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ABSTRACT 

This paper presents a low-cost global pose localization 
method using least-squares method and extended Kalman 
filter (EKF) for an anthropomorphous dual-arm mobile robot 
(ADAMR) driven by omnidirectional Mecanum wheels in 
indoor environments.  This method is developed by fusing 
measurements from the KINECT sensor and four encoders 
mounted on the omnidirectional Mecanum wheels.  The 
KINECT sensor is used to recognize landmarks in the working 
environments of the robot, and then obtain the azimuth angles 
and distances between these landmarks and the robot.  Based 
on these measured information, a static global pose initializa-
tion algorithm using least-squares method is applied to esti-
mate both unknown start-up position and orientation of the 
robot.  Once the initial pose has been roughly determined, an 
EKF approach is proposed to fuse the odometric measure-
ments from the four encoders and the azimuth angles and 
distances from the KINECT sensor to corresponding land-
marks.  Simulations are conducted to show performance of the 
proposed method.  Experimental results are used to illustrate 
that the proposed method provides accurate static estimation 
of both unknown initial poses of the robot. 

I. INTRODUCTION 

The self-localization capability of an autonomous mobile 
robot is very important for path tracking control and planned 
navigation in any given environment [1, 8, 12].  The global 
localization capability of an autonomous mobile robot is 

critical for its navigation missions at its prespecified envi-
ronments [4-6, 11].  Global pose initialization and pose tracking 
are the two main problems in the global localization technol-
ogy.  The global pose initialization problem determines the 
robot’s initial pose with respect to some reference frame, using 
no priori or a priori map or landmark information, while the 
pose tracking problem is concerned with, given initial robot 
pose from the user, how to continuously maintain the robot’s 
pose using internal and external sensors.  Pose initialization is 
considered crucial for planned or autonomous navigation of 
the robot because it is relevant not only at start-up, but also 
during operation for recovery in case of pose localization 
failures [9]. 

The dead-reckoning method, which is based on the encoded 
or odometric information from the wheels, has extensively 
been utilized to calculate the current location of an autono-
mous mobile robot.  However, this method suffers from the 
accumulation errors that are caused by wheel slippage or by 
mechanical tolerances and surface roughness.  Hence, the 
robot may fail to keep track of its true location over long dis-
tances.  The odometric errors can be reduced by fusing land-
mark observations using external sensors.  Many sensors, such 
as sonar sensors [2], laser range finders [2], and cameras [7], 
have been used to detect landmarks and obtained the required 
measurements.  Ultrasonic sensors have widely been applied 
to develop the useful and economical external sensing sys- 
tems for localization of autonomous mobile robots [13].  
However, sonar sensors and laser range finders introduce 
several risks: the outbound energy may affect the very char-
acteristics that the sensor is attempting to measure.  Further-
more, an active sensor may suffer from interference between 
its signal and signals beyond its control.  Vision is our most 
powerful sense, providing us with an enormous amount of 
information about the environment and enables rich, intelli-
gent interaction in dynamic environments.  It is therefore not 
surprising that a great deal of effort has been devoted to pro-
viding machines with sensors that mimic the capabilities of the 
human vision system [10].  Recently, KINECT has been 
widely utilized for robot localization due to its low cost [3].   
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Fig. 1. Anthropomorphous Two-Armed Robots with Omnidirectional 

Mecanum Wheels.  (a) Its simplified geometry with respect to the 
moving frame; (b) a laboratory-built example of ADAMR with 
Omnidirectional Mecanum Wheels. 

 
 

Extended Kalman filter has been proposed for the pose esti-
mation of autonomous mobile robots to obtain better accuracy 
of pose initialization and pose racking using KINECT [14].  
However, the proposed method in [14] has not been experi-
mentally verified yet. 

The objectives of this paper are to apply the least-square 
method and the EKF approach to a low-cost localization 
method for an ADAMR by fusing dead-reckoning and KINECT 
measurements, and to demonstrate how the proposed method 
achieves the better performance of the robot localization.  This 
technique is expected to be useful in improving accuracy and 
robustness of the ADAMR’s position and orientation estimates, 
and to provide a low-cost global localization method for 
wheeled mobile robots. 

The remainder of this paper is outlined as follows.  Sec-
tion II briefly introduces the kinematics model in the world 
frame and dead-reckoning model of the system.  Section III 
presents the landmark detection algorithm of the KINECT 
sensor.  This section will utilize Hough transform method to 
extract the landmarks from the image obtained by KINECT, 
thus achieving landmark detection.  Section IV shows a least- 
squares pose initialization algorithm to achieve global lo-
calization.  Section V briefly introduces the extended Kal-
man filtering method.  Section VI introduces the localization 
using natural landmarks.  Computer simulations and experi- 
mental results are respectively reported in Sections VII and 
VIII to show the merit of the proposed methods for global 
pose initialization and pose tracking of the ADAMR.  Sec-
tion IX concludes this paper. 

II. SYSTEM AND DEAD-RECKONING MODEL 

1. Kinematics Model in the World Frame 

Fig. 1 shows the simplified geometry of the ADAMR with 
Omnidirectional Mecanum wheels.  The inverse kinematics  
of its base in the moving frame is described by: 

 w o ⋅ oV = J V  (1) 

where 4 1
1w 2w 3w 4w[ ]TV V V V R ×= ∈wV  is the velocity vec- 

tor in Cartesian coordinates; 3 1[ ]T
x y zv v Rω ×= ∈0V  is the 

wheel velocity vector corresponding to the angular velocity.  
Moreover, 
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is a transformation matrix; the two parameters l and L are 
depicted in Fig. 1.  To formulate inverse kinematic models of 
the ADAMR in a global frame, we define that the vector 

w w  
T

x y θ   denotes the position and orientation of the vehicle 

in the world frame, and let the moving and world frames have 
the rotational matrix expressed by 
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Thus, the inverse kinematics model of the MWOR is then 
expressed by 
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Since the transformation J(θ ) exists its pseudo inverse 
matrix, J†(θ ) such that J(θ )+J(θ ) = I3, the forward kine- 
matics of the ADAMR in the world frame becomes 
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where 1 / 4θ θ π= +  
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2. Dead-Reckoning 

The purpose of the dead-reckoning of the ADAMR is, 
given a correct initial pose, to continuously keep trace of its 
correct poses with respect to the world frame.  Dead-reckoning 
is the real-time calculation of the robot’s position from wheel 
encoder measurements.  The dead-reckoning problem of the 
ADAMR can be easily solved by using the numerical ap-
proach, the velocity information from the encoders mounted 
on the driving wheels and the forward kinematical model in 
(5).  To find the continuous poses of the robot from (5), many 
existing numerical approaches, such as the Euler’s formula, 
the Runge-Kutta method and so on, can be employed ac-
cording to the required numerical accuracy and the step size.   
One of the simplest dead-reckoning methods is based on the 
second-order Runge-Kutta formula which approximates the 
pose differentiation of the robot by the following equation. 

w w

( ) ( 1)
( ( ( 1)) ( 1) ( ( )) ( ))

( ) ( 1)
2

( ) ( 1)

w w

w w

x k x k
k k k k

Ty k y k

k k

θ θ
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+ +
−   

− − +   = +−   
   −   

J V J V  

  (6) 

where T is the sampling period and sufficiently small; x(k),  
y(k) and θ(k) denote respectively the present measurements of 
x(t), y(t) and θ(t) at the kth sampling instant. 

Notice that Eq. (6) gives the recursive formula to approxi- 
mately obtain the robot’s position and orientation at the next 
sampling instant.  Worthy of mention is that the accuracy of 
the dead-reckoning method increases as the sampling period 
decreases.  However, if the sampling period T is fixed and not 
significantly small, then the accuracy of the dead-reckoning 
method can be improved by using the fourth-order or higher- 
order Runge-Kutta numerical Method.  Thus, this kind of 
dead-reckoning method can often be used as a useful pose 
tracking approach for the robot over short traveling distances.  
This is because, no matter what kind of the numerical method 
is used, the proposed dead-reckoning method always suffers 
from unavoidable accumulation errors caused by slippage, 
surface roughness, surface friction and even the mechanical 
structure of the ADAMR. 

III. KINECT SENSOR 

KINECT is a motion sensing input device used by Micro-
soft for video gaming console.  This sensor offers a natural 
interface using physical gestures and spoken commands for 
users to control the game without touching the controller.  This 
sensor is equipped with an RGB camera and a pair of depth 
sensors.  The KINECT sensor has the spatial (x/y) resolution 
of 3 mm at 2 m distance from sensor, while its effective op-
eration range is about 0.8 m-3.5 m with the resolution of 1  
cm at 2 m distance from the sensor.  In this paper, a KINECT 
sensor is mounted on the robot as shown in Fig. 1(b), and the 
height of the KINECT is arbitrarily set. 
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Fig. 2.  Flow diagram of KINECT sensing. 

 

1. KINECT Calibration 

This subsection describes a calibration method converting 
the KINECT disparity into the corresponding distances.  Ac-
quiring the depth image of KINECT is based on the light 
coding technology [14].  The coded light is captured by the IR 
camera in order to produce the KINECT disparity matrix.  The 
relationship between the disparity and actual depth value for a 
normal stereo system is given by, 

 
b f

z
d

×=  (7) 

where z is the depth, b is the horizontal baseline between the 
cameras, f is the focal length of the cameras in pixels, and d is 
the disparity.  However, a zero KINECT disparity does not 
correspond to infinite distance, so the KINECT disparity is 
related to a normalized disparity by the subsequent relation 

 
1

( )
8 off kinectd d d= −  (8) 

where doff is an offset value for a given KINECT device, and 
dkinect is the KINECT disparity which provides 2048 levels of 
sensitivity in VGA resolution with 11-bit depth.  The factor 1/8 
is used due to the fact that dkinect is in 1/8 pixel units.  However 
this calibration results may slightly differ from one sensor to 
another.  Therefore each sensor should be calibrated separately 
before using it for depth estimation. 

2. Landmark Detection Using KINECT 

Fig. 2 depicts the detailed flowchart of the proposed  
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Table 1.  The degree value of H with respect to its color. 

Degrees 0 60 120 240 300 

Color Red Yellow Green Blue Magenta 

 
 

landmark detection algorithm for the circular artificial land-
marks.  In the algorithm, the HSI color space is adopted be-
cause its representation of colors is similar to how the human 
eyes sense.  The HSI model represents every color with three 
components: hue (H), saturation (S), and intensity (I).  The  
H component utilizes an angle between [0,360] degrees, as 
shown in Table 1.  The S and I components utilize a real 
number between [0,1] separately.  The value I = 0 means black 
and 1 means white.  The value of S represents how much the 
color is mixed with white color. 

In the measurement update step, the ADAMR detects land- 
marks around it to estimate its pose.  In this section, circles 
with different colors are used as landmarks.  The RGB images 
and their depth values are obtained by the KINECT sensor.  
Hough transform filters are utilized to detect landmarks in the 
RGB image.  The landmarks are distinguished from each other 
by HSI color model.  The azimuth angle αi with respect to the 
heading direction of ADAMR and the distance λi to the ith 
landmark ( , , )

i i ii L L LL x y z  at time k can be calculated using the 

KINECT measurements.  The value of the measurement 
function can be determined by 

 

1

2 2 2

ˆ
ˆtan

ˆ
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i

i

i i i

L k
ki

L ki
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x xZ
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−

−

−
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−   −= =   
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 (9) 

IV. POSE INITIALIZATION 

This section presents a hardware configuration and a static 
pose initialization approach for localization of the robot using 
KINECT measurements.  Suppose that m landmarks are in-
stalled at the known positions denoted by 

L1 = (x1, y1, z1)
T, L2 = (x2, y2, z2)

T, …, Lm(xm, ym, zm)T, re-
spectively and the robot pose is denoted by (x, y, z, θ)T.  The 
KINECT data from the landmarks to the robot can be con-
verted into their corresponding distances from the landmarks 
to the robot.  Let r1, r2, …, rm denote the distances from the 
landmark positions (x1, y1, z1)

T, (x2, y2, z2)
T, …, (xm, ym, zm)T to 

the robot, respectively.  Then one obtains the following set of 
equations 
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 (10) 

which give the following matrix equation for the robot posi-
tion (x, y, z). 

 =⋅A X B  (11) 

where 
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In (11), the least-squares method can be used to solve for 
the robot position (x, y, z)T, i.e. 

 [ ]T 1 T= ( ) =
T

x y z−⋅ ⋅ ⋅X A A A B  (12) 

if the matrix A has a full rank.  Note that if the matrix A is not 
of full rank, then the pseudo inverse method will be adopted  
to solve for the robot position in (11).  Once the robot position 
(x, y, z)T has been calculated via (12), the robot heading is then 
found by 

 1

1

1
tan

m
i

i
i i

y y

m x x
θ α−

=

−= −
−∑  (13) 

As a result, the initial static pose (position and orientation) 
of the robot can be uniquely determined using (12) and (13). 

V. POSE TRACKING 

This section is dedicated to elucidating the EKF method 
used for the pose estimation of the ADAMR.  Although re-
searchers have verified that particle filter (PF) get more ac-
curate results than the extended Kalman filter (EKF) does [3], 
but when the method be extended into 3D space, PF will 
consume too much calculation resource so that it will cause 
control delay.  In order to avoid that, we used the EKF instead 
the PF.  The initial pose estimate 0x̂  is taken as the initialized 

pose in the previous section.  The extrapolation steps of the 
filter are executed using the dead-reckoning information.  The 
state updating step will be preceded only when a landmark is 
detected.  Whenever a landmark is not detected, the predicted 
state is taken as the state estimate for the next iteration of the 
filter, i.e. 

1
ˆ ˆ

k k
x x+ −+

= . 

In this paper, the process and measurement noises of the 
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ADAMR system are assumed to be stationary Gaussian white 
noise with zero mean.  As a result, the noise covariance ma-
trices, Qk, and Rk are considered diagonal [7]. 
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The process noise variances of (x, y) coordinates and ori-

entation are represented by 2 ,
kxσ  2 ,

kyσ  and 2

kθσ  respectively, 

while 2

kασ and 2

kλσ are the measurement noise variances. 

Consider the following nonlinear discrete-time system 
model and measurement model of the ADAMR: 

 1 1( , 1)k k kX f X k w− −= − +  (16) 

 ( , )k k kZ h X k v= +  (17) 

where f(⋅) and h(⋅) are nonlinear functions of the state Xk =  
[x(k)  y(k)  z(k)  θ(k)]T, and twice differentiable.  Note that both 
nonlinear functions, f(⋅) and h(⋅), can be found in (6) and (9).  
Thus, the proposed EKF whose prediction and estimation 
equations can be easily stated as follows: 

(i) One-step prediction 
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(ii) Estimation (measurement update)  
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Fig. 3.  The advantage of integral images. 

 

VI. LOCALIZATION AND MAPPING USING 
NATURAL LANDMARKS 

This section is aimed to develop a KINECT-based EKF 
approach using SURF for global localization and mapping of 
the ADAMR navigating in partially known indoor environ-
ments.  Since SURF algorithm has been widely used to extract 
and match features of objects of interests, it can be applied to 
detect features of natural landmarks in the indoor environ-
ments. 

1. Feature Detection of Natural Landmarks 

An essential part of establishing a map of the environment 
with image features is the robust matching.  This section is 
aimed to briefly describe the procedure of image feature de-
tection and matching with SURF algorithm. 

SURF is a novel scale and rotation invariant detector and 
descriptor and is utilized to extract and match features be-
tween two successive images.  The detector is based on the 
Hessian matrix because of its good performance in scale in-
variant.  More precisely, SURF replaces the time-consuming 
computation of determinant of the Hessian matrix with box 
filters and integral images. 

The integral images play a very important role in using box 
type of filters.  It is defined as follows, 

 ( )
0 0

( , ) ( , )
yx

T

i j

I x y I i j
∑

= =

=∑∑  (24) 

denotes the sum of the pixels within a rectangular region of 
the image, and the rectangular region is formed by origin and 
radius.  Therefore, it takes only three additions to compute 
the sum of pixels inside the region of any size, as shown in 
Fig. 3. 

The original Hessian matrix is defined as follows 

 
( , ) ( , )

( , )
( , ) ( , )

xx xy

xy yy

L x L x
H x

L x L x

σ σ
σ σ σ

 
=  
 

 (25) 
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Fig. 4.  Descriptor of the feature based on Haar. 

 
 

where ( , )ijL x σ  express the convolution of image and Gaus-

sian second order partial derivative 
2 ( )g

i j

σ∂
∂ ∂

.  In order to 

reduce the computation, the approximate determinant of the 
Hessian matrix is used and defined as follows 

 2det( ) ( )approx xx yy xyH D D wD= −  (26) 

where Dij is the approximation for the Lij, the second order 
Gaussian partial derivative in x-direction, y-direction and 
xy-direction, and w is weight of the filter responses used to 
balance the expression for the Hessian’s determinant. 

Due to the use of box filters and integral images, the scale 
space is analyzed by up-scaling the filter size rather than it-
eratively reducing the image size as SIFT algorithm.  This 
makes better computational efficiency. 

Subsequently the descriptor vectors of the detected feature 
are calculated.  Each one is calculated by the feature itself and 
surrounding region centered around it.  To build the descriptor, 
the size of feature descriptor region is set to 20 × 20 pixels and 
divided into 4 × 4 sub-regions.  For each square, the wavelet 
responses are computed from 5 × 5 samples.  Consequently the 
descriptor vector of a descriptive region has total 4 × 4 × 4 = 
64 elements, as shown in Fig. 4.  For each field, we collect the 
sums dx, dx ; dy, and dy , computed relatively to the orien-

tation of the grid Fig. 5 shows an experiment of the detected 
interest points. 

In the matching stage, the trace of the Hessian matrix for 
the underlying interest point is included.  Fig. 6 shows an 
experiment of matching result of the fifty detected interest 
points. 

2. EKF-Based Global Localization and Mapping  
Algorithm 

EKF is utilized to address the global localization and 
mapping problem for global localization and mapping prob-
lem of the ADAMR.  This section is devoted to describing  

 
Fig. 5.  Experiment of detected interest points. 

 
 

 
Fig. 6.  Experiment of feature matching in two sequential still images. 

 
 

the EKF algorithm and proposing a procedure of the global 
localization and mapping. 

In doing so, the robot’s dead-reckoning method and the 
least-square pose initialization algorithm are the same to those 
proposed in sec 2.2 and sec. 5.  Once an EKF-based global 
localization and mapping is implemented, we have to estimate 
the pose of the robot Xw and the features in the environment  
L.  The state vector is composed by the pose of the robot and 
the positions of the m matching features from the environment, 
as shown by 

 
1 2

1 2 1 2

1 2
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w
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 

� �  

In the measurement update step, KINECT detects and 
matches features around it with SURF to estimate the pose of 
the mobile base.  Let αi be the azimuth angle with respect to 
the heading direction of ADAMR, φi be the elevation angle 
with respect to the horizontal plane, and λi be the distance 
from the robot to the ith landmark li(xi, yi, zi) at time k.  Note 
that these three measurements can be calculated using the 
KINECT measurements. 
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Thus, the measurement vector function is formulated as 
below;  
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With (25), the proposed EKF-based global localization and 
mapping can be easily stated as follows: 

 
Step 1: 
(i) Utilize the least-squares pose initialization algorithm to 

find the global position and orientation of the ADAMR, 
i.e. (xw0, yw0, zw0, θ 0). 

(ii) Utilize SURF to detect features 
0SURFL  and calculate the 

3D-location Ldepth of the points with respect to all pixels 
within the depth image with the initial pose of the mobile 
base. 

(iii) Obtain the data L0 
composed by the repeated points si-

multaneously appeared in 
0SURFL  and Ldepth. 

 0 1 2 m nL l l l l=   � �  (28) 

Step 2: 
(i) One-step Prediction 

 1 1
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x f x k− +− −

= −  (29) 
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T
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 where f(⋅) represents the dead-reckoning method, i.e. 
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 and [1]
1kF −  means the Jacobian matrix with respect to f. 
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(ii) Use SURF to detect features
1SURFL and match with

0SURFL .  

Obtain the data L1 
composed by the location of the m 

matched features from L0. 
(iii) Use L1 

to compute  

 ˆˆ ( , )k k k
z h x k−=  (31) 

 where h(⋅)denotes equation (27), i.e. 
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Step 3: 

(i) Estimation (Measurement Update) 

 ˆ ˆ ˆ( )k k kk k
x x K z z+ −= + −  (32) 
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 Where [1]
kH  means the Jacobian matrix with respect to h. 
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k

k
k

x x

h
H

x
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∂=
∂

. 

(ii) Calculate and update the 3D-position of the points Ldepth 
with respect to all pixels within the depth image with the 
update pose of the mobile base. 

(iii) Update the data L0 given by the repeat points appeared in 

1SURFL  and Ldepth. 

(IV) Replace 
0SURFL  to 

1SURFL . 

Step 4: 

Repeat step 2 and step 3. 
Fig. 7 shows the flowchart of the Step 1.  And Fig. 8 shows 

the iteration of Step 2 and Step 3. 
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Fig. 7. Flowchart of the proposed global localization and mapping algo-

rithm at the start-up phase. 
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Fig. 8.  Deployment of the four landmarks in the second experiment. 
 

VII. SIMULATION AND DISCUSSION  

In this section, one simulation result is performed to ex-
amine the performance of the proposed EKF-based global 
localization algorithms of ADAMR using artificial landmarks, 
four encoders and KINECT sensor.  This simulation is done 
using Matlab/Simulink codes.  In the simulation, the pose 
localization algorithm is only verified when the ADAMR 
moves in the flat environments.  

1. The Proposed Pose Tracking Method 

To do the simulation of the proposed pose initialization and 
tracking, the second simulation sets up the size of environment 
as 4 m × 3 m, installs twelve circle landmarks whose positions 
and color are known.  All the landmarks are fixed at the same 
height.  In the beginning of pose initialization, four landmarks 
are given in front of the ADAMR.  Then, a rounded-corner 
trajectory is set in Fig. 9, where there is a clearance of 0.5 m 
against the wall.  After these steps, each distance between two  
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Fig. 9. Simulation results of the proposed pose initialization and posture 

tracking method. 
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Fig. 10.  The errors of pose tracking in simulation. 

 
 

localized points is 0.5 m.  Fig. 9 and Fig. 10 depict the simu-
lation results and the pose tracking errors.  The simulation 
results reveal that the proposed pose initialization and con-
tinuous pose tracking methods are capable of giving accurate 
pose estimates for position and orientation of the ADAMR. 

2. The Proposed Pose Tracking Method 

To do the simulations of the proposed global localization 
and mapping, one sets up the size of environment as 3 m × 3 m.  
In the beginning of pose initialization, four movable circle 
landmarks whose positions and color are known are given in 
front of the robot.  Then, a circular trajectory with the radius of 
1 m is set as the motion trajectory of the robot, as shown in  
Fig. 11.  The velocities of the four wheels of the mobile base 
are set as follows; 
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Fig. 11.  Simulation results of the global simulation and mapping method. 
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Fig. 12.  The errors of pose tracking in simulation. 

 
 
From the simulation results in Fig. 12, the average of the 

errors equals [ 0.38 cm 0.14 cm 0.1412 ]T− − − ° .  As can be 
seen in Fig. 11, those landmarks are recognized and their 
calculated positions are almost the same to their true ones.  
Through the simulations, the proposed localization and map-
ping algorithm has been shown to find accurate locations of 
unknown natural landmarks and give accurate pose estimates 
for position and orientation of the ADAMR. 

VIII. EXPERIMENT RESULTS AND 
DISCUSSION  

This experiment is devoted to exploring the merit of the 
proposed pose initialization using the lease-squares method, 
and the second experiment focuses on the effectiveness of the 
proposed EKF-based tracking algorithms of the ADAMR.  
Worthy of mention is that the pose initialization and tracking  

 
Fig. 13.  Deployment of the four landmarks in the second experiment. 
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Fig. 14. Computed global position and orientation of the KINECT in the 

world frame using the four distances and azimuths of the four 
landmarks. 

 
 

algorithm are tested using only four circle landmarks with 
distinct colors. 

The initial pose of the KINECT got started at the posture, 
i.e. [x0  y0  y0  θ0]

T = [0.0 cm  0.0 cm  58 cm  0 deg.]T and  
the four landmarks were located at the corresponding four 
positions [132.4 cm  57.5 cm  74.4 cm]T, [102.3 cm  −16.1 cm  
27.8 cm]T, [163.8 cm −47.6 cm 73.2 cm]T, and [142.0 cm   
0.0 cm  92.3 cm]T.  Fig. 13 shows the deployment of the four 
landmarks in the experiment, and the four distances and azi-
muths of the four landmarks are depicted, thereby obtaining 
the global position and orientation of the KINECT in the  
world frame in Fig. 14, In comparison with the true distance 
and azimuth of the yellow landmark, the errors are [1.6 cm 
−0.06015 deg.]T.  Furthermore, in comparison with the true 
position and orientation of the KINECT, one can find the 
errors are [−0.5983 cm −3.7801 cm 4.8757 cm 1.8393 deg.]T 
in Fig. 15.  Through the experiment results, the proposed pose 
initialization method has been shown capable of giving initial 
pose localization with acceptable accuracy for position and 
orientation of the ADAMR. 

The experiment result reveals that the average of the errors 
equaled [−0.75879 cm −0.29552 cm 0.89673°]T in three  
axes.  The above-mentioned results indicate that the proposed  
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Fig. 15.  Errors of pose tracking in experiment. 

 
 

continuous pose tracking method is capable of giving accurate 
pose estimates for position and orientation of the ADAMR for 
the static case. 

IX. CONCLUSIONS 

This paper has developed a global localization approach for 
the ADAMR based on the least-square estimate method using 
KINECT, a KINECT-based detection algorithm of artificial 
landmarks, and an EKF-based localization algorithm by fusing 
the information from the odometric encoders and the KINECT 
sensor in indoor environments.  Accumulation errors of the 
dead-reckoning method can be significantly reduced by fusing 
the KINECT information.  By fusing the KINECT data and 
odometric measurements, the proposed EKF-based pose es-
timation method using the artificial landmarks has been shown 
capable of keeping track of the continuous poses of the robot 
navigating on a flat terrain at slow speeds.  The simulation 
results for both pose initialization and continuous pose track-
ing have verified that the proposed methods provide more 
accurate pose estimates for the mobile ADAMR.  The ex-
perimental results for static pose localization have confirmed 
the effectiveness and performance of the proposed global 
localization method.  It is worthwhile to note that the proposed 
localization system can be installed at several distinct and 
pre-specified location within the robot’s working space, in 
order to calibrate the robot’s poses.  Except the static experi-
ment, the authors are conducting experiments on obtaining 

EKF-based pose estimation of the ADAMR while navigating 
around its working environment. 
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