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ABSTRACT 

Previous studies have discussed various constrained mini-
mal spanning tree (MST) problems.  In this paper, we propose 
an efficient algorithm for solving a class of constrained MST 
problems.  The proposed PSO (Particle Swarm Optimization)- 
like strategy for solving constrained MST problems identifies 
optimal MSTs under degree and delay constraints.  The solu-
tion quality and computation time of the proposed PLCMST 
(PSO-Like algorithm for Constrained MST problems) algo-
rithm is compared with two other algorithms: one based on  
ant colony optimization, and the other based on a genetic 
algorithm strategy.  Our experimental results show that the 
PLCMST outperforms the other two approaches, particularly 
when using dense graphs. 

I. INTRODUCTION 

Network optimization problems have been widely studied 
in various research fields, such as telecommunications and 
transportation sciences.  Optimal routing problems, such as 
involved in constructing a minimal-cost broadcast tree cov-
ering all subscription nodes in a network, are typical optimi-
zation problems encountered in communications networks  
[10, 24, 43].  Depending on the type of service, various per-
formance metrics and/or technical constraints must be con-
sidered simultaneously to identify a solution.  For example, 
hop count, bandwidth, reliability, and traffic loading are widely 
used performance metrics in Internet routing problems.  In 
communications systems, technical constraints, such as link 
capacity and transmission rate, are intrinsic because of the 
limitations of system components.  In addition, various quality 

of service (QoS) requirements must be considered to accom-
modate specific applications or services.  Typical QoS con-
siderations associated with Internet multimedia traffic include 
minimal bandwidth, maximal delay, and maximal jitter guar-
antee.  Moreover, QoS requirements define service level agree- 
ments between customers and service providers; accordingly, 
additional constraints should be imposed on network optimi-
zation problems as necessary. 

Among the various types of network optimization prob- 
lems, minimal spanning tree (MST) problems are one of the 
most critical models.  Unconstrained MST problems can be 
solved effectively by using existing methods, such as the al-
gorithms proposed by Prim [29] or Kruskal [19].  However, 
because complex systems may require some constraints to be 
imposed on the spanning trees; consequently, the problem 
typically become intractable.  This paper focuses on a set of 
constrained MST problems, in which node-degree and path- 
delay constraints require consideration.  Typical applications 
of such constrained MST problems include network multicast 
problems [24, 25, 41] and topology control in wireless com-
munications networks [14, 22].  Similar situations can occur  
in logistics and transportation problems, when n objects must 
be transported from one location to m cities under the con-
straints of maximal path delay and the maximal number of 
route-link branches between any two locations. 

MST problems with node-degree or path-delay constraints 
have been widely researched; however, few studies have con-
sidered these two constraints simultaneously.  Tseng et al. 
proposed a genetic algorithm (GA) [39] and ant colony opti-
mization (ACO) strategy [40] for solving constrained MST 
problems.  Chen et al. [8] proposed a GA to solve a degree- 
and-delay-constrained (DDC) Steiner tree problem, which is  
a general MST problem.  As a solution for constrained MST 
problems, this study proposes a novel evolutionary algorithm 
(EA) based on a particle swarm optimization (PSO) strategy.  
We compare the solution quality and computation time of the 
proposed method with those of two other algorithms based on 
GA [39] and ACO [40] strategies.  The results show that our 
proposed method outperforms the other two algorithms in 
solving almost all problems in this study. 

Previous studies have used soft-computing approaches (e.g., 
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PSO, GAs, and ACO) to solve many complex problems, par-
ticularly nondeterministic polynomial-time (NP)-hard prob-
lems.  Kuo et al. [20] showed that PSO algorithms can be used 
to solve global optimization problems efficiently.  Jovanovic 
and Tuba [16] improved an existing ACO algorithm to solve  
a minimal connected dominating set problem.  This type of 
problem is modeled as a solution for identifying a minimal  
set of relay nodes in a mobile ad hoc network.  In [16], a 
pheromone correction strategy was incorporated into an ACO 
algorithm to prevent the algorithm from becoming trapped in 
local optima.  Recently, a survey was conducted on applying 
ACO algorithms in telecommunications networks [5]. 

The remainder of this paper is organized as follows.  Sec-
tion II provides a detailed review of constrained MST prob-
lems, as well as other related problems.  In Section III, the 
problems discussed in this paper are described and mod- 
elled.  Section IV presents the proposed PSO-like algorithm 
(PLCMST) for solving constrained MST problems.  The 
simulation results are summarized in Section V, and a con-
clusion is given in Section VI. 

II. CONSTRAINED MINIMAL  
SPANNING TREE 

This section provides a review of constrained MST prob-
lems and other relevant optimization problems.  Although 
MST problems can be solved efficiently by using existing 
algorithms, the original setting of an MST problem may be too 
primitive for complex application scenarios; consequently, it 
may be necessary to constrain the problem.  Previous studies 
have investigated various types of constrained optimization 
problems based on trees or paths [27, 28, 37].  The following 
subsections briefly review some of those problem models.  
This study focuses on models that are suitable for optimizing 
either spanning trees or Steiner trees.  A Steiner tree connects a 
set of designated nodes, but not necessary all nodes in a net-
work (as is the case with spanning trees).  In a Steiner tree, the 
nodes designated for coverage are called terminal nodes; the 
nodes covered by the Steiner tree that are not terminal nodes are 
called Steiner nodes.  Identifying a minimal-cost Steiner tree is a 
complex task that is considered an NP-hard problem [12]. 

1. Degree-Constrained Minimal-Cost Trees 

Given a weighted undirected graph G = (V, E) and positive 
integer K, a degree-constrained MST is a spanning tree in 
which each node degree is equal to or less than K.  A degree- 
constrained MST problem is NP-hard [12], implying that a 
low probability exists for developing an efficient solution.  To 
solve this type of problem, various heuristic algorithms have 
been proposed, such as those based on ACO [3, 7], GAs [36], 
and PSO [6].  Krishnamoorth et al. [18] compared three heu-
ristic schemes for solving the problem; simulated annealing, 
GA, and a problem space search (PSS)-based method.  They 
showed that the PSS method outperformed the other two 
schemes marginally.  Behle et al. [4] employed branch-and 

cut algorithms to solve a degree-constrained MST problem.  
Narula et al. [26] proposed a branch-and-bound algorithm as 
well as a primal and dual heuristic procedure to solve this type 
of problem. 

To solve degree-constrained minimal-cost Steiner tree prob- 
lems, Ravi et al. [31] proposed an approximation algorithm  
for solving degree-constrained minimal-cost Steiner tree prob- 
lems.  The approximation algorithm for constructing a Steiner 
tree in which the degree of any node v in the output Steiner tree 
is O(d(v) log k), and the maximal cost of the tree is (log k) 
multiplied by the output of a minimal-cost Steiner tree obeying 
the degree bound d(v) for each node v, where k is a constant 
related to a property of the input graph. 

The minimal-degree-constrained MST (MDMST) is a simi-
lar problem model.  An MDMST problem requires a minimal- 
cost spanning tree, such that each node is either a leaf, or it has 
a degree of at least d.  Here, the input parameter d denotes the 
minimal node degree of nonleaf nodes in the tree.  According 
to [2], the MDMST problem is NP-hard for cases where d ≥ 3.  
Martinez et al. [23] proposed a parallel Lagrangian relaxation 
algorithm to solve a degree-constrained MST problem. 

2. Delay-Constrained Minimal-Cost Trees 

Given a weighted undirected graph G = (V, E) and positive 
integer d, a delay-constrained MST is a spanning tree in which 
the path delay from root node s to each node v is equal to or 
less than d (the path delay is defined as the sum of all edge 
delays along the path from s to v).  Salama et al. [33] proved 
that the delay-constrained MST problem is NP-hard by re-
ducing it to a known NP-hard problem (i.e., the exact cover by 
3-sets problem). 

A general model of this type of problem is based on a 
Steiner tree, in which a set of designated nodes (not necessary 
all nodes in the tree) should be connected.  A delay-constrained 
minimal-cost Steiner tree problem is a critical model for mul-
ticast routing applications in communications networks where 
communication delay requires consideration.  Various ap-
proaches have been proposed to solve this type of problem, 
including the extended Prim-Dijkstra tradeoff [1], greedy 
randomized adaptive search procedure [35], branch-and-cut 
algorithm [21], PSO strategy [30], and hybrid scatter search 
method [42]. 

The bandwidth-delay-constrained least-cost Steiner tree 
(BDC-LST) is a similar problem model, in which a least-cost 
Steiner tree connecting all designated nodes in an input graph 
is constructed under the constraints of path delay and path 
bandwidth.  Similar to the definition of path delay, for each 
designated node v in the Steiner tree, the path bandwidth of the 
path from root node s to node v is defined as the minimal 
edge-bandwidth of all edges along the path from s to v.  The 
BDC-LST bandwidth constraint requires the path delay of all 
designated nodes in the BDC-LST tree to be equal to or more 
than the bandwidth limit b.  The BDC-LST problem model is 
typically used in multicast routing applications, particularly in 
communications networks where bandwidth and delay are 
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sensitive to communication quality (e.g., delivering a multi-
cast stream from a source node to a set of subscriber nodes 
over interconnected networks).  Ghaboosi and Haghighat [13] 
proposed a Tabu search scheme for solving delay-constrained 
MST problem. 

3. Other Constrained Minimal-Cost Trees 

In addition to degree and delay, various other constraints 
have been imposed on minimal-cost tree constructions, some 
of which are detailed as follows. 

 
A. Bounded-diameter minimal spanning tree: 

Given a weighted undirected graph G = V, E) and positive 
value D, a bounded-diameter MST (BD-MST) is a spanning 
tree with a diameter equal to or less than D.  Here, the diameter 
dia(G) of G denotes the longest path between any two nodes  
in G.  The BD-MST problem is NP-hard for cases where 4 ≤  
D ≤ (n−1) [12].  To solve a BD-MST problem, Gruber et al. 
[15] proposed a neighborhood search scheme to improve the 
local optima in variable neighborhood search (VNS), EAs,  
and ACO algorithms.  Compared with the VNS and ACO 
approaches, an EA with an arc exchange neighborhood search 
procedure for local optimization yielded remarkably superior 
simulation results.  To solve a BD-MST problem, Torkestani 
[38] proposed a decentralized learning automata-based algo-
rithm that rewards trees with the smallest known weight 
(otherwise, the trees are penalized). 

 
B. Leaf-constrained minimal spanning tree: 

Given a weighted undirected graph G = (V, E) and positive 
value L, a leaf-constrained MST (LC-MST) is a spanning tree 
with a minimum of L leaves.  Deo and Micikevicius [11] 
showed that this type of problem is NP-hard.  To solve the 
LC-MST problem, Julstrom [17] proposed two GA-based 
algorithms that were based on two chromosome coding 
schemes (blob and subset).  The results of that study showed 
that the subset coding scheme-based algorithm consistently 
outperformed greedy heuristics-based algorithms.  Singh [34] 
proposed an artificial bee colony algorithm that solved the 
LC-MST problem efficiently. 

 
C. Capacitated minimal spanning tree: 

Given a weighted undirected graph G = (V, E) and positive 
value K, each node vi (except the root node s = v0) is associ 
ated with a demand di.  A capacitated MST (Cap-MST) is a 
spanning tree where the total node demand of each subtree 
originating from root node s is equal to or less than K.  The 
Cap-MST problem can be reduced to the partition problem, 
which is NP-hard [12]; accordingly, the Cap-MST problem is 
also NP-hard.  Reimann and Laumanns [32] proposed a hybrid 
ACO-based algorithm for solving Cap-MST problems. 

III. PROBLEM MODELS 

1. General Description 

In [39], constrained MST problems with node-degree and 
path-delay constraints were defined as DDC-MST problems.  
A DDC-MST problem is formulated to identify an MST in  
a weighted undirected graph G = (V, E, C, D) under both 
node-degree and path-delay constraints, where V is a set of  
n = |V | nodes {v1, v2, …, vn}; edge set E = {(i, j) | an edge exists 
between (vi, vj) in G}; set C = {ci,j|(i, j) ∈ E, ci,j ≥ 0} defines  
the associated (nonnegative) edge costs over the edge set E; 
and set D = {di,j|(i, j) ∈ E, di,j ≥ 0} defines the associated 
(nonnegative) edge delays over the edge set E.  The DDC- 
MST problem is clarified as follows. 

 
• Input: A weighted undirected graph G = (V, E, C, D), and 

two nonnegative values ϕ (node-degree constraint) and λ 
(path-delay constraint). 

• Objective function: Identify a minimal-cost spanning tree 
T = (V, ET) ⊆ G under the following constraints.  For span-
ning tree T, the cost Cost(T) is defined as the summation of 
all edge costs for edges included in T; in other words, 
Cost(T) = ,( , )

.T i ji j E
C

∈∑   Without loss of generality, we as- 

sume that T is associated with the root node vs = v1 (unless 
otherwise stated). 

• Constraints: 
(i) Path delay: The path Pt = (Vt, Et) ⊆ T comprises a se-

quence of nodes Vt from root node vs to leaf node vt  
and the edges Et between two adjacent nodes in the 
path.  For Pt, the path-delay constraint delay(Pt), or 
simply delay(t), is defined as ,( , )

.
t

i ji j E
d

∈∑   Further-

more, for T, the maximal path delay is defined as  
delay(T) = max{delay(Pt)| t is a node in T}.  The path- 
delay constraint requires the path delay of each node  
in T to be equal to or less than λ; that is, delay(T) ≤ λ. 

(ii) Node degree: Each node in T has a maximum of ϕ child 
nodes. 

2. Linear Programming Model 

The aforementioned DDC-MST problem can be modeled 
as a binary integer linear programming problem, as follows 
[39]. 

Objective function: 

 
( , )

min ij iji j E
c x

∈∑  (1) 

Subject to: 

 
( )

,
j i

ij iv A v
x v Vϕ

∈
≤ ∀ ∈∑   (2) 

 
( )

1, { }
i j

ij j sv B v
x v V v

∈
= ∀ ∈ −∑  (3) 

 ( ) (1 ) ( )ij ijdelay j M x delay i d+ − ≥ +  (4) 

 0 ( ) , idelay i v Vλ≤ ≤ ∀ ∈  (5) 
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 {0,1}ijx ∈  (6) 

where xi,j is a binary variable indicating whether the edge  
(i, j) is included in T (only where xi,j = 1 is it included); set  
A(vi) = {vjvj ∈ child_node(vi)} is a set of all child nodes in vi; 
and set B(vj) = {vivi ∈ parent_node(vj)} is a set of all parent 
nodes of vj in the G.  The objective function shown in Eq. (1)  
is minimizes the total cost of T under constraints expressed  
in Eqs. (2)-(6).  Specifically, the degree constraint in Eq. (2) 
specifies that all nodes in the spanning tree have no more  
than ϕ child nodes; Eq. (3) states that all nodes except the  
root node vs have exactly one parent node; Eq. (4) states that 
the path delay from the root node vs to node vj is equal to or 
more than that from vs to node vi when edge (i, j) is included  
in the spanning tree (here, M is a sufficient large number; i.e., 
the sum of all edge delays in G); and Eq. (5) limits the path 
delay from vs to vi to a value equal to or less than the path- 
delay constraint λ. 

3. Computational Complexity 

For a DDC-MST problem, both node degree and path delay 
must be considered when constructing the MST.  Although 
existing algorithms can solve unconstrained MST problems 
efficiently, an unconstrained MST problem could be difficult 
to solve when additional constraints are imposed.  Previous 
studies have shown that MST problems with either node- 
degree or path-delay constraints are NP-hard [26, 33].  Con-
sequently, the DDC-MST problem is equally difficult. 

By definition, for an NP-hard problem such as the DDC- 
MST problem, identifying an efficient polynomial-time algo-
rithm to solve the problem is difficult.  Accordingly, the 
DDC-MST problem must be solved using heuristic (or meta- 
heuristic) algorithms. 

IV. PROPOSED METHOD 

The PLCMST (PSO-Like algorithm for Constrained MST 
problems) proposed in this study is an efficient algorithm for 
solving DDC-MST problems. 

1. PLCMST Algorithm 

Fig. 1 presents the framework of the proposed PLCMST 
algorithm.  The key design components are the fast MST con-
struction method (Line 6), fitness-evaluation function (Line 7), 
and evolutionary strategy (Line 18).  In each iteration (Lines 
4-18), the current fitness value F_TiBest is first set to zero.  
Subsequently, the algorithm attempts to construct the MST Tk  
(Line 6) based on the current configuration of each particle k.  
Next, the fitness score of Tk is evaluated (Line 7), and TiBest  
is updated with the optimal tree from the current iteration, and 
TgBest is updated with a known optimal tree if one exists (Lines 
8-15).  Finally, the heuristic function η(i, j) is updated after 
each iteration (Line 18).  The heuristic function η(i, j) plays a 
critical role; it is responsible for generating the evolutionary  

Procedure PLCMST  
//Input: (G, λ, ϕ);
//Output: MST Tgbest;

01:  Initialization();
02:  m = 0; // starting from run 0;
03: While (m <MaxRun)
04:      F_TiBest = 0;             // reset current run value
05:     For k = 1 to K        //K is number of particles
06:         Tk = Rprim_E();  //Construct an MST using Prim method
07:         F_k = Fitness(Tk);  //Evaluate the fitness of Tk

08:         If(F_k > F_TiBest)    //best solution of current run
09:            Tibest = Tk;
10
11:         End-if 
12:         If(F_Tibest > F_Tgbest) //best solution up to now
13:            Tgbest = Tibest;
14:            F_Tgbest = F_Tibest;
15:         End-if
16:     End-for
17:     m++; //Increase the run 
18:     update η(i,j) For each edges (i,j) //Update the system parameters
19:  End-While;
20:Return Tgbest; //Return the global best solution
End.

:            F_Tibest = F_k;

 
Fig. 1.  Framework of the PLCMST algorithm. 

 
 

Procedure Rprim_E
//Input: (G, λ, η);

//Output: Spanning tree T;
01:  Let p initially be a zero vector,V′ = {vs}, and
02:  Vc = {vj | (s, j) ∈ E, dsj < λ};
03:  Let p(j) = s for all vj ∈ Vc;
04:  While Vc ≠ empty_set
05:      Select edge (a, b) from Ec according to the PRP rule, Ω = Ec

06:          where Ec = {(i, j) | vi ∈ V′, vj ∈ Vc, (i, j) ∈ E, delay(j) < λ};
07:      Concatenates (a,b) to the constructed tree T;
08:      Move vb from Vc to V′;
09:      For each vk ∉ V′, vk adjacent to vb, and delay(b) + dbk < λ
10:        If  vk ∉ Vc

11:             Add vk to Vc; Let p(k) = b;
12:        Else 
13:             Select edge (x, k) from {(b, k), (p(k), k) } according to 
14:                 the PRP rule With  Ω ={(b, k), (p(k), k) }; Let p(k) = x;
15:        End-if
16:      End-for
17:  End-while
18:  Return T;
End.

 
Fig. 2.  Spanning tree construction algorithm. 

 
 

parameter matrix for constructing the spanning tree in each 
iteration for each particle. 

The following subsections detail the spanning tree con-
struction function “RPrim_E()” (Line 6) and the update rule 
for the heuristic function η(i, j). 
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2. Spanning Tree Construction 

This study adopted spanning tree construction scheme 
presented in [39], where the evolutionary rules involved in the 
heuristic function η(i, j) are different.  Fig. 2 shows the span-
ning tree construction procedure expressed in pseudocode.  
First, vector P is used to track the parent node of node vj in  
p[ j] (Line 1).  The set V′ is used to track the nodes currently 
included in the constructed spanning tree.  The set Vc com-
prises a set of candidate nodes for inclusion in the spanning 
tree in the subsequent iteration.  A node is considered to be a 
candidate node if the following conditions are upheld: 1) it is 
not yet included in the spanning tree; 2) it has an edge con-
nected to a node that is included in the spanning tree (i.e.,  
a node in set V′); and 3) the path delay of the node is less  
than the constraint value λ.  In addition, a set of candidate 
edges is maintained as Ec = {(i, j) | vi ∈ V′, vj ∈ Vc, (i, j) ∈ E, 
delay( j) < λ}. 

The spanning tree construction algorithm starts by initial-
izing the root node vs (Lines 1-3), and then by incrementally 
constructing the MST T (Lines 5-16).  The code in the for  
loop (Lines 9-16) maintains the candidate set Vc and vector  
P (i.e., the parent node information).  The MST construction 
algorithm, which is similar to the one proposed by Prim [29], 
can be considered as a randomized version of Prim’s algo- 
rithm.  The main difference between the two algorithms is  
the edge-selection strategy; Prim’s algorithm always selects 
the minimal-cost (or weight) edge from the set of candidate 
edges (without considering the path delay), whereas the pro-
posed algorithm uses a pseudorandom proportional (PRP) rule 
to select an edge for inclusion in the spanning tree (Lines 5-8).  
The PRP rule assigns a high selection probability to the edges 
with comparatively lower edge cost, whereas those with rela-
tively higher edge costs are allocated a lower selection prob-
ability (but not a zero probability). 

3. Edge Selection 

This study adopted the edge-selection rule proposed in [39].  
The edge-selection rule in the spanning tree construction is 
based on the aforementioned PRP rule.  The PRP rule proceeds 
as follows: 

 
Step 1: set the selection probability prob(i, j) of each candi- 
date edge (i, j) in the candidate edge set Ω, as shown in Eq. (7). 

 ( , )

( , )
, if ( , )

( , )prob( , )

0 , otherwise

i j

i j
i j

i ji j

β

β
η

η
∈Ω


∈Ω

= 



∑  (7) 

Step 2: generate a random number q = rand(0, 1); if q > q0; 
subsequently, a predefined threshold uses a roulette-wheel 
selection scheme (also known as the a fitness proportionate 
selection scheme in GAs) to select an edge (a, b) from the 
candidate edge set Ω according to the selection probability  
(Eq. (7)).  Otherwise, q ≤ q0, in which case the algorithm se-

lects the edge (a, b) with the highest selection probability,  
which is determined based on (a, b) = arg max(i,j)∈Ω{prob(i, j)}. 

Both q0 and β are constant numbers that should be speci- 
fied a priori as system parameters.  The heuristic function  
η(i, j) was adopted from the heuristic function proposed in 
[39], although a different approach is used to set the parameter 
values (detailed in the following subsections).  The two ver-
sions of the heuristic function η(i, j) adopted from [39] are 
expressed in Eqs. (8a) and (8b). 

 
ij

1
, if 1

( , )
1

, otherwise

i

ij

g
V

i j

ϕ
α

η

α

 + >
= 




 (8a) 

 
ij

1
, if 1

( , ) 1
, otherwise

( )

i

ij
ij

g
V

i j

delay i d

ϕ
α

η

α
λ

 + >
= 
 +



 (8b) 

where gi represents the out-degree of node vi, and ϕ and λ 
denote the node-degree and path-length constraint values, re- 
spectively.  In Eqs. (8a) and (8b), the value of αij changes dy- 
namically during each iteration of spanning tree construction 
procedure (Line 18, Fig. 1).  The update rules for parameter αij 
are discussed in following subsections.  Any edge (i, j) with  
a high node degree at node vi (gi + 1 > ϕ) is penalized, and  
the corresponding value in the heuristic function η(i, j) is de-
creased, thereby decreasing the probability of that edge being 
included in the spanning tree (Eq. (7)).  Similarly, as shown in 
Eq. (8b), an edge is penalized if it violates the path-delay 

constraint (
( ) ijdelay i d

λ
+

 > 1; i.e., delay(j) > λ).  The differ-

ence between Eqs. (8a) and (8b) is whether the delay con-
straints are considered (the following subsections show that  
αij is related only to the edge cost).  Ideally, Eq. (8a) assigns a 
higher selection probability to the edges with comparatively 
lower edge costs, whereas Eq. (8b) weights the score relative 
to the value of the path-delay constraint.  Consequently, the 
rule in Eq. (8a) is more aggressive in order to increase the 
probability of including edges with low edge-cost values at the 
risks of violating the path constraints.  By contrast, the condi-
tion in Eq. (8b) is comparatively more conservative by re-
ducing the probability of including edges with high path-delay 
values.  As recommended in [39], we balanced the two effects 
by alternating between the two rules in each iteration. 

4. Fitness Evaluation 

In the proposed algorithm (Fig. 1), the fitness of the span-
ning tree construction is evaluated during each iteration (Line 
7, Fig. 1).  Assume that the spanning tree T = (V′, E′) is con-



346 Journal of Marine Science and Technology, Vol. 22, No. 3 (2014) 

 

structed according to the spanning tree construction algorithm 
(Fig. 2) based on the input graph G = (V, E).  As recommended 
in [39], we applied the fitness function F(T) shown in Eq. (9). 
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where γ  is a positive constant with value of less than 1 (in this 
study, γ = 0.5), gi is the out-degree of node vi, and ϕ denotes  
the upper bound of the out-degree of a node to be allowed.  By 
definition, an MST should cover all nodes (i.e., |V| = |V′|).  
However, the spanning tree construction algorithm might 
construct an incomplete tree (i.e., |V′| < |V|) because of its 
random edge-selection behavior.  The term V Vγ − ′  (γ is a 
constant with a value of less than 1) in Eq. (9) is a penalty  
term that is applied when a constructed tree T is an incomplete 
MST.  Furthermore, the step function Φ(⋅) provides an addi-
tional penalty term for any node violating the node-degree 
constraints. 

5. Evolutionary Strategy 

The rules for setting the heuristic function η(i, j) are one  
of the key design features of the proposed algorithm.  Eq. (11) 
shows the setting of the key parameter αij involved in the 
heuristic function η(i, j) (Eqs. (8a) and (8b)).  Initially, the 
value of αij for edge (i, j) is set at cij (i.e., the edge cost).  
Subsequently, after each iteration, αij is recalculated and  
the value of η(i, j) is updated (Line 18, Fig. 1) to include the 
edges (i, j) in the spanning tree with the lowest cost in the 
current iteration (i.e., (i, j) ∈ EiBest) or those among all previous 
iterations (i.e., (i, j) ∈ EgBest).  Consequently, for each edge  
(i, j), we set the value αij = cij/4 for any edge included in  
the edges of minimal-cost spanning tree in both current itera-
tion (i.e., EiBest) and in those among all previous iterations  
(i.e., EgBest).  If the edge (i, j) is included in either EiBest or in 
EgBest (but not in both), then the weighting is doubled (i.e.,  
αij = cij /2); conversely, if the edge (i, j) is included in neither 
EiBest nor EgBest, the weighting is doubled (i.e., αij = cij). 
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V. RESULTS 

The performance of the proposed PLCMST algorithm was 
assessed by measuring the solution quality and computation 

time.  We compared its performance with that of two other 
algorithms—the NGA [39] and ADDCMST [40].  The NGA is 
a GA-based algorithm, whereas the ADDCMST is an ACO- 
based algorithm.  All three algorithms tested in this study are 
soft-computing approaches, which trade solution quality with 
computation time.  The results were compared using LINGO 
(version 11.0.0.29) [7], a widely used software application  
for solving linear and nonlinear optimization problems.  The 
solutions generated by LINGO are guaranteed to be optimal, 
which provided a baseline for comparing the solutions from 
the NGA, ADDCMST, and PLCMS. 

1. Simulation Setup 

The NGA, ADDCMST, and PLCMST were implemented 
using Microsoft Visual C++ 2008.  All tests were performed 
on a personal computer with an Intel processor (Core2 Duo 2.2 
GHz) and 3 GB RAM (DDR2, 333MHz). 

No public benchmark data exist to test the performance of 
the DDC-MST problems; therefore, we adopted the criteria for 
generating the test data from [39], which is the source of one 
of the algorithms examined in this study.  Because it would be 
impossible to generate graphs identical to those used in [39], 
we generated test graphs with identical or similar characteris-
tics.  In addition, the constraint rules were adopted from [39].  
Each test graph is associated with two out-degree upper 
bounds (ϕ = 3 or 5) and two path-delay upper bounds (λ = 2Ψ 
or 4Ψ), where Ψ is the maximal shortest path delay from root 
node vs in the test graph, which can be expressed as Ψ = 
max{shortest_path_delay(Pt)| t is a node in T}.  The value of 
Ψ for a given test graph G = (V, E) can be obtained using a 
conventional shortest-path algorithm, such as the one pro-
posed by Dijkstra [9], in which the edge-cost value is replaced 
with the edge-delay value.  Combining the two constraints 
yields four possible combinations of path delay and out-degree 
upper bounds for each test graph. 

Similar to the procedures presented in [39], the test graphs 
G = (V, E, C, D) were generated using a random graph  
generator, which was also used in setting the node degree, 
constructing the edges, and assigning edge-cost and edge- 
delay values.  Each group of test graphs is denoted as Nx-y, 
where x is node size and y is edge size.  To produce a data set 
that was similar to the one used in [39], we compared the 
graph characteristics (e.g., maximal, minimal, and mean node 
degree, MST cost, maximal degree of the MST, and maximal 
shortest path delay) and excluded any graph that was dis-
similar. 

2. Simulation Results 

(A) Performance comparison with LINGO: 
Table 1 shows the results of five test graphs G = (V, E, C, D) 

of identical node size (50) and edge size (100) but of varying 
edge-connection topology (denoted as N50-100).  The com-
putation time was limited to 4 hours (14400 s).  Given the 
nature of soft-computing approaches, a random procedure 
could be embedded in the algorithms.  Consequently, a single  
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Fig. 3. Average spanning tree cost for graphs N50-100 (normalized with 
Lingo results). 

 
 

instance of an input problem I = (G(V, E, C, D), ϕ, λ) could 
yield varying results.  Therefore, each instance of I was tested 
30 times for each algorithm, and the mean of the results was 
calculated. 

The results in Fig. 3 emphasize the difference in the re- 
sults.  Because the LINGO solution is an optimal one, we 
normalized the NGA, ADDCMST, and PLCMST results with 
those obtained using LINGO.  In the figure, the y-axis repre-
sents the ratio of values (normalized with the LINGO results) 
for the corresponding input instance of I = (G(V, E, C, D),  
ϕ, λ), and the x-axis represents various input configurations, 
denoted as (a, b, c), where a is the index of input graph G, b is 
the value of the node-degree constraint ϕ, and c is the value  
of the path-delay constraint λ expressed in units of Ψ (i.e.,  
the maximal shortest path delay from the root node of the G).  
In Fig. 3, the first entry (1, 3, 2) along the x-axis corresponds  
to the first entry in Table 1 (G = 1, ϕ = 3, λ = 2Ψ).  As shown in 
the first entry in Table 1, the mean costs of LINGO, NGA, 
ADDCMST, and PLCMST are 1510, 1551, 1557, and 1531, 
respectively.  Accordingly, the normalized ratios for the NGA 
(1551/1510), ADDCMST (1557/1510), and PLCMST (1531/ 
1510) are 1.0271, 1.0311, and 1.0139, respectively, which cor- 
respond to the first entry in Fig. 3. 

The N50-100 results (Table 1) show that the proposed 
PLCMST algorithm outperformed the NGA and ADDCMST 
in all 20 instances.  Moreover, the PLCMST yielded lower costs 
and shorter computation times.  Fig. 3 shows that the N50-100 
results obtained using the proposed method are similar to the 
optimal solutions obtained using LINGO.  The results obtained 
using the proposed method are within 2% larger than the op-
timal solutions; moreover, most of those cases are less 1% 
larger.  When using LINGO, the computation time ranged 
from 1 to 928 seconds, whereas that of the proposed PLCMST 
algorithm is less than 4 seconds for all test cases. 

Subsequently, we increased the edge size to 250.  Table 2 
shows the results of five test graphs with 50 nodes and 250 
edges (denoted as N50-250).  Because the graphs were large, 
LINGO was unable to obtain a solution within the allocated  

Table 1. Results for test graphs N50-100 (node size = 50, 
edge size = 100). 

Graph  
(N50-100) 

LINGO NGA ADDCMST PLCMST 

G ϕ λ cost time cost time cost time cost time 

3 2Ψ 1510 447 1551 2.963 1557 2.206 1531 1.901 

3 4Ψ 1467 114 1503 3.212 1481 2.606 1469 2.055 

5 2Ψ 1510 928 1554 2.960 1529 2.218 1519 1.872 
1 

5 4Ψ 1467 25 1490 3.206 1484 2.606 1467 2.055 

3 2Ψ 2407 8 2554 3.499 2525 2.642 2449 2.459 

3 4Ψ 2393 4 2518 3.632 2467 2.887 2399 2.488 

5 2Ψ 2407 3 2526 3.505 2475 2.642 2407 2.446 
2 

5 4Ψ 2393 3 2489 3.639 2447 2.907 2393 2.493 

3 2Ψ 2416 3 2511 3.569 2476 2.741 2433 2.429 

3 4Ψ 2404 12 2490 3.608 2452 2.953 2423 2.489 

5 2Ψ 2397 1 2450 3.586 2423 2.793 2401 2.496 
3 

5 4Ψ 2389 5 2444 3.628 2409 2.980 2389 2.503 

3 2Ψ 2613 252 2775 2.746 2726 2.315 2668 1.161 

3 4Ψ 2567 57 2665 3.454 2596 2.794 2577 2.382 

5 2Ψ 2613 134 2724 2.762 2698 2.344 2648 1.198 
4 

5 4Ψ 2567 30 2640 3.469 2598 2.810 2571 2.427 

3 2Ψ 2245 8 2354 3.509 2310 2.751 2290 2.432 

3 4Ψ 2226 3 2307 3.633 2237 3.020 2230 2.560 

5 2Ψ 2220 6 2297 3.517 2263 2.740 2242 2.425 
5 

5 4Ψ 2201 3 2271 3.600 2217 2.945 2201 2.469 

 
 

time limit (i.e., 4 h) for all of the N50-250 tests (five test 
graphs, each with four unique constraint setting on (ϕ, λ)), 
indicating that conventional optimization packages, such as 
LINGO, are unfeasible for solving complex DDC-MST 
problems, which justifies the need to use soft-computing ap-
proaches to obtain a solution, particularly for a large problems. 

For those complex test cases, because the optimal values 
could not be obtained using LINGO, we used a low bound 
instead.  The low bound values shown in Tables 2-4 denote the 
cost of the unconstrained MSTs.  The value can be obtained 
easily by using conventional MST algorithms, such as Prim’s 
algorithm [29].  Moreover, the true optimal value is equal to or 
more than the lower bound.  Because the DDC-MST problem 
is NP-hard, identifying the true optimal value of the problem is 
complex, particularly for large problems.  Therefore, we used 
the low bound value as a reference to assess the solution 
quality.  Fig. 4, we plot the N50-250 MST cost results.  Similar 
to Fig. 3, the value of each data point in the plot is normalized 
by the lower-bound value.  The results show that the proposed 
PLCMST algorithm outperforms the NGA and ADDCMST, 
and the solution quality of the proposed method is comparable 
(i.e., the values are near the lower bound). 

 
(B) Performance under general cases: 

In addition to the cases for node size of 50, we evaluated 
numerous randomly generated graphs of varying size (N = 50, 
100, 200, and 300) edge density.  The 19 types of test graph are 
shown in Tables 3 and 4.  The edge size was carefully selected  
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Table 2.  Results for test graphs N50-250 (node size = 50, edge size = 250). 
Graph (N50-250) LINGO NGA ADDCMST PLCMST Low bound 

G ϕ λ cost time cost time cost Time cost time cost 

3 2Ψ --- 14400 2308 4.533 2279 3.355 1916 3.333 1520 
3 4Ψ --- 14400 1936 5.577 1901 4.354 1585 3.923 1520 
5 2Ψ --- 14400 2198 4.572 2162 3.426 1783 3.467 1520 

1 

5 4Ψ --- 14400 1890 5.564 1892 4.380 1560 3.969 1520 
3 2Ψ --- 14400 2185 5.022 2176 3.829 1747 3.631 1494 
3 4Ψ --- 14400 1838 5.716 1822 4.719 1538 4.030 1494 
5 2Ψ --- 14400 2103 5.085 2107 3.860 1718 3.713 1494 

2 

5 4Ψ --- 14400 1831 5.740 1801 4.696 1527 3.989 1494 
3 2Ψ --- 14400 2384 4.674 2335 3.508 1959 3.260 1623 
3 4Ψ --- 14400 2051 5.619 1988 4.454 1695 3.904 1623 
5 2Ψ --- 14400 2216 4.712 2206 3.629 1845 3.243 1623 

3 

5 4Ψ --- 14400 1959 5.563 1995 4.500 1690 3.888 1623 
3 2Ψ --- 14400 2347 4.720 2289 3.436 1983 3.611 1558 
3 4Ψ --- 14400 1865 5.668 1896 4.415 1589 4.119 1558 
5 2Ψ --- 14400 2253 4.761 2251 3.428 1939 3.688 1558 

4 

5 4Ψ --- 14400 1848 5.683 1870 4.447 1580 4.146 1558 
3 2Ψ --- 14400 2377 4.996 2264 3.863 1924 3.670 1655 
3 4Ψ --- 14400 1970 5.755 1920 4.691 1695 4.143 1655 
5 2Ψ --- 14400 2231 5.089 2180 3.962 1844 3.748 1655 

5 

5 4Ψ --- 14400 1922 5.796 1887 4.725 1660 4.138 1655 

 
Table 3.  Results for all test graphs with low edge density (≤ 0.3). 

  NGA ADDCMST PLCMST Low bound 
Edge 

Desity 
graph Avg cost 

Avg exec  
time (s) 

Suc 
rate 

Avg cost 
Avg exec  
time (s) 

Suc 
rate 

Avg cost 
Avg exec  
time (s) 

Suc 
rate 

Avg cost 

N50-100 2306 3.39 100 2268 2.70 100 2235 2.24 100 2201 
N100-200 3798 9.17 100 3689 8.00 100 3550 7.14 100 3470 
N200-400 5281 31.88 96 5105 25.08 100 4862 18.99 96 4636 

≤ 0.1 

N300-600 13744 45.27 96 13229 39.80 100 12515 39.18 96 11857 
N50-250 2086 5.24 100 2061 4.08 100 1739 3.78 100 1570 

N100-1000 4301 17.31 90 4458 14.21 97 2894 14.08 98 1996 
N200-2000 8046 63.40 81 11684 48.38 82 5186 44.44 96 3636 

0.1-0.3 

N300-3000 10026 78.52 74 10738 65.06 59 6312 66.34 79 4527 
average 6198 31.77 92 6654 25.91 92 4911.6 24.52 95.6 4237 

 
Table 4.  Results for all test graphs with high edge density(≧ 0.4). 

  NGA ADDCMST PLCMST Low bound 
Edge 

Desity 
graph Avg cost 

Avg exec  
time(s) 

Suc 
rate 

Avg cost 
Avg exec  
time(s) 

Suc 
rate 

Avg cost 
Avg exec  
time(s) 

Suc 
rate 

Avg cost 

N50-500 2545 11.06 81 2360 4.98 78 1865 4.53 88 1282 
N100-2000 4857 26.38 42 6962 17.93 34 2736 18.40 77 1768 
N200-8000 0 0 0 0 0 0 4136 68.52 43 2579 

0.4-0.6 

N300-17000 12750 121.84 71 14253 90.31 50 4826 115.60 99 2482 
N50-750 2193 12.04 99 2168 5.54 92 1376 5.53 100 1052 

N100-3000 5370 27.78 16 7881 18.22 11 2896 19.53 79 1518 
N200-12000 10709 83.84 35 20763 62.01 17 3878 78.01 80 2187 

0.6-0.8 

N300-27000 14721 145.24 47 16893 107.24 49 3691 151.23 100 2442 
N50-1000 2600 12.31 96 2554 5.93 77 1537 5.84 100 1017 
N100-4000 5605 28.57 78 6249 19.49 72 2925 21.09 93 1417 ≧0.8 

N200-16000 15479 93.79 58 38248 71.74 62 2803 93.56 100 1978 
Average 7682.9 56.28 62.3 11833 40.34 53.4 2969.9 52.89 87.2 1793.4 
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Fig. 4. Average spanning tree cost for graphs N50-250 (normalized with 
low bound results). 

 
 

to consider both sparse and dense edge graphs, in which we 
used edge density to indicate the degree of sparseness (or 
denseness) of the graph.  Edge density is defined as the 
number of edges in a graph divided by the maximal number of 
possible edges in a graph with an identical number of nodes, 
which is equal to n(n−1)/2 for a graph with n nodes.  For  
each graph group Nx-y, we randomly selected five graphs  
G(V, E, C, D) of identical node size and edge size but of 
varying edge-connection topology, thereby obtaining graphs 
with unique edge-cost and delay values.  Consequently, we 
obtained 19 × 5 = 95 test graphs.  Similar to the N50-100 
(Table 1) and N50-250 (Table 2) cases, each test graph G(V,  
E, C, D) is associated with four configurations of constraints 
(i.e., ϕ = 3 or 5; λ = 2Ψ or 4Ψ); consequently, we obtained  
95 × 4 = 380 test input instances. 

Tables 3 and 4 show the results of the 380 test input in-
stances.  For clarity, we summarized the results based on the 
graph group Nx-y, each comprising five graphs of identical 
node size and edge size, as well as 5 × 4 = 20 test input in-
stances.  To smooth the stochastic effects resulting from the 
nature of soft-computing algorithms, each input instance I = 
(G(V, E, C, D), ϕ, λ) was tested 30 times for the NGA, 
ADDCMST, and PLCMST.  Accordingly, each graph group 
was subject to 600 test iterations.  For each iteration, we noted 
the executed algorithm, cost of the identified optimal spanning 
tree, and execution time required to obtained a solution.  All 
test input instances (particularly the large problems) where no 
feasible results were obtained were noted as failed tests.  As-
sume that algorithm A performed 600 test iterations on graph 
group Nx-y.  Subsequently, the number of failed tests f can be 
used to calculate the success rate of algorithm A for that graph 
group as (600−f )/600.  The success rate represents the prob-
ability of an algorithm generating a feasible solution identical 
termination criteria.  Subsequently, for the successful tests, the 
mean cost value and execution time was calculated for each 
graph group and algorithm.  To facilitate a simple comparison, 
we provide the lower-bound value of each case. 

The data in Tables 3 and 4 were reorganized to facilitate a 
comparison from various perspectives.  To obtain a perform-

ance ratio for comparing the efficiency of the PLCMST with 
that of the NGA and ADDCMST, the data generated from the 
NGA and ADDCMST were normalized with the correspond-
ing data obtained from the PLCMST.  Among the results 
shown in Table 5, no values are listed for the N200-8000 case 
because both the NGA and ADDCMST failed to generate 
results (as shown in Table 4). 

Based on the 380 test input instances, Table 5 shows that 
the ratio of the solution quality (the columns entitled “Avg. 
Cost”) is higher than 1 for both the NGA and ADDCMST, 
implying that the proposed PLCMST algorithm generated 
superior spanning trees (i.e., lower computational cost).  In 
addition, the proposed method exhibited superior performance 
for the high edge-density cases.  Regarding the success rate, 
Table 5 shows that the ratio is more than 1 in most cases, 
implying that the PLCMST is more likely to generate a feasi-
ble solution than the NGA and ADDCMST are.  However, two 
exceptions occurred in the N200-400 and N300-600 cases, 
where the success rate of the ADDCMST is marginally higher 
than that of the PLCMST. 

Regarding the execution time, the PLCMST generated su-
perior solutions (i.e., lower computational cost) in less time 
than the NGA and ADDCMST required in most cases.  For the 
cases where the PLCMST was slower than the other two al-
gorithms (i.e., execution time ratio < 1), the quality of the 
solution was superior (cost ratio > 2).  The only exception 
occurred in the N300-3000 case, where the ADDCMST yielded 
a cost ratio of 1.7.  This discussion shows that the proposed 
PLCMST algorithm outperforms the NGA and ADDCMST; in 
most cases, it generated better solutions in less time. 

VI. CONCLUSION 

This paper presents a novel PSO-based metaheuristic al-
gorithm for solving DDC-MST problems, in which we are 
asked to identify an MST under both degree and delay con-
straints.  The performance of the proposed PLCMST algo-
rithm was compared with that of LINGO, a widely used 
software package for linear and nonlinear optimization prob-
lems.  Our experimental results show that the proposed algo-
rithm generated high-quality solutions for the N50-100 test 
graphs (Table 1).  For all 20 test graphs, the performance ratio 
(of minimal cost obtained by the proposed algorithm to that 
obtained by optimal solutions) is within 1.02, and the com-
putation time was considerably less than that required by 
LINGO.  Subsequently, we extended the problem size by 
increasing the size of the graphs (N50-250).  We observed that 
LIGNO was unable to solve these test graphs within 4 hours.  
Under identical test conditions, the PLCMST obtained suit-
able solutions close to the low bound within 5 seconds (Table 
2).  The results indicate that conventional linear optimization 
packages, such as LINGO, may be unfeasible for solving 
relatively large DDC-MST problems. 

In addition, we compared the performance of the PLCMST 
with that of the NGA, which is based on GA metaheuristics,  
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Table 5.  Performance comparison between NGA/ADDCMST/PLCMST. 

  NGA /PLCMST ADDCMST/PLCMST 

Edge desity graph Avg cost Avg exec time (s) Succ rate Avg cost Avg exec Time (s) Succ rate 

N50-100 1.03 1.51 1 1.01 1.2 1 

N100-200 1.07 1.28 1 1.04 1.12 1 

N200-400 1.09 1.68 1 1.05 1.32 1.04 
≤ 0.1 

N300-600 1.1 1.16 1 1.06 1.02 1.04 

N50-250 1.2 1.39 1 1.19 1.08 1 

N100-1000 1.49 1.23 0.92 1.54 1.01 0.99 

N200-2000 1.55 1.43 0.84 2.25 1.09 0.85 
0.1-0.3 

N300-3000 1.59 1.18 0.94 1.7 0.98 0.75 

Average (For ≤ 0.3) 1.27 1.36 0.96 1.36 1.10 0.96 

N50-500 1.36 2.44 0.92 1.27 1.1 0.89 

N100-2000 1.78 1.43 0.6 2.54 0.97 0.51 

N200-8000 x x 0 x x 0 
0.4-0.6 

N300-17000 2.64 1.05 0.72 2.95 0.78 0.51 

N50-750 1.59 2.18 0.99 1.58 1 0.92 

N100-3000 1.85 1.42 0.7 2.72 0.93 0.49 

N200-12000 2.76 1.07 0.44 5.35 0.79 0.21 
0.4-0.8 

N300-27000 3.99 0.96 0.47 4.58 0.71 0.49 

N50-1000 1.69 2.11 0.96 1.66 1.02 0.85 

N100-4000 1.92 1.35 0.84 2.14 0.92 0.77 ≧0.8 

N200-16000 5.52 1 0.58 13.65 0.77 0.6 

Average (For ≧0.4) 2.51 1.5 0.66 3.847 0.9 0.57 
 
 

and the ADDCMST, which is an ACO algorithm.  Previous 
studies have shown that the NGA and ADDCMST can solve 
DDC-MST problems efficiently.  To demonstrate the effi-
ciency and effectiveness of the PLCMST, we compared it with 
those two algorithms.  Intensive simulations were performed 
to evaluate the performance of the NGA, ADDCMST, and 
PLCMST.  We generated 380 instances I = (G(V, E, C, D), ϕ,  
λ) of graphs with varying node size (N = 50, 100, 200, and 
300), edge size (ranging from 100 to 2700), and edge density 
(from 0.013 to 0.816).  As shown in Table 5, the PLCMST 
generated superior spanning trees (i.e., lower computational 
cost).  Moreover, the performance of the PLCMST was even 
higher for the high edge-density cases.  Regarding the suc- 
cess rate, the PLCMST exhibited a higher probability of gen-
erating a feasible solution in comparison with the NGA and 
ADDCMST, with two exceptions among the 380 tests.  Re-
garding the execution time, the proposed algorithm generated 
superior results (i.e., lower computational cost) with less time.  
For the cases where the PLCMST took longer, we observed 
that it generated solutions that were markedly superior (cost 
ratio > 2) with only one exception.  Compared with the NGA 
and ADDCMST, the proposed PLCMST algorithm generally 
obtained superior solutions at less computational cost in al-
most all of the cases examined in this study. 
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