches, an EA with an arc exchange neighborhood search
procedure for local optimization yielded remarkably superior
simulation results. To solve a BD-MST problem, Torkestani
[38] proposed a decentralized learning automata-based algo-
rithm that rewards trees with the smallest known weight
(otherwise, the trees are penalized).

B. Leaf-constrained minimal spanning tree:

Given a weighted undirected graph G = (V, E) and positive
value L, a leaf-constrained MST (LC-MST) is a spanning tree
with a minimum of L leaves. Deo and Micikevicius [11]
showed that this type of problem is NP-hard. To solve the
LC-MST problem, Julstrom [17] proposed two GA-based
algorithms that were based on two chromosome coding
schemes (blob and subset). The results of that study showed
that the subset coding scheme-based algorithm consistently
outperformed greedy heuristics-based algorithms. Singh [34]
proposed an artificial bee colony algorithm that solved the
LC-MST problem efficiently.

C. Capacitated minimal spanning tree:

Given a weighted undirected graph G = (V, E) and positive
value K, each node vi (except the root node s = v0) is associ
ated with a demand di. A capacitated MST (Cap-MST) is a
spanning tree where the total node demand of each subtree
originating from root node s is equal to or less than K. The
Cap-MST problem can be reduced to the partition problem,
which is NP-hard [12]; accordingly, the Cap-MST problem is
also NP-hard. Reimann and Laumanns [32] proposed a hybrid
ACO-based algorithm for solving Cap-MST problems.

III. PROBLEM MODELS

1. General Description

In [39], constrained MST problems with node-degree and
path-delay constraints were defined as DDC-MST problems.
A DDC-MST problem is formulated to identify an MST in
a weighted undirected graph G = (V, E, C, D) under both
node-degree and path-delay constraints, where V is a set of
n = |V | nodes {v1, v2, …, vn}; edge set E = {(i, j) | an edge exists
between (vi, vj) in G}; set C = {ci,j|(i, j) ∈ E, ci,j ≥ 0} defines
the associated (nonnegative) edge costs over the edge set E;
and set D = {di,j|(i, j) ∈ E, di,j ≥ 0} defines the associated
(nonnegative) edge delays over the edge set E. The DDC-
MST problem is clarified as follows.

• Input: A weighted undirected graph G = (V, E, C, D), and

two nonnegative values ϕ (node-degree constraint) and λ
(path-delay constraint).

• Objective function: Identify a minimal-cost spanning tree
T = (V, ET) ⊆ G under the following constraints. For span-
ning tree T, the cost Cost(T) is defined as the summation of
all edge costs for edges included in T; in other words,
Cost(T) = ,(,)

.T i ji j E
C

∈∑ Without loss of generality, we as-

sume that T is associated with the root node vs = v1 (unless
otherwise stated).

• Constraints:
(i) Path delay: The path Pt = (Vt, Et) ⊆ T comprises a se-

quence of nodes Vt from root node vs to leaf node vt
and the edges Et between two adjacent nodes in the
path. For Pt, the path-delay constraint delay(Pt), or
simply delay(t), is defined as ,(,)

.
t

i ji j E
d

∈∑ Further-

more, for T, the maximal path delay is defined as
delay(T) = max{delay(Pt)| t is a node in T}. The path-
delay constraint requires the path delay of each node
in T to be equal to or less than λ; that is, delay(T) ≤ λ.

(ii) Node degree: Each node in T has a maximum of ϕ child
nodes.

2. Linear Programming Model

The aforementioned DDC-MST problem can be modeled
as a binary integer linear programming problem, as follows
[39].

Objective function:

(,)

min ij iji j E
c x

∈∑ (1)

Subject to:

()

,
j i

ij iv A v
x v Vϕ

∈
≤ ∀ ∈∑ (2)

()

1, { }
i j

ij j sv B v
x v V v

∈
= ∀ ∈ −∑ (3)

 () (1) ()ij ijdelay j M x delay i d+ − ≥ + (4)

 0 () , idelay i v Vλ≤ ≤ ∀ ∈ (5)

344 Journal of Marine Science and Technology, Vol. 22, No. 3 (2014)

 {0,1}ijx ∈ (6)

where xi,j is a binary variable indicating whether the edge
(i, j) is included in T (only where xi,j = 1 is it included); set
A(vi) = {vjvj ∈ child_node(vi)} is a set of all child nodes in vi;
and set B(vj) = {vivi ∈ parent_node(vj)} is a set of all parent
nodes of vj in the G. The objective function shown in Eq. (1)
is minimizes the total cost of T under constraints expressed
in Eqs. (2)-(6). Specifically, the degree constraint in Eq. (2)
specifies that all nodes in the spanning tree have no more
than ϕ child nodes; Eq. (3) states that all nodes except the
root node vs have exactly one parent node; Eq. (4) states that
the path delay from the root node vs to node vj is equal to or
more than that from vs to node vi when edge (i, j) is included
in the spanning tree (here, M is a sufficient large number; i.e.,
the sum of all edge delays in G); and Eq. (5) limits the path
delay from vs to vi to a value equal to or less than the path-
delay constraint λ.

3. Computational Complexity

For a DDC-MST problem, both node degree and path delay
must be considered when constructing the MST. Although
existing algorithms can solve unconstrained MST problems
efficiently, an unconstrained MST problem could be difficult
to solve when additional constraints are imposed. Previous
studies have shown that MST problems with either node-
degree or path-delay constraints are NP-hard [26, 33]. Con-
sequently, the DDC-MST problem is equally difficult.

By definition, for an NP-hard problem such as the DDC-
MST problem, identifying an efficient polynomial-time algo-
rithm to solve the problem is difficult. Accordingly, the
DDC-MST problem must be solved using heuristic (or meta-
heuristic) algorithms.

IV. PROPOSED METHOD

The PLCMST (PSO-Like algorithm for Constrained MST
problems) proposed in this study is an efficient algorithm for
solving DDC-MST problems.

1. PLCMST Algorithm

Fig. 1 presents the framework of the proposed PLCMST
algorithm. The key design components are the fast MST con-
struction method (Line 6), fitness-evaluation function (Line 7),
and evolutionary strategy (Line 18). In each iteration (Lines
4-18), the current fitness value F_TiBest is first set to zero.
Subsequently, the algorithm attempts to construct the MST Tk
(Line 6) based on the current configuration of each particle k.
Next, the fitness score of Tk is evaluated (Line 7), and TiBest
is updated with the optimal tree from the current iteration, and
TgBest is updated with a known optimal tree if one exists (Lines
8-15). Finally, the heuristic function η(i, j) is updated after
each iteration (Line 18). The heuristic function η(i, j) plays a
critical role; it is responsible for generating the evolutionary

Procedure PLCMST
//Input: (G, λ, ϕ);
//Output: MST Tgbest;

01: Initialization();
02: m = 0; // starting from run 0;
03: While (m <MaxRun)
04: F_TiBest = 0; // reset current run value
05: For k = 1 to K //K is number of particles
06: Tk = Rprim_E(); //Construct an MST using Prim method
07: F_k = Fitness(Tk); //Evaluate the fitness of Tk

08: If(F_k > F_TiBest) //best solution of current run
09: Tibest = Tk;
10
11: End-if
12: If(F_Tibest > F_Tgbest) //best solution up to now
13: Tgbest = Tibest;
14: F_Tgbest = F_Tibest;
15: End-if
16: End-for
17: m++; //Increase the run
18: update η(i,j) For each edges (i,j) //Update the system parameters
19: End-While;
20:Return Tgbest; //Return the global best solution
End.

: F_Tibest = F_k;

Fig. 1. Framework of the PLCMST algorithm.

Procedure Rprim_E
//Input: (G, λ, η);

//Output: Spanning tree T;
01: Let p initially be a zero vector,V′ = {vs}, and
02: Vc = {vj | (s, j) ∈ E, dsj < λ};
03: Let p(j) = s for all vj ∈ Vc;
04: While Vc ≠ empty_set
05: Select edge (a, b) from Ec according to the PRP rule, Ω = Ec

06: where Ec = {(i, j) | vi ∈ V′, vj ∈ Vc, (i, j) ∈ E, delay(j) < λ};
07: Concatenates (a,b) to the constructed tree T;
08: Move vb from Vc to V′;
09: For each vk ∉ V′, vk adjacent to vb, and delay(b) + dbk < λ
10: If vk ∉ Vc

11: Add vk to Vc; Let p(k) = b;
12: Else
13: Select edge (x, k) from {(b, k), (p(k), k) } according to
14: the PRP rule With Ω ={(b, k), (p(k), k) }; Let p(k) = x;
15: End-if
16: End-for
17: End-while
18: Return T;
End.

Fig. 2. Spanning tree construction algorithm.

parameter matrix for constructing the spanning tree in each
iteration for each particle.

The following subsections detail the spanning tree con-
struction function “RPrim_E()” (Line 6) and the update rule
for the heuristic function η(i, j).

 C.-C. Yeh and Y.-C. Chien: A PSO-Like Algorithm for Constrained MST Problems 345

2. Spanning Tree Construction

This study adopted spanning tree construction scheme
presented in [39], where the evolutionary rules involved in the
heuristic function η(i, j) are different. Fig. 2 shows the span-
ning tree construction procedure expressed in pseudocode.
First, vector P is used to track the parent node of node vj in
p[j] (Line 1). The set V′ is used to track the nodes currently
included in the constructed spanning tree. The set Vc com-
prises a set of candidate nodes for inclusion in the spanning
tree in the subsequent iteration. A node is considered to be a
candidate node if the following conditions are upheld: 1) it is
not yet included in the spanning tree; 2) it has an edge con-
nected to a node that is included in the spanning tree (i.e.,
a node in set V′); and 3) the path delay of the node is less
than the constraint value λ. In addition, a set of candidate
edges is maintained as Ec = {(i, j) | vi ∈ V′, vj ∈ Vc, (i, j) ∈ E,
delay(j) < λ}.

The spanning tree construction algorithm starts by initial-
izing the root node vs (Lines 1-3), and then by incrementally
constructing the MST T (Lines 5-16). The code in the for
loop (Lines 9-16) maintains the candidate set Vc and vector
P (i.e., the parent node information). The MST construction
algorithm, which is similar to the one proposed by Prim [29],
can be considered as a randomized version of Prim’s algo-
rithm. The main difference between the two algorithms is
the edge-selection strategy; Prim’s algorithm always selects
the minimal-cost (or weight) edge from the set of candidate
edges (without considering the path delay), whereas the pro-
posed algorithm uses a pseudorandom proportional (PRP) rule
to select an edge for inclusion in the spanning tree (Lines 5-8).
The PRP rule assigns a high selection probability to the edges
with comparatively lower edge cost, whereas those with rela-
tively higher edge costs are allocated a lower selection prob-
ability (but not a zero probability).

3. Edge Selection

This study adopted the edge-selection rule proposed in [39].
The edge-selection rule in the spanning tree construction is
based on the aforementioned PRP rule. The PRP rule proceeds
as follows:

Step 1: set the selection probability prob(i, j) of each candi-
date edge (i, j) in the candidate edge set Ω, as shown in Eq. (7).

 (,)

(,)
, if (,)

(,)prob(,)

0 , otherwise

i j

i j
i j

i ji j

β

β
η

η
∈Ω

∈Ω

=

∑ (7)

Step 2: generate a random number q = rand(0, 1); if q > q0;
subsequently, a predefined threshold uses a roulette-wheel
selection scheme (also known as the a fitness proportionate
selection scheme in GAs) to select an edge (a, b) from the
candidate edge set Ω according to the selection probability
(Eq. (7)). Otherwise, q ≤ q0, in which case the algorithm se-

lects the edge (a, b) with the highest selection probability,
which is determined based on (a, b) = arg max(i,j)∈Ω{prob(i, j)}.

Both q0 and β are constant numbers that should be speci-
fied a priori as system parameters. The heuristic function
η(i, j) was adopted from the heuristic function proposed in
[39], although a different approach is used to set the parameter
values (detailed in the following subsections). The two ver-
sions of the heuristic function η(i, j) adopted from [39] are
expressed in Eqs. (8a) and (8b).

ij

1
, if 1

(,)
1

, otherwise

i

ij

g
V

i j

ϕ
α

η

α

 + >
=

 (8a)

ij

1
, if 1

(,) 1
, otherwise

()

i

ij
ij

g
V

i j

delay i d

ϕ
α

η

α
λ

 + >
=
 +

 (8b)

where gi represents the out-degree of node vi, and ϕ and λ
denote the node-degree and path-length constraint values, re-
spectively. In Eqs. (8a) and (8b), the value of αij changes dy-
namically during each iteration of spanning tree construction
procedure (Line 18, Fig. 1). The update rules for parameter αij
are discussed in following subsections. Any edge (i, j) with
a high node degree at node vi (gi + 1 > ϕ) is penalized, and
the corresponding value in the heuristic function η(i, j) is de-
creased, thereby decreasing the probability of that edge being
included in the spanning tree (Eq. (7)). Similarly, as shown in
Eq. (8b), an edge is penalized if it violates the path-delay

constraint (
() ijdelay i d

λ
+

 > 1; i.e., delay(j) > λ). The differ-

ence between Eqs. (8a) and (8b) is whether the delay con-
straints are considered (the following subsections show that
αij is related only to the edge cost). Ideally, Eq. (8a) assigns a
higher selection probability to the edges with comparatively
lower edge costs, whereas Eq. (8b) weights the score relative
to the value of the path-delay constraint. Consequently, the
rule in Eq. (8a) is more aggressive in order to increase the
probability of including edges with low edge-cost values at the
risks of violating the path constraints. By contrast, the condi-
tion in Eq. (8b) is comparatively more conservative by re-
ducing the probability of including edges with high path-delay
values. As recommended in [39], we balanced the two effects
by alternating between the two rules in each iteration.

4. Fitness Evaluation

In the proposed algorithm (Fig. 1), the fitness of the span-
ning tree construction is evaluated during each iteration (Line
7, Fig. 1). Assume that the spanning tree T = (V′, E′) is con-

346 Journal of Marine Science and Technology, Vol. 22, No. 3 (2014)

structed according to the spanning tree construction algorithm
(Fig. 2) based on the input graph G = (V, E). As recommended
in [39], we applied the fitness function F(T) shown in Eq. (9).

(,)

1
() () ()

i

V V
iV V

iji j E

F T g
C

γ ϕ− ′
′∈

′∈

= Φ −∏
∑

 (9)

1, () 0

()
, () 0

i
i

i

if g
g

if g

ϕ
ϕ

γ ϕ
− ≤

Φ − = − >
 (10)

where γ is a positive constant with value of less than 1 (in this
study, γ = 0.5), gi is the out-degree of node vi, and ϕ denotes
the upper bound of the out-degree of a node to be allowed. By
definition, an MST should cover all nodes (i.e., |V| = |V′|).
However, the spanning tree construction algorithm might
construct an incomplete tree (i.e., |V′| < |V|) because of its
random edge-selection behavior. The term V Vγ − ′ (γ is a
constant with a value of less than 1) in Eq. (9) is a penalty
term that is applied when a constructed tree T is an incomplete
MST. Furthermore, the step function Φ(⋅) provides an addi-
tional penalty term for any node violating the node-degree
constraints.

5. Evolutionary Strategy

The rules for setting the heuristic function η(i, j) are one
of the key design features of the proposed algorithm. Eq. (11)
shows the setting of the key parameter αij involved in the
heuristic function η(i, j) (Eqs. (8a) and (8b)). Initially, the
value of αij for edge (i, j) is set at cij (i.e., the edge cost).
Subsequently, after each iteration, αij is recalculated and
the value of η(i, j) is updated (Line 18, Fig. 1) to include the
edges (i, j) in the spanning tree with the lowest cost in the
current iteration (i.e., (i, j) ∈ EiBest) or those among all previous
iterations (i.e., (i, j) ∈ EgBest). Consequently, for each edge
(i, j), we set the value αij = cij/4 for any edge included in
the edges of minimal-cost spanning tree in both current itera-
tion (i.e., EiBest) and in those among all previous iterations
(i.e., EgBest). If the edge (i, j) is included in either EiBest or in
EgBest (but not in both), then the weighting is doubled (i.e.,
αij = cij /2); conversely, if the edge (i, j) is included in neither
EiBest nor EgBest, the weighting is doubled (i.e., αij = cij).

, if (,) { }
4

, if (,) { }/
2

, otherwise

ij
iBest gBest

ijij
iBest gBest

ij

c
i j A E E

c
i j E E A

c

α

∈ = ∩

= ∈ ∪

 (11)

V. RESULTS

The performance of the proposed PLCMST algorithm was
assessed by measuring the solution quality and computation

time. We compared its performance with that of two other
algorithms—the NGA [39] and ADDCMST [40]. The NGA is
a GA-based algorithm, whereas the ADDCMST is an ACO-
based algorithm. All three algorithms tested in this study are
soft-computing approaches, which trade solution quality with
computation time. The results were compared using LINGO
(version 11.0.0.29) [7], a widely used software application
for solving linear and nonlinear optimization problems. The
solutions generated by LINGO are guaranteed to be optimal,
which provided a baseline for comparing the solutions from
the NGA, ADDCMST, and PLCMS.

1. Simulation Setup

The NGA, ADDCMST, and PLCMST were implemented
using Microsoft Visual C++ 2008. All tests were performed
on a personal computer with an Intel processor (Core2 Duo 2.2
GHz) and 3 GB RAM (DDR2, 333MHz).

No public benchmark data exist to test the performance of
the DDC-MST problems; therefore, we adopted the criteria for
generating the test data from [39], which is the source of one
of the algorithms examined in this study. Because it would be
impossible to generate graphs identical to those used in [39],
we generated test graphs with identical or similar characteris-
tics. In addition, the constraint rules were adopted from [39].
Each test graph is associated with two out-degree upper
bounds (ϕ = 3 or 5) and two path-delay upper bounds (λ = 2Ψ
or 4Ψ), where Ψ is the maximal shortest path delay from root
node vs in the test graph, which can be expressed as Ψ =
max{shortest_path_delay(Pt)| t is a node in T}. The value of
Ψ for a given test graph G = (V, E) can be obtained using a
conventional shortest-path algorithm, such as the one pro-
posed by Dijkstra [9], in which the edge-cost value is replaced
with the edge-delay value. Combining the two constraints
yields four possible combinations of path delay and out-degree
upper bounds for each test graph.

Similar to the procedures presented in [39], the test graphs
G = (V, E, C, D) were generated using a random graph
generator, which was also used in setting the node degree,
constructing the edges, and assigning edge-cost and edge-
delay values. Each group of test graphs is denoted as Nx-y,
where x is node size and y is edge size. To produce a data set
that was similar to the one used in [39], we compared the
graph characteristics (e.g., maximal, minimal, and mean node
degree, MST cost, maximal degree of the MST, and maximal
shortest path delay) and excluded any graph that was dis-
similar.

2. Simulation Results

(A) Performance comparison with LINGO:
Table 1 shows the results of five test graphs G = (V, E, C, D)

of identical node size (50) and edge size (100) but of varying
edge-connection topology (denoted as N50-100). The com-
putation time was limited to 4 hours (14400 s). Given the
nature of soft-computing approaches, a random procedure
could be embedded in the algorithms. Consequently, a single

 C.-C. Yeh and Y.-C. Chien: A PSO-Like Algorithm for Constrained MST Problems 347

0.99
1

1.01
1.02
1.03
1.04
1.05
1.06
1.07

Avg. to Lingo cost ratio (Case: N50-100)

NGA ADDCMST PLCMST

Fig. 3. Average spanning tree cost for graphs N50-100 (normalized with
Lingo results).

instance of an input problem I = (G(V, E, C, D), ϕ, λ) could
yield varying results. Therefore, each instance of I was tested
30 times for each algorithm, and the mean of the results was
calculated.

The results in Fig. 3 emphasize the difference in the re-
sults. Because the LINGO solution is an optimal one, we
normalized the NGA, ADDCMST, and PLCMST results with
those obtained using LINGO. In the figure, the y-axis repre-
sents the ratio of values (normalized with the LINGO results)
for the corresponding input instance of I = (G(V, E, C, D),
ϕ, λ), and the x-axis represents various input configurations,
denoted as (a, b, c), where a is the index of input graph G, b is
the value of the node-degree constraint ϕ, and c is the value
of the path-delay constraint λ expressed in units of Ψ (i.e.,
the maximal shortest path delay from the root node of the G).
In Fig. 3, the first entry (1, 3, 2) along the x-axis corresponds
to the first entry in Table 1 (G = 1, ϕ = 3, λ = 2Ψ). As shown in
the first entry in Table 1, the mean costs of LINGO, NGA,
ADDCMST, and PLCMST are 1510, 1551, 1557, and 1531,
respectively. Accordingly, the normalized ratios for the NGA
(1551/1510), ADDCMST (1557/1510), and PLCMST (1531/
1510) are 1.0271, 1.0311, and 1.0139, respectively, which cor-
respond to the first entry in Fig. 3.

The N50-100 results (Table 1) show that the proposed
PLCMST algorithm outperformed the NGA and ADDCMST
in all 20 instances. Moreover, the PLCMST yielded lower costs
and shorter computation times. Fig. 3 shows that the N50-100
results obtained using the proposed method are similar to the
optimal solutions obtained using LINGO. The results obtained
using the proposed method are within 2% larger than the op-
timal solutions; moreover, most of those cases are less 1%
larger. When using LINGO, the computation time ranged
from 1 to 928 seconds, whereas that of the proposed PLCMST
algorithm is less than 4 seconds for all test cases.

Subsequently, we increased the edge size to 250. Table 2
shows the results of five test graphs with 50 nodes and 250
edges (denoted as N50-250). Because the graphs were large,
LINGO was unable to obtain a solution within the allocated

Table 1. Results for test graphs N50-100 (node size = 50,
edge size = 100).

Graph
(N50-100)

LINGO NGA ADDCMST PLCMST

G ϕ λ cost time cost time cost time cost time

3 2Ψ 1510 447 1551 2.963 1557 2.206 1531 1.901

3 4Ψ 1467 114 1503 3.212 1481 2.606 1469 2.055

5 2Ψ 1510 928 1554 2.960 1529 2.218 1519 1.872
1

5 4Ψ 1467 25 1490 3.206 1484 2.606 1467 2.055

3 2Ψ 2407 8 2554 3.499 2525 2.642 2449 2.459

3 4Ψ 2393 4 2518 3.632 2467 2.887 2399 2.488

5 2Ψ 2407 3 2526 3.505 2475 2.642 2407 2.446
2

5 4Ψ 2393 3 2489 3.639 2447 2.907 2393 2.493

3 2Ψ 2416 3 2511 3.569 2476 2.741 2433 2.429

3 4Ψ 2404 12 2490 3.608 2452 2.953 2423 2.489

5 2Ψ 2397 1 2450 3.586 2423 2.793 2401 2.496
3

5 4Ψ 2389 5 2444 3.628 2409 2.980 2389 2.503

3 2Ψ 2613 252 2775 2.746 2726 2.315 2668 1.161

3 4Ψ 2567 57 2665 3.454 2596 2.794 2577 2.382

5 2Ψ 2613 134 2724 2.762 2698 2.344 2648 1.198
4

5 4Ψ 2567 30 2640 3.469 2598 2.810 2571 2.427

3 2Ψ 2245 8 2354 3.509 2310 2.751 2290 2.432

3 4Ψ 2226 3 2307 3.633 2237 3.020 2230 2.560

5 2Ψ 2220 6 2297 3.517 2263 2.740 2242 2.425
5

5 4Ψ 2201 3 2271 3.600 2217 2.945 2201 2.469

time limit (i.e., 4 h) for all of the N50-250 tests (five test
graphs, each with four unique constraint setting on (ϕ, λ)),
indicating that conventional optimization packages, such as
LINGO, are unfeasible for solving complex DDC-MST
problems, which justifies the need to use soft-computing ap-
proaches to obtain a solution, particularly for a large problems.

For those complex test cases, because the optimal values
could not be obtained using LINGO, we used a low bound
instead. The low bound values shown in Tables 2-4 denote the
cost of the unconstrained MSTs. The value can be obtained
easily by using conventional MST algorithms, such as Prim’s
algorithm [29]. Moreover, the true optimal value is equal to or
more than the lower bound. Because the DDC-MST problem
is NP-hard, identifying the true optimal value of the problem is
complex, particularly for large problems. Therefore, we used
the low bound value as a reference to assess the solution
quality. Fig. 4, we plot the N50-250 MST cost results. Similar
to Fig. 3, the value of each data point in the plot is normalized
by the lower-bound value. The results show that the proposed
PLCMST algorithm outperforms the NGA and ADDCMST,
and the solution quality of the proposed method is comparable
(i.e., the values are near the lower bound).

(B) Performance under general cases:

In addition to the cases for node size of 50, we evaluated
numerous randomly generated graphs of varying size (N = 50,
100, 200, and 300) edge density. The 19 types of test graph are
shown in Tables 3 and 4. The edge size was carefully selected

348 Journal of Marine Science and Technology, Vol. 22, No. 3 (2014)

Table 2. Results for test graphs N50-250 (node size = 50, edge size = 250).
Graph (N50-250) LINGO NGA ADDCMST PLCMST Low bound

G ϕ λ cost time cost time cost Time cost time cost

3 2Ψ --- 14400 2308 4.533 2279 3.355 1916 3.333 1520
3 4Ψ --- 14400 1936 5.577 1901 4.354 1585 3.923 1520
5 2Ψ --- 14400 2198 4.572 2162 3.426 1783 3.467 1520

1

5 4Ψ --- 14400 1890 5.564 1892 4.380 1560 3.969 1520
3 2Ψ --- 14400 2185 5.022 2176 3.829 1747 3.631 1494
3 4Ψ --- 14400 1838 5.716 1822 4.719 1538 4.030 1494
5 2Ψ --- 14400 2103 5.085 2107 3.860 1718 3.713 1494

2

5 4Ψ --- 14400 1831 5.740 1801 4.696 1527 3.989 1494
3 2Ψ --- 14400 2384 4.674 2335 3.508 1959 3.260 1623
3 4Ψ --- 14400 2051 5.619 1988 4.454 1695 3.904 1623
5 2Ψ --- 14400 2216 4.712 2206 3.629 1845 3.243 1623

3

5 4Ψ --- 14400 1959 5.563 1995 4.500 1690 3.888 1623
3 2Ψ --- 14400 2347 4.720 2289 3.436 1983 3.611 1558
3 4Ψ --- 14400 1865 5.668 1896 4.415 1589 4.119 1558
5 2Ψ --- 14400 2253 4.761 2251 3.428 1939 3.688 1558

4

5 4Ψ --- 14400 1848 5.683 1870 4.447 1580 4.146 1558
3 2Ψ --- 14400 2377 4.996 2264 3.863 1924 3.670 1655
3 4Ψ --- 14400 1970 5.755 1920 4.691 1695 4.143 1655
5 2Ψ --- 14400 2231 5.089 2180 3.962 1844 3.748 1655

5

5 4Ψ --- 14400 1922 5.796 1887 4.725 1660 4.138 1655

Table 3. Results for all test graphs with low edge density (≤ 0.3).

 NGA ADDCMST PLCMST Low bound
Edge

Desity
graph Avg cost

Avg exec
time (s)

Suc
rate

Avg cost
Avg exec
time (s)

Suc
rate

Avg cost
Avg exec
time (s)

Suc
rate

Avg cost

N50-100 2306 3.39 100 2268 2.70 100 2235 2.24 100 2201
N100-200 3798 9.17 100 3689 8.00 100 3550 7.14 100 3470
N200-400 5281 31.88 96 5105 25.08 100 4862 18.99 96 4636

≤ 0.1

N300-600 13744 45.27 96 13229 39.80 100 12515 39.18 96 11857
N50-250 2086 5.24 100 2061 4.08 100 1739 3.78 100 1570

N100-1000 4301 17.31 90 4458 14.21 97 2894 14.08 98 1996
N200-2000 8046 63.40 81 11684 48.38 82 5186 44.44 96 3636

0.1-0.3

N300-3000 10026 78.52 74 10738 65.06 59 6312 66.34 79 4527
average 6198 31.77 92 6654 25.91 92 4911.6 24.52 95.6 4237

Table 4. Results for all test graphs with high edge density(≧ 0.4).

 NGA ADDCMST PLCMST Low bound
Edge

Desity
graph Avg cost

Avg exec
time(s)

Suc
rate

Avg cost
Avg exec
time(s)

Suc
rate

Avg cost
Avg exec
time(s)

Suc
rate

Avg cost

N50-500 2545 11.06 81 2360 4.98 78 1865 4.53 88 1282
N100-2000 4857 26.38 42 6962 17.93 34 2736 18.40 77 1768
N200-8000 0 0 0 0 0 0 4136 68.52 43 2579

0.4-0.6

N300-17000 12750 121.84 71 14253 90.31 50 4826 115.60 99 2482
N50-750 2193 12.04 99 2168 5.54 92 1376 5.53 100 1052

N100-3000 5370 27.78 16 7881 18.22 11 2896 19.53 79 1518
N200-12000 10709 83.84 35 20763 62.01 17 3878 78.01 80 2187

0.6-0.8

N300-27000 14721 145.24 47 16893 107.24 49 3691 151.23 100 2442
N50-1000 2600 12.31 96 2554 5.93 77 1537 5.84 100 1017
N100-4000 5605 28.57 78 6249 19.49 72 2925 21.09 93 1417 ≧0.8

N200-16000 15479 93.79 58 38248 71.74 62 2803 93.56 100 1978
Average 7682.9 56.28 62.3 11833 40.34 53.4 2969.9 52.89 87.2 1793.4

 C.-C. Yeh and Y.-C. Chien: A PSO-Like Algorithm for Constrained MST Problems 349

1
1.1
1.2
1.3
1.4
1.5
1.6

Avg. to low bound cost ratio (Case: N50-250)

NGA ADDCMST PLCMST

Fig. 4. Average spanning tree cost for graphs N50-250 (normalized with
low bound results).

to consider both sparse and dense edge graphs, in which we
used edge density to indicate the degree of sparseness (or
denseness) of the graph. Edge density is defined as the
number of edges in a graph divided by the maximal number of
possible edges in a graph with an identical number of nodes,
which is equal to n(n−1)/2 for a graph with n nodes. For
each graph group Nx-y, we randomly selected five graphs
G(V, E, C, D) of identical node size and edge size but of
varying edge-connection topology, thereby obtaining graphs
with unique edge-cost and delay values. Consequently, we
obtained 19 × 5 = 95 test graphs. Similar to the N50-100
(Table 1) and N50-250 (Table 2) cases, each test graph G(V,
E, C, D) is associated with four configurations of constraints
(i.e., ϕ = 3 or 5; λ = 2Ψ or 4Ψ); consequently, we obtained
95 × 4 = 380 test input instances.

Tables 3 and 4 show the results of the 380 test input in-
stances. For clarity, we summarized the results based on the
graph group Nx-y, each comprising five graphs of identical
node size and edge size, as well as 5 × 4 = 20 test input in-
stances. To smooth the stochastic effects resulting from the
nature of soft-computing algorithms, each input instance I =
(G(V, E, C, D), ϕ, λ) was tested 30 times for the NGA,
ADDCMST, and PLCMST. Accordingly, each graph group
was subject to 600 test iterations. For each iteration, we noted
the executed algorithm, cost of the identified optimal spanning
tree, and execution time required to obtained a solution. All
test input instances (particularly the large problems) where no
feasible results were obtained were noted as failed tests. As-
sume that algorithm A performed 600 test iterations on graph
group Nx-y. Subsequently, the number of failed tests f can be
used to calculate the success rate of algorithm A for that graph
group as (600−f)/600. The success rate represents the prob-
ability of an algorithm generating a feasible solution identical
termination criteria. Subsequently, for the successful tests, the
mean cost value and execution time was calculated for each
graph group and algorithm. To facilitate a simple comparison,
we provide the lower-bound value of each case.

The data in Tables 3 and 4 were reorganized to facilitate a
comparison from various perspectives. To obtain a perform-

ance ratio for comparing the efficiency of the PLCMST with
that of the NGA and ADDCMST, the data generated from the
NGA and ADDCMST were normalized with the correspond-
ing data obtained from the PLCMST. Among the results
shown in Table 5, no values are listed for the N200-8000 case
because both the NGA and ADDCMST failed to generate
results (as shown in Table 4).

Based on the 380 test input instances, Table 5 shows that
the ratio of the solution quality (the columns entitled “Avg.
Cost”) is higher than 1 for both the NGA and ADDCMST,
implying that the proposed PLCMST algorithm generated
superior spanning trees (i.e., lower computational cost). In
addition, the proposed method exhibited superior performance
for the high edge-density cases. Regarding the success rate,
Table 5 shows that the ratio is more than 1 in most cases,
implying that the PLCMST is more likely to generate a feasi-
ble solution than the NGA and ADDCMST are. However, two
exceptions occurred in the N200-400 and N300-600 cases,
where the success rate of the ADDCMST is marginally higher
than that of the PLCMST.

Regarding the execution time, the PLCMST generated su-
perior solutions (i.e., lower computational cost) in less time
than the NGA and ADDCMST required in most cases. For the
cases where the PLCMST was slower than the other two al-
gorithms (i.e., execution time ratio < 1), the quality of the
solution was superior (cost ratio > 2). The only exception
occurred in the N300-3000 case, where the ADDCMST yielded
a cost ratio of 1.7. This discussion shows that the proposed
PLCMST algorithm outperforms the NGA and ADDCMST; in
most cases, it generated better solutions in less time.

VI. CONCLUSION

This paper presents a novel PSO-based metaheuristic al-
gorithm for solving DDC-MST problems, in which we are
asked to identify an MST under both degree and delay con-
straints. The performance of the proposed PLCMST algo-
rithm was compared with that of LINGO, a widely used
software package for linear and nonlinear optimization prob-
lems. Our experimental results show that the proposed algo-
rithm generated high-quality solutions for the N50-100 test
graphs (Table 1). For all 20 test graphs, the performance ratio
(of minimal cost obtained by the proposed algorithm to that
obtained by optimal solutions) is within 1.02, and the com-
putation time was considerably less than that required by
LINGO. Subsequently, we extended the problem size by
increasing the size of the graphs (N50-250). We observed that
LIGNO was unable to solve these test graphs within 4 hours.
Under identical test conditions, the PLCMST obtained suit-
able solutions close to the low bound within 5 seconds (Table
2). The results indicate that conventional linear optimization
packages, such as LINGO, may be unfeasible for solving
relatively large DDC-MST problems.

In addition, we compared the performance of the PLCMST
with that of the NGA, which is based on GA metaheuristics,

350 Journal of Marine Science and Technology, Vol. 22, No. 3 (2014)

Table 5. Performance comparison between NGA/ADDCMST/PLCMST.

 NGA /PLCMST ADDCMST/PLCMST

Edge desity graph Avg cost Avg exec time (s) Succ rate Avg cost Avg exec Time (s) Succ rate

N50-100 1.03 1.51 1 1.01 1.2 1

N100-200 1.07 1.28 1 1.04 1.12 1

N200-400 1.09 1.68 1 1.05 1.32 1.04
≤ 0.1

N300-600 1.1 1.16 1 1.06 1.02 1.04

N50-250 1.2 1.39 1 1.19 1.08 1

N100-1000 1.49 1.23 0.92 1.54 1.01 0.99

N200-2000 1.55 1.43 0.84 2.25 1.09 0.85
0.1-0.3

N300-3000 1.59 1.18 0.94 1.7 0.98 0.75

Average (For ≤ 0.3) 1.27 1.36 0.96 1.36 1.10 0.96

N50-500 1.36 2.44 0.92 1.27 1.1 0.89

N100-2000 1.78 1.43 0.6 2.54 0.97 0.51

N200-8000 x x 0 x x 0
0.4-0.6

N300-17000 2.64 1.05 0.72 2.95 0.78 0.51

N50-750 1.59 2.18 0.99 1.58 1 0.92

N100-3000 1.85 1.42 0.7 2.72 0.93 0.49

N200-12000 2.76 1.07 0.44 5.35 0.79 0.21
0.4-0.8

N300-27000 3.99 0.96 0.47 4.58 0.71 0.49

N50-1000 1.69 2.11 0.96 1.66 1.02 0.85

N100-4000 1.92 1.35 0.84 2.14 0.92 0.77 ≧0.8

N200-16000 5.52 1 0.58 13.65 0.77 0.6

Average (For ≧0.4) 2.51 1.5 0.66 3.847 0.9 0.57

and the ADDCMST, which is an ACO algorithm. Previous
studies have shown that the NGA and ADDCMST can solve
DDC-MST problems efficiently. To demonstrate the effi-
ciency and effectiveness of the PLCMST, we compared it with
those two algorithms. Intensive simulations were performed
to evaluate the performance of the NGA, ADDCMST, and
PLCMST. We generated 380 instances I = (G(V, E, C, D), ϕ,
λ) of graphs with varying node size (N = 50, 100, 200, and
300), edge size (ranging from 100 to 2700), and edge density
(from 0.013 to 0.816). As shown in Table 5, the PLCMST
generated superior spanning trees (i.e., lower computational
cost). Moreover, the performance of the PLCMST was even
higher for the high edge-density cases. Regarding the suc-
cess rate, the PLCMST exhibited a higher probability of gen-
erating a feasible solution in comparison with the NGA and
ADDCMST, with two exceptions among the 380 tests. Re-
garding the execution time, the proposed algorithm generated
superior results (i.e., lower computational cost) with less time.
For the cases where the PLCMST took longer, we observed
that it generated solutions that were markedly superior (cost
ratio > 2) with only one exception. Compared with the NGA
and ADDCMST, the proposed PLCMST algorithm generally
obtained superior solutions at less computational cost in al-
most all of the cases examined in this study.

REFERENCES

1. Aissa, M. and Ben Mnaouer, A., “A new delay-constrained algorithm for

multicast routing tree construction,” International Journal of Communi-
cation Systems, Vol. 17, No. 10, pp. 985-1000 (2004).

2. Almeida, A. M., Martins, P., and De Souza, M. C., “md-MST is NP-hard
for d ≥ 3,” Electronic Notes in Discrete Mathematics, Vol. 36, pp. 9-15
(2010).

3. Bau, Y. T., Ho, C. K., and Ewe, H. T., “An ant colony optimization ap-
proach to the degree-constrained minimum spanning tree problem,”
Proceeding of 2005 International Conference on Computational Intelli-
gence and Security (CIS 2005), Part I, LNAI 3801, pp. 657-662 (2005).

4. Behle, M., Juenger, M., and Liers, F., “A primal branch-and-cut algorithm
for the degree-constrained minimum spanning tree problem,” Proceeding
of 6th Workshop on Experimental Algorithms (WEA 2007), LNCS 4525,
pp. 379-392 (2007).

5. Benyahia, I., “A survey of ant colony optimization algorithms for tele-
communication networks,” International Journal of Applied Metaheu-
ristic Computing (IJAMC), Vol. 3, No. 2, pp. 18-32 (2012).

6. Binh, H. T. T. and Nguyen, T. B., “New particle swarm optimization
algorithm for solving degree constrained minimum spanning tree prob-
lem,” Proceeding of 10th Pacific Rim International Conference on Arti-
ficial Intelligence (PRICAI 2008), LNAI 5351, pp. 1077-1085 (2008).

7. Bui, T. N. and Zrncic, C. M., “An ant-based algorithm for finding de-
gree-constrained minimum spanning tree,” Proceeding of the 8th Annual
Conference on Genetic and Evolutionary Computation (GECCO’06),
Seattle, WA, USA, pp. 11-18 (2006).

8. Chen, L., Yang, Z., and Xu, Z., “A degree-delay-constrained genetic al-
gorithm for multicast routing tree,” Proceeding of the Fourth Interna-
tional Conference on Computer and Information Technology, Wuhan,
China, pp. 1033-1038 (2004).

9. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction
to Algorithms, 3rd Ed., The MIT Press, Cambridge, MA (2009).

10. Craveirinha, J., Climaco, J., Martins, L., Da Silva, C. G., and Ferreira, N.,
“A bi-criteria minimum spanning tree routing model for MPLS/overlay
networks,” Telecommunication Systems, Vol. 52, No. 1, pp. 203-215

 C.-C. Yeh and Y.-C. Chien: A PSO-Like Algorithm for Constrained MST Problems 351

(2013).
11. Deo, N. and Micikevicius, P., “A heuristic for a leaf constrained minimum

spanning tree problem,” Congressus Numerantium, Vol. 141, pp. 61-72
(1999).

12. Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide
to the Theory of NP Completeness, W.H. Freeman, New York (1979).

13. Ghaboosi, N. and Haghighat, A. T., “Tabu search based algorithms for
bandwidth-delay-constrained least-cost multicast routing,” Telecommu-
nication Systems, Vol. 34, Nos. 3-4, pp. 147-166 (2007).

14. Gouveia, L., Moura, P., and DeSousa, A., “Spanning trees with general-
ized degree constraints arising in the design of wireless networks,” Pro-
ceeding of 2011 International Network Optimization Conference (INOC
2011), LNCS 6701, pp. 77-82 (2011).

15. Gruber, M., van Hemert, J., and Raidl, G. R., “Neighborhood searches for
the bounded diameter minimum spanning tree problem embedded in a
vns, ea, and aco,” Proceeding of the 8th Annual Conference on Genetic
and Evolutionary Computation (GECCO’06), Seattle, WA, USA, pp.
1187-1194 (2006).

16. Jovanovic, R. and Tuba, M., “Ant colony optimization algorithm with
pheromone correction strategy for the minimum connected dominating
set problem,” Computer Science and Information Systems (ComSIS), Vol.
10, No. 1, pp. 133-149 (2013).

17. Julstrom, B. A., “Codings and operators in two genetic algorithms for the
leaf-constrained minimum spanning tree problem,” International Journal
of Applied Mathematics and Computer Science, Vol. 14, No. 3, pp. 385-
396 (2004).

18. Krishnamoorthy, M. and Ernst, A. T., “Comparison of algorithms for the
degree constrained minimum spanning tree,” Journal of Heuristics, Vol. 7,
No. 6, pp. 587-611 (2001).

19. Kruskal, J., “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical Society,
Vol. 7, No. 1, pp. 48-50 (1956).

20. Kuo, H.-C., Chang, J.-R., and Liu, C.-H., “Particle swarm optimization
for global optimization problems,” Journal of Marine Science and Tech-
nology, Vol. 14, No. 3, pp. 170-181 (2006).

21. Leggieri, V., Haouari, M., and Triki, C., “A branch-and-cut algorithm for
the Steiner tree problem with delays,” Optimization Letters, Vol. 6, No. 8,
pp. 1753-1771 (2011).

22. Liang, Y.-H., Chang, B.-J., and Lin, Y.-M., “Solve the tree setup problem
and minimize control overhead for high-density members in delay-
bounded distributed multicast networks,” Wireless Personal Communi-
cations, Vol. 65, No. 4, pp. 875-894 (2012).

23. Martinez, L. C. and Da Cunha, A. S., “A parallel Lagrangian relaxation
algorithm for the min-degree constrained minimum spanning tree prob-
lem,” Proceeding of 2nd International Symposium on Combinatorial
Optimization (ISCO 2012), LNCS 7422, pp. 237-248 (2012).

24. Mauthe, A., Hutchison, D., Coulson, G., and Namuye, S., “Multimedia
group communications: towards new services,” Distributed Systems En-
gineering, Vol. 8, No. 3, pp. 197-210 (1996).

25. Moy, J., “Multicast routing extensions for OSPF,” Communications of
the ACM, Vol. 37, No. 8, pp. 61-67 (1994).

26. Narula, S. C. and Ho, C. A., “Degree-constrained minimum spanning
trees,” Computers and Operations Research, Vol. 7, No. 4, pp. 239-249
(1980).

27. Oencan, T., Cordeau, J.-F., and Laporte, G., ”A tabu search heuristic for
the generalized minimum spanning tree problem,” European Journal of
Operational Research, Vol. 191, No. 2, pp. 306-319 (2008).

28. Pham, Q. D., Deville, Y., and Van Hentenryck, P., “LS(Graph): a con-
straint-based local search for constraint optimization on trees and paths,”
Constraints, Vol. 17, No. 4, pp. 357-408 (2012).

29. Prim, R. C., “Shortest connection networks and some generalizations,”
Bell System Technical Journal, Vol. 36, pp. 1389-1401 (1957).

30. Qu, R., Xu, Y., Castro, J. P., and Landa-Silva, D., “Particle swarm opti-
mization for the Steiner tree in graph and delay-constrained multicast
routing problems,” Journal of Heuristics, Doi: 10.1007/s10732-012
-9198 -2 (2012).

31. Ravi, R., Marathe, M. V., Ravi, S. S., Rosenkrantz, D.-J., and Hunt III,
H. B., “Approximation algorithms for degree-constrained minimum-cost
network-design problems,” Algorithmica, Vol. 31, No. 1, pp. 58-78
(2001).

32. Reimann, M. and Laumanns, M., “A hybrid aco algorithm for the ca-
pacitated minimum spanning tree problem,” Proceeding of First Inter-
national Workshop on Hybrid Metahuristics (HM2004), Valencia, Spain,
pp. 1-10 (2004).

33. Salama, H. F., Reeves, D. S., and Viniotis, Y., “The delay constrained
minimum spanning tree problem,” Proceeding of the Second IEEE
Symposium on Computers and Communications, Alexandria, Egypt, pp.
699-703 (1997).

34. Singh, A., “An artificial bee colony algorithm for the leaf-constrained
minimum spanning tree problem,” Applied Soft Computing, Vol. 9, No. 2,
pp. 625-631 (2009).

35. Skorin-Kapov, N. and Kos, M., “A grasp heuristic for the delay-
constrained multicast routing problem,” Telecommunication Systems, Vol.
32, No. 1, pp. 55-69 (2006).

36. Soak, S.-M., Corne, D., and Ahn, B.-H., “A new encoding for the degree
constrained minimum spanning tree problem,” Proceeding of 8th Inter-
national Conference on Knowledge-Based Intelligent Information and
Engineering Systems (KES 2004), LNAI 3213, pp. 952-958 (2004).

37. Soak, S.-M. and Jeon, M., “The property analysis of evolutionary algo-
rithms applied to spanning tree problems,” Applied Intelligence, Vol. 32,
No. 1, pp. 96-121 (2010).

38. Torkestani, J. A., “An adaptive heuristic to the bounded-diameter mini-
mum spanning tree problem,” Soft Computing, Vol. 16, No. 11, pp. 1977-
1988 (2012).

39. Tseng, S.-Y., Huang, Y.-M., and Lin, C.-C., “Genetic algorithm for delay
and degree-constrained multimedia broadcasting on overlay networks,”
Computer Communications, Vol. 29, No. 17, pp. 3625-3632 (2006).

40. Tseng, S.-Y., Lin, C.-C., and Huang, Y.-M., “Ant colony-based algorithm
for constructing broadcasting tree with degree and delay constraints,”
Expert Systems with Applications, Vol. 35, No. 3, pp. 1473-1481 (2008).

41. Waitzman, D., Partridge, C., and Deering, S. E., “Distance vector multi-
cast routing protocol,” IETF RFC 1075 (1988).

42. Xu, Y. and Qu, R., “A hybrid scatter search meta-heuristic for delay-
constrained multicast routing problems,” Applied Intelligence, Vol. 36,
pp. 229-241 (2012).

43. Xue, G. L., “Minimum-cost QoS multicast and unicast routing in com-
munication networks,” IEEE Transactions on Communications, Vol. 51,
No. 5, pp. 817-824 (2003).

	A PARTICLE SWARM OPTIMIZATION-LIKE ALGORITHM FOR CONSTRAINED MINIMAL SPANNING TREE PROBLEMS
	Recommended Citation

	tmp.1627513563.pdf.7rxSP

