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ABSTRACT 

Technologies of fuzzy knowledge-based discovery can be 
exploited to extract appropriate behaviors for identified mod-
eling problems.  A proposed novel data acquisition learning 
algorithm (DALA) is dynamically applied to examine the 
initial recognitions of the training data set, where it can 
automatically establish the number of cluster centers and their 
associated positions.  The characteristics of the training data 
set are dynamically mined by the DALA, and the primary 
architecture of the fuzzy system is initially represented with 
the collected information.  Because the prototypes of the col-
lected training data are determined with DALA, the initial 
populations of the particle swarm optimization (PSO) are 
generated and distributed around them.  The hybrid PSO and 
recursive least-squares (RLS) learning schemes referred to as 
RPSO are applied to design an appropriate fuzzy modeling 
system.  The approximation of the proposed fuzzy modeling 
system shows that it automatically determines suitable fuzzy 
membership functions and resolves the local optimal problem 
of identifying appropriate parameters for fuzzy systems to 
swiftly approach desired functions.  A comparison between 
computer simulations and other modeling methods shows the 
excellent performance of the dynamic acquisition learning 
fuzzy modeling system in explaining nonlinear and inverted 
pendulum function approximations.  Simulation results show 
that the generated fuzzy system with the DALA scheme can be 
adapted to balance the pole position for various initial condi-
tions.  The proposed control rules swiftly recover the sudden 
and large imported noise. 

 

I. INTRODUCTION 

Knowledge-based information systems have important 
roles and applications in several fields: modeling prediction/ 
control systems, decision support systems, diagnostic systems, 
and pattern recognition.  Fuzzy or neural-fuzzy systems are 
particularly suitable platforms for modeling the behavior of 
training patterns, especially for recognized nonlinear problems 
[2, 5, 14, 15].  Resolutions for nonlinear, controlled, and pre-
dicted problems are offered to model the framework of the 
gathered data set.  Thereafter, they can predict their future 
action based on previous and current observations.  Therefore, 
how to capture the appropriate parameters of the fuzzy mod-
eling system with the proper and required number of fuzzy 
rules for approximating the desired target is the objective of 
this study. 

Two main objectives require consideration: The first in-
volves ensuring that obtaining an accurate and quick charac-
terization to achieve the fitting curve of a sample data set is 
suitable; and the second involves building a general and 
flexible data learning mechanism that is adapted to reconstruct 
rule-based expert systems for handling wide-range adaptations 
in various modeling problems [13].  A fuzzy modeling system 
is commonly generated by training example data with both 
structure-identified and parameter-learning stages [3, 4].  In 
the structure-identified step, several efficient mechanisms 
(specifically based on the data acquisition learning concept) 
were used to extract features from the input training patterns.  
They can completely describe the primary character of the 
identified modeling plan.  The objective of the data acquisition 
learning algorithm (DALA) for each domain center is to ap-
proach the maximum similarity between it and the selected 
data groups; thus, the selected domain centers show the pro-
totype of the identified system for reasonably representing the 
primary behavior of the training data set. 

The fuzzy c-means (FCM) [1] clustering algorithm is the 
most common technique for separating the given training data 
set into several groups and determining the selected cluster 
centers for the associated data points because of the adapta-
bility of the fuzzy inference methodology.  However, the 
shortcomings of the FCM clustering algorithm require that the 
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number of cluster centers be manually predetermined.  To 
improve the traditional FCM clustering learning scheme, how 
to self-recognize a suitable number of domain centers (points) 
with the DALA design is the key objective of this study.  In 
this study, the applied novel DALA with flexible computation 
is for continually evaluating the similarity of the training data.  
The DALA concurrently adjusts the proper center positions 
and chooses a suitable number of cluster centers.  The choices 
of the initial situation and type of measure distance are vig-
orously considered for the desired clustering result even if the 
previous drawback is overcome.  Therefore, the other meas-
uring formula is considered to apply a proper method for 
evaluating the similarity between a training data set and its 
associated domain centers.  The Gaussian type membership 
function is considered despite using the traditional Euclidean 
norm metric to calculate the similarity of the selected cluster 
centers and the given training data.  The novel DALA with 
special fuzzy type measuring schemes are proposed to dy-
namically detect the proper number of clustering centers and 
its associated position value to describe the initial module of 
the training data set and identify the entire proper architecture 
of the discussed problems. 

The fuzzy modeling system was designed to approximate 
several nonlinear functions and solve complex problems  
because of its universal approximation ability [3].  A novel 
DALA with a fuzzy-based measure is proposed in our studies 
to extract the domain knowledge from the training data.  
Thereafter, we assign the selected information from the do-
main knowledge as initial centers of the membership function 
to generate the initial architecture of the fuzzy modeling sys-
tem.  In this study, the number of clustering domains is equal 
to the number of fuzzy rules; each location of primary domain 
knowledge sequentially represents the initial structure of the 
proposed fuzzy system.  Furthermore, the selected domain 
centers are randomly distributed around the proposed mem-
bership function and the consequent portion of the fuzzy rules 
[6-8, 21]. 

The proposed novel DALA is an important step in initial-
izing the architecture of the identified fuzzy modeling system 
from the training data, but the correctness of the selected 
clustering results depend on the tuning stratagem of the pro-
posed learning algorithm.  The choices of the learning scheme 
can generally be considered as the following two types: the 
traditional type is referred to as the local learning methodol- 
ogy, and the second type can be referred to as the global 
learning methodology.  For the traditional approach, the gen-
eral gradient descent learning type algorithms with typical 
local learning stratagems are determined to approach the ac-
tual functional curve from the training data set [19].  However, 
the training module has a high probability of meeting local 
optimal problems when they attempt to identify complex and 
high dimensional data sets.  In another considered situation, 
the modeling results are always unstable because of the vari-
ance in initial conditions [16].  Numerous global type optimal 
learning algorithms are used to overcome these discussed local 

optimal problems.  For example, genetic algorithms (GA) [20] 
and particle swarm optimization (PSO) are proposed to regu-
late the parameters of fuzzy systems for approximating a  
desired output [6-8, 21].  In this study, the swarm-like popu-
lation-based evolutional learning algorithm referred to as PSO 
simulates similar motions to flocking birds or schooling fish to 
create a self-generation fuzzy modeling system.  A main 
movement of the PSO evolutional learning algorithm involves 
observing how natural creatures behave as swarms and simu-
lating swarm patterns using computer computations.  Each 
solution in the PSO evolutional learning algorithm is a bird 
referred to as a particle.  Every particle has a velocity that 
directs the movement of each particle and a fitness value that 
is estimated by the fitness function to be optimized.  The PSO 
can efficiently yield the optimum solution in the search space 
based on the guides of the defined fitness function.  The PSO 
was recently used to determine the wide range of optimization 
solutions through representations of social interactions.  Fol-
lowing the completion of the initial organization for the fuzzy 
modeling system with DALA, a powerful recursive least- 
squares (RLS)-based PSO (RPSO) technology is proposed to 
obtain the optimization solutions in the evolutional learning 
stage.  The hybrid-based RPSO algorithm is successively 
applied to achieve more accurate fuzzy modeling systems 
when the initial framework of the fuzzy modeling system is 
generated. 

The remainder of this study is separated as follows: Section 
II details the architecture of the fuzzy modeling systems and 
the proposed novel DALA.  An artificial data set is used to 
dynamically test the efficiency of the DALA; Section III 
shows that the RPSO learning algorithm tunes the optimal 
parameters to approach the desired outputs of fuzzy modeling 
systems.  The PSO recursive-based learning scheme is used to 
model two nonlinear functions; Section IV presents detailed 
comparisons with other learning methods; and Section V 
provides a conclusion with a summary of the contributions to 
this study. 

II. INITIALIZE FUZZY MODELING 
ARCHITECTURE WITH NOVEL DATA 

ACQUISITION LEARNING ALGORITHM 

The novel DALA automatically determines the required 
number of fuzzy rules for covering the training data and pro-
vides a good configuration for initializing the fuzzy modeling 
system’s architectures.  The novel DALA in the design of the 
initial architecture of fuzzy model systems is described in the 
following paragraph. 

To design the initial architecture of the fuzzy modeling 
system, let iv  = xi, i = 1, 2, …, N be a set of N vectors in an 

s-dimensional space, where the xij is represented as (xi = xi1, 
xi2, …, xis).  Our objective is to acquire characterization from 
the given training data set and group similar points into the 
same region when diverse points are in different parting areas.  
We find that points with high relational grades have the same 
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property; thus, we can gather those points into one group.  
Therefore, determining the required number of fuzzy rules 
initially involves choosing training data as the reference clus- 
tering center’s value and identifying similar points that have 
high relational grades to the referenced estimation value.  
Thereafter, we can dynamically replace the centers of parting 
areas by averaging the vectors with high relational grades in a 
similar manner.  The replaced points gradually incline toward 
the centers of the selected parting area.  The novel DALA can 
be proposed as follows [8]: 

 
Step (1): Define N movable vectors ,iv  i ∈ I ≡ {1, 2, …, N} 

and let iv  = xi; that is, xi is the initial value of iv . 

Step (2): Calculate the relational grades between the ref-
erence vector iv  and the comparative jv  by 
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The definition for the sgn(⋅) function is 
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where ε is a small-valued constant and our experimental value 
is ε = 0.01. 

Step (3): Calculate 'iv  using the following equations: 
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Step (4): If 
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v v ξ , proceed to Step 5; otherwise 

let '=i iv v  and return to Step 2. 

Step (5): We can determine that the number of fuzzy rules is 
equal to the number of convergent vectors based on the final 
results iv .  The original data with the same convergent vector 

are grouped into the same areas, and the convergent vector is 
the center of the selected groups. 
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Fig. l.  A two dimensional data set. 

 
 
To describe the learning procedure and dynamic behavior 

of the training points clearly, Figs. 1 and 2 show the behavior 
for initializing the basic architecture of the fuzzy modeling 
systems with the proposed DALA.  Fig. 1 shows 579 training 
data points with 2D spaces, where it contains mixed spherical 
and elliptical shapes, and the number of clustering centers is 
three [17].  Figs. 2(a) and 2(b) show the initial condition with 
contour mapping for the training data set that contains 579 
data points and their associated membership functions, re-
spectively.  Figs. 2(c) and 2(d) show the next situation after 
one data learning cycle is finished.  Figs. 2(e)-2(f) and Figs. 
2(g)-2(h) show the situations after three and five learning 
cycles are finished, respectively.  After the seventh learning 
cycle, the detected groups and their associated membership 
functions are shown in Figs. 2(i), 2(j), and 3, respectively.  The 
selected centers are assigned as the center position of the 
membership function, and the number of partition groups 
equals the number of fuzzy rules.  The proposed DALA can 
automatically select the proper fuzzy number from the training 
data set and extract the required information that makes a 
suitable configuration in the initial fuzzy modeling system. 

For the design of the fuzzy modeling system with n- 
inputs-single-output, the fuzzy IF-THEN rules are used in the 
complete input variables as n-dimensional patterns (i.e., x = (x1, 
x2, …, xn)).  We choose hyper-spheroid membership functions 
(HEj) to define a fuzzy set in the input space and combine real 
value yj to form the output space: 

 Rj : IF x is HEj THEN y is yj, j = 1, 2, .., m (6) 

where m is the total number of fuzzy rules, yj denotes a real 
value of the corresponding jth rule, and HEj is defined as 
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where aj,i and bj are the center and length for the jth hyper- 
spheroid function, respectively.  The aj,i and bj are both re-
quired parameters for training in the premised portion of  
the fuzzy rules.  When the input vector is applied to the fuzzy 
rule table and the weighted average defuzzifier is used in this  
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Fig. 2. Dynamic Response of the proposed novel data acquisition learning algorithm scheme.  (a) iteration 0, (b) iteration 0, (c) iteration 1, (d) iteration 

1, (e) iteration 3, (f) iteration 3, (g) iteration 5, (h) iteration 5, (i) iteration 7, (j) iteration 7. 
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Fig. 3. Distributions of final clustering structure by the novel data ac-

quisition learning algorithm. 
 
 
fuzzy inference method, the output (yo) of the fuzzy system 
can be calculated using the following equation: 
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The parameter set R (aj,1, aj,2, … aj,n, bj, wj, 1 ≤ j ≤ m) affects 
the final performance of the fuzzy modeling system to a large 
extent, because the contour of the jth membership function 
HEj( x ) is defined by the parameters {aj,1, aj,2, … aj,n, bj} and 
the consequent partitions are determined by the value wj.  In 
this study, the final parameter set (R) is extracted by the PSO 
and powerful RLS to determine the proposed fuzzy modeling 
system. 

III. PARAMETERS TUNING STAGE WITH 
HYBRID PSO AND RLS LEARNING 

ALGORITHM 

The evolution-based PSO with simplified social models 
was initially proposed by Kenney and Eberhart in 1995 [11].  
In the PSO learning cycle, two important values that contain 
efficient learning factors direct the affected action in a self- 
heuristic manner.  The first global best (gbest) value is referred 
to as the best particle’s solution with the highest fitness value.  
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The second value is referred to as the personal best (pbest) and 
is each particle’s best current solution.  The learning formula 
of the proposed PSO was first introduced by [10, 11]. 

( 1) ( ) () ( ( ) ( ))+ = ⋅ + ∗ ∗ −ℜp p p p
d d d dV t V t rand pbest t tτ α   

* () ( ( ) ( ))+ ∗ −ℜp
d drand gbest t tβ  (9) 

 ( 1) ( ) ( 1)ℜ + = ℜ + +p p p
d d dt t V t  (10) 

where d is the number of dimensions (variables), p is the par-
ticle number in the population, V is the velocity vector, τ is  
the inertia factor, and ℜ is the particle’s position vector, which 
additionally denotes possible solutions of the generated fuzzy 
modeling systems.  Parameters α and β are the cognitive and 
social learning rates, respectively.  Moreover, they control the 
relative influence of the memory of the particle and its neigh-
borhood. 

After completing the novel DALA, the collected informa-
tion is used to organize the initial architecture of the fuzzy 
modeling system; that is, the number of fuzzy rules is deter-
mined (centers of the membership functions are sequentially 
assigned by the selected values).  The RPSO learning schemes 
are suggested to adjust the parameters of the fuzzy modeling 
system based on the previous initial configuration.  The learn- 
ing stratagem of this RPSO scheme involves using the PSO 
learning algorithm to regulate the parameters of the fuzzy 
modeling systems.  Thereafter, a valid RLS learning algorithm 
is performed to recursively modify the parameters of the fuzzy 
modeling systems to achieve the desired objectives [6-8, 21].  
The RLS learning algorithm is used because the outputs of  
the fuzzy modeling systems are all approximates to those 
identified by the nonlinear functions (or desired outputs (yd)).  
In this study, the outputs of the fuzzy modeling system can be 
redefined using (8). 
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where qi are the normalized values of the ith membership 
functions corresponding to the input vector x and are defined 
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Therefore, (12) can be represented in the matrix form and is 
described by 

 = ωy Q  (13) 

where 

 T
1 2[ , , , ]mω ω ω=ω …  (14) 

 Q = [q1, q2, …, qm] (15) 

The RLS is determined to modify the subsequent parts (ω) 
of the fuzzy rules to approximate to the desired output (yd).  
This RLS algorithm enables calculating the next new ω(k+1) 
value on the basis of the training data pairs and current known 
parameters ω(k).  Let the initial time step be k = 1.  Thereafter, 
the new ω(k+1) is modified using the following recursive 
learning iterations: 
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In this study, the initial value Q(1) = zero (zero = zero 
vector), and ℑ(1) = ηI, η is a positive large number (η = 100  
in this study), N is the number of training data, and I is an  
m × m identity matrix.  After N iteration calculations using  
(16) and (17), the consequent portions (ω) of the fuzzy rules 
are regulated recursively in this RLS algorithm.  The root 
mean square error (RMSE) between the fuzzy modeling sys-
tems and the desired outputs is determined to evaluate the 
efficiency of the fuzzy modeling systems in the parameters- 
tuning stage.  The RMSE is calculated as follows: 
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In the RPSO parameter learning method, the presented 
fitness function is exp(-RMSE); thus, the RPSO is determined 
to approach the maximal fitness value.  The proposed RPSO 
learning scheme is applied based on the fitness function’s 
direction to select the optimal parameter set from the fuzzy 
modeling systems to minimize the RMSE.  The RPSO learning 
method is described in the following learning steps: 

 
Step (1): Set the number of generations (G) and initialize  

g = 0. 
Step (2): The number of membership functions and their 

associated center values are defined based on the previous 
novel DALA.  Initialize fuzzy modeling systems with a ran-
dom selection procedure.  Each particle begins at its own 
position with respect to velocity, including its direction and 
magnitude. 

Step (3): Apply the proposed PSO learning method to train  
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Table 1. Best parameter values of fuzzy modeling system 
for Example 1. 

 ai,1 ai,2 bi wi 

i = 1 -0.4926 0.5018   0.2344 -2.2133 

i = 2  0.5198 0.5024   0.2397  2.4648 

i = 3  3.0000 0.5411   1.7658 -0.4664 

i = 4  2.9899 0.5588 17.7463  0.1177 
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Fig. 4. Distributions of final clustering structure by the novel data ac-

quisition learning algorithm for Example 1. 

 
 

the initial fuzzy architecture and modify the consequent parts 
of the selected membership function using the RLS algorithm 
to derive the near optimal parameters of the fuzzy modeling 
system. 

Step (4): Calculate every particle’s fitness value and com-
pare individual evaluation values with the gbest and pbest.  
Select the new gbest from the entire swarm and pbest for every 
individual particle. 

Step (5): Update the velocity and position value for every 
particle according to (9) and (10). 

Step (6): g = g+1. 
Step (7): If g = G, proceed to exit, otherwise proceed to  

step 3. 
Step (8): Desired fuzzy modeling system is generated with 

the gbest parameter set. 

IV. ILLUSTRATED SIMULATIONS IN  
THREE EXAMPLES 

Two non-linear approximating function problems and one 
nonlinear inverted pendulum modeling problem are presented 
to demonstrate the efficiency of the proposed evolutional 
learning fuzzy modeling systems.  The initial condition setting 
for the RPSO learning scheme is pop_size = 30, G = 150,  
α =1.2, and β =1.2. 

 
Example 1: Modeling a sin(πx1 ⋅ sin(πx2) function 

In this example, the intelligent fuzzy modeling system is 
considered for automatically approximating the following non-
linear function [12, 19]: 

Table 2. Performance comparisons with different methods 
for Example 1.  The last two rows are from Ref. 
[12] and Ref. [19]. 

Methods No. of fuzzy rules RMSE 

DALA + PSO 4 0.1075 

DALA + RPSO 4 0.0420 

Wong’s System [19] 6 0.0648 

Lee’s System [12] 6 0.0520 
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Fig. 5. sin(πx1) · sin(πx2) function approximation (a) training data (b) 
outputs of fuzzy modeling by DALA + PSO (c) outputs of fuzzy 
modeling by DALA + RPSO (d) fitness value against iteration by 
DALA + PSO (dashed) and DALA + RPSO (solid). 

 

 1 1 2sin( ) sin( ),= ⋅F x xπ π  (19) 

where 225 pieces of training data are uniformly distributed in 
the x1 ∈ [-1, 1] and x2 ∈ [0, 1] range.  In the system data ac-
quired and identified step, the novel DALA is applied to de-
termine the required information for constructing the initial 
architecture of the fuzzy modeling system.  Fig. 4 shows the 
acquired results of the original data point after running the 
novel DALA.  Following the proposed RPSO parameters 
learning procedure, the parameter set of the selected fuzzy 
modeling systems are obtained (Table 1).  Fig. 5 shows the 
computer simulations: Fig. 5(a) presents the desired output of 
the training data, Fig. 5(b) shows the fuzzy modeling system’s 
outputs with the DALA + PSO method, Fig. 5(c) shows the 
result of the fuzzy modeling using the powerful DALA + 
RPSO method, and Fig. 5(d) presents the best-of-generation 
fitness value against the generation number for the DALA + 
RPSO (solid curve) and DALA + PSO (dashed curve) methods.  
Computer simulations show that the fitness value of the 
DALA + RPSO is quickly increased to a high fitness value; 
thus, the DALA + RPSO learning scheme can swiftly ap-
proach the desired outputs.  The RMSE comparison with other 
modeling methods is shown in Table 2.  A comparison of the  
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Table 3. Best parameter values of fuzzy modeling system 
for Example 2. 

 ai,1 ai,2 bi wi 

i = 1 0.9631 1.1203 3.5931 18.0904 

i = 2 1.8965 1.8079 0.7631 -1.1996 

i = 3 3.8680 4.0187 1.4132 7.3583 

i = 4 3.6193 3.0291 1.3463 3.5426 

i = 5 5.1000 4.3567 1.1902 1.5096 

i = 6 3.3063 3.3649 2.1001 -15.9863 
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Fig. 6. Distributions of final clustering structure by the novel data ac-

quisition learning algorithm for Example 2. 
 
 
results indicates that this type of generated fuzzy modeling 
system’s RMSE using the DALA + RPSO learning scheme is 
smaller than that by the DALA + PSO method.  This infor-
mation proves the capability of the proposed DALA + RPSO 
compared to [13, 19]; it can approximate the unknown func-
tion with fewer fuzzy rules and with acceptable accuracy for 
solving same modeling problem.  The constructed DALA + 
RPSO learning scheme with small membership functions is 
sufficient for efficiently and automatically generating the 
desired fuzzy modeling systems. 

 
Example 2: Modeling a two-input nonlinear function 

Nonlinear 3D functions are presented as the identifying 
plant to show the ability of the proposed DALA + RPSO 
method.  The mathematical equation defined by [18] is as 
follows: 

 2 1.5 2
2 1 2 1 2(1 ) , [1, 5],F x x x x− −= + + ∈  (20) 

where 400 collected training data are uniformly distributed  
in a 3D space, as shown in Fig. 7(a).  In the structure- 
identification stage, the novel DALA is considered for ob-
taining the characters of the training data and determining the 
suitable segmentation for generating the initial structure of the 
fuzzy modeling system.  Fig. 6 shows the centers and associ-
ated six classified portions of the novel DALA.  In the pa-
rameter-training procedure, the defined fitness function is 
presented to exp(-RMSE).  The objective of the proposed 
learning scheme is to maximize the fitness function value (i.e., 
minimize the RMSE value).  The best selected parameters in  

Table 4. Performance comparisons with different methods 
for Example 2. 

Methods No. of fuzzy rules RMSE 

DALA + PSO 6 0.6082 

DALA + RPSO 6 0.1449 

Feng’s system [6] 6 0.1481 
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Fig. 7. Function approximation for Example 2, (a) training data (b) 

outputs of fuzzy modeling by DALA + PSO (c) outputs of fuzzy 
modeling by DALA + RPSO (d) fitness value against iteration by 
DALA + PSO (dashed) and DALA + RPSO (solid). 

 
 
the fuzzy modeling system based on the DALA + RPSO al-
gorithm are shown in Table 3.  The simulated modeling results 
for the two-input nonlinear function by the DALA + PSO and 
DALA + RPSO learning schemes are shown in Figs. 7(b) and 
7(c), respectively.  The best-of-generation fitness curve against 
the generation numbers for the DALA + PSO and DALA + 
RPSO learning methods is shown in Fig. 7(d).  The phe-
nomenon shows that the fitness value of the DALA + RPSO is 
rapidly approaching a high value.  A performance comparison 
for the two proposed learning schemes and other learning 
methods are shown in Table 4.  We find that the constructed 
DALA + PSO type fuzzy modeling system with the same 
fuzzy rules can efficiently approximate the desired surfaces. 

 
Example 3: Nonlinear inverted pendulum function extraction 

Controlling an inverted pendulum platform was considered 
a complex, unstable, and nonlinear problem.  The balancing 
objective in designing a fuzzy modeling system is that it can 
lead the mounted free-falling pole into a vertical position in a 
short period by pushing a suitable force on the cart.  Let x1(t) = 
θ (angle of the pole with respect to the vertical axis) and x2(t) = 
�θ (angular velocity of the pole).  Thereafter, the mathematical 

equation of the inverted pendulum system is described as 
follows [9]: 
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Table 5. Best parameter values of fuzzy modeling system 
for Example 3. 

 ai,1 ai,2 bi wi 

i = 1 -0.4929 31.3278 0.1000 0.01 

i = 2 14.5546 -8.0436 3.4618 44.4943 

i = 3 32.8267 18.5050 59.9992 25.3495 

i = 4 -37.6718 -13.8277 26.8835 -79.7197 

i = 5 49.9816 -35.1988 32.5389 -7.0338 

i = 6 50.0000 -16.0461 10.4488 23.1600 

i = 7 21.4449 15.4407 12.8921 53.7205 
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Fig. 8. Distributions of final clustering structure by the novel data ac-

quisition learning algorithm for Example 3. 
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where g (acceleration due to gravity ) is 9.8 m/s, M (mass of 
the car) is 1.0 kg, m (mass of the pole) is 0.1 kg, 1 (is half the 
length of pole) is 0.5 m, and F is Newton’s applied force.  To 
identify the fuzzy modeling system for acquiring the inverted 
pendulum modeling system’s behavior, 400 input-output 
training data pairs (x1, x2, F) were collected from [9], which 
were successful in balancing the pole to a stable state from 
several initial conditions.  The novel DALA is initially applied 
in the structure-identification learning stage; it can catch 
characters of the discussed inverted pendulum training data 
and regenerate the fuzzy modeling system.  It shows the dis-
tributed result with its associated seven classified parts in  
Fig. 8; thus, the decision for configuring the initial architecture 
of the fuzzy modeling system is completed.  The selected 
fitness function with the defined exp(-RMSE) formula is ma-
nipulated in the proposed DALA + RPSO algorithm.  The 
objective of the proposed learning algorithm in this parameter 
training procedure is to minimize the RMSE value.  The best 
parameters are shown in Table 5.  The 3D plot for the training 
data set (x1, x2, F) is shown in Fig. 9(a).  The extraction of  
the results for this inverted pendulum function modeling  

Table 6. Performance comparisons with different methods 
for Example 3. 

Model No. of fuzzy rules RMSE 

DALA+ PSO 7 1.2717 

DALA + RPSO 7 0.3216 
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Fig. 9. Inverted pendulum modeling approximation (a) training data (b) 

outputs of fuzzy modeling by DALA + PSO (c) outputs of fuzzy 
modeling by DALA + RPSO (d) fitness value against iteration by 
DALA + PSO (dashed) and DALA + RPSO (solid). 

 
 
problem by using the DALA + PSO and DALA + RPSO learn- 
ing scheme are shown in Figs. 9(b) and 9(c), respectively.   
Fig. 9(d) shows the best-of-generation fitness value against  
the generation number for DALA + PSO and DALA + RPSO 
learning methods, respectively.  The fitness value for the pro- 
posed DALA + RPSO method rapidly increased, which shows 
the efficiency for solving the nonlinear inverted pendulum 
modeling problem. 

Let e denote the initial angle of the pole and ed the initial 
angular velocity of the pole in the following simulations.  Four 
various initial control conditions (e = 35 and ed = 20; e = 45 
and ed = 20; e = 55 and ed = 20; e = 60 and ed = 20) are ap- 
plied to demonstrate the strong regulation.  Figs. 10(a), 10(b), 
and 10(c) show the various responses of the pole angle, angle 
velocity, and input force from time = 0 s to time = 2.5 s, re-
spectively.  Fig. 10(d) shows the distributed plots with the 
related angle and velocity response.  The simulated results 
show the excellent adaptability of the DALA + RPSO algo-
rithm even when the simulated conditions are outside the 
training bounds [-30, 30]. 

In the other robust experiment, the extracted fuzzy rules are 
applied to overcome the sudden and large imported noise at a  
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Fig. 10. Multiple runs with the proposed DALA + RPSO method in example 3, (a) pole angles, (b) pole velocities, (c) Forces, and (d) pole angles against 

pole velocities. 
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Fig. 11. Simulation results of the proposed method with DALA + RPSO (solid and dotted lines), DALA + PSO (dashed and dashdot lines) type selection 

in example 3, (a) pole angles, (b) pole velocities, (c) forces, and (d) pole angles against pole velocities. 
 
 

specific system time.  For sudden simulations, we add the 
positive values for the pole angle (25) and angle velocity (5) at 
system time 0.8 s.  For the other large noise conditions, we 
provide negative values to the pole angle (-15) and angle ve-
locity (5) at system time 1.0 s. Figs. 11(a), 11(b), and 11(c) 
show the various responses of the pole angle, angle velocity, 
and input force from time = 0 s to time = 2.5 s, respectively.  

Fig. 11(d) shows the distributed plots with the related angle 
and velocity response.  The graphics of the solid and dashed 
lines are separately described for the different responses of the 
DALA + RPSO and DALA + PSO learning algorithm at the 
positive sudden condition.  For the other negative initial con-
ditions, the DALA + RPSO and DALA + PSO responses are 
illustrated by the dotted and dash-dotted lines, respectively.   
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Table 7. Performance comparisons of the proposed DALA + 
RPSO and DALA + PSO methods in example 3. 

Performances 
Cases 

RT Max-OV RMSE 

DALA + RPSO 0.2800 2.0799 5.0878 Positive 
sudden noise DALA + PSO 0.4500 2.1322 7.7845 

DALA + RPSO 0.2500 1.8918 4.3907 Negative 
sudden noise DALA + PSO 0.4000 0.8358 5.5962 

 
 
The performance comparison of the proposed DALA + RPSO 
and DALA + PSO methods are shown in Table 7.  The RT 
represents the rise time, Max-OV denotes the maximal over-
shoot, and RMSE is the root means square errors. 

 
These results indicate that the select fuzzy control system 

using the proposed method can achieve an excellent response 
in recovering the big change.  The performances show that the 
DALA + RPSO-based learning algorithm can have a shorter 
rise time, smaller maximal overshot, and smaller root means 
square errors than the DALA + PSO-based learning method. 

V. CONCLUSION 

In this study, the constructed dynamic acquisition learning 
schemes are suggested to automatically, quickly, and effi-
ciently design an optimal fuzzy modeling system.  Several 
known disadvantages of the traditional FCM clustering algo-
rithm or its variants, such as requiring clusters numbers in 
advance and local optimal problems, can be overcome using 
the novel DALA.  The DALA is applied to address the draw-
backs of the FCM clustering algorithm.  Our experiments 
show accurate data acquiring results and its efficient ability in 
recovering the behavior of this training data set.  Useful data 
acquiring information is applied to form the initial fuzzy 
modeling framework.  Moreover, computer simulations have 
established that the generating information of the discussed 
modeling data set is correct and suitable for assigning the 
initial architecture of the fuzzy modeling system. 

After the initial configuration of the fuzzy modeling system, 
the RPSO learning algorithm (containing the PSO global 
learning ability and RLS fast recurrent approximating method) 
is applied to achieve the desired outputs.  Three nonlinear 
approximation modeling problems are considered to show the 
efficiency of the proposed RPSO learning algorithm.  The 
simulations show that only a small number of fuzzy rules are 
necessary for solving nonlinear modeling problems.  The 
generated fuzzy control rules can yield the character of the 
nonlinear car-pole balance system for the quick recovery of 
the unexpected imbalance states. 
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