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ABSTRACT 

With advancements in the efficiency and accuracy of in-
vestigation techniques and equipment, remote sensing tech-
nologies have been widely used to investigate river condi- 
tions.  Quantifying the morphology along a river channel  
was difficult before airborne laser altimetry technology, light 
detection and ranging (LiDAR), was introduced, facilitating 
the collection of high-resolution, highly accurate topographi-
cal data.  This study adopted airborne LiDAR data for ana-
lyzing and recognizing riverbed morphology.  The roughness 
index was defined as the standard deviation of a residual to-
pography.  A variable moving-window was used to derive a 
smoothed digital elevation model (DEM).  According to the 
roughness index, the residual topography was the difference 
between the original and smoothed DEMs.  Roughness data 
derived from different reaches of a predisaster riverbed were 
compared with data derived from a postdisaster riverbed.  
The experimental results showed that the upper reaches ex-
hibited higher roughness values than did the lower reaches.  
Thus, the relief of the postdisaster riverbed surface was  
near the derived smoothed relief.  Such characteristics were 
reflected in the major differences evaluated through slope 
measurements in the riverbed morphological analysis; the 
position of the peak value changed after the disaster.  An 
integrated plane-wise fluvial circumstance of a river water-
shed area was rapidly and accurately constructed, and this 
study concluded that these remote sensing techniques are 
vital in facilitating traditional surveys for regional investi-
gations. 

 

I. INTRODUCTION 

Geomorphometry, which Chorley [3] defined as the sci-
ence “which treats the geometry of the landscape,” and 
quantitative procedure for quantifying the land surface, at-
tempts to describe quantitatively the form of the land surface.  
In general, roughness refers to the irregularity of a topog-
raphic surface.  Terrain roughness can be measured according 
to significant wavelengths.  The significant wavelengths of 
topography are called grains or texture, whereas amplitudes 
associated with these wavelengths correspond to the concept 
of relief.  The relationship between the horizontal and vertical 
dimensions of the topography is reflected in the land slope 
and dispersion of the slope magnitude and orientation, 
whereas the vertical distribution of mass under the topog-
raphic surface relates to hypsometry [12]. 

According to previous studies, evaluating the surface rough-
ness by using light detection and ranging (LiDAR) data has 
been verified to facilitate detecting landslide areas [2, 4, 6, 14].  
However, the surface roughness of a landform depends on the 
material properties, processes acting upon it, and the time 
elapsed since formation.  River characteristics have played a 
crucial role in using hydrological models [13].  Sediments sup-
plied from landslides may affect the river channel-morphology 
changes in various reaches or at different magnitudes; thus, 
riverbed morphology is related to disaster events.  Benda and 
Dunne [1] analyzed the transportation of debris-flow sediment 
in first- and second- order channels, predicting the landslides in 
different channel reaches for the next 3000 years.  The aim of 
the present study was to evaluate the data derived by using a 
multitemporal LiDAR digital elevation model (DEM) as a 
quantitative tool when a disaster occurred.  Airborne LiDAR 
data were adopted to analyze and reveal riverbed morphology 
and rapidly and accurately construct an integrated plane-wise 
fluvial circumstance of a river watershed area. 

II. STUDY AREA 

1. Study Area 

The study area, covering an area of 5.5 × 7 km2, is located 
in the northeastern part of Kaohsiung City, Taiwan, and is  
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Fig. 1.  Predisaster LiDAR DEM of the study area (Hsiaolin village). 

 
 

situated in the sub-basin of the Kao-Ping Catchment (Fig. 1).  
Highly accurate, high-resolution airborne LiDAR images of 
the Kao-Ping Catchment were used to analyze and evaluate 
the predisaster and postdisaster riverbed roughnesses. 

2. Landslide Event 

Hsiaolin village, located in the northeastern part of Kaoh-
siung City, sustained heavy damage during a catastrophic 
landslide event in August 2009.  The Hsiaolin landslide, in-
duced by Typhoon Morakot, was recognized as a wedge-type 
slope failure.  The failure wedge was created by a N26°W/ 
22°W bedding plane of Pliocene-Miocene Tangenshan sand-
stone and a N80°E/84°N high-angle fracture; thus, a slide 
oriented in the west-southwesterly direction was generated 
[10]. 

3. Regional Geological Setting 

The riverbed geological setting of the Hsiaolin village reach 
primarily comprises alternating sandstone and shale.  Severe 
landslides occur after typhoons and rainfalls, particularly in 
areas near river banks and the main local highway. 

III. PROCESSING METHODOLOGY 

In some hydro-climatic regions, channel adjustment is 
strongly induced by colluvium sediment inputs (and thus, an 
imposed sediment size distribution) to channels through land-
slides and debris flows.  In these regions, the climatic influence 
on the network-wide distribution of step-pool channels may be 
closely linked to climatological events that deliver sediment to 
channels through mass movement.  The amount and frequency 
of colluvium material delivery to channels may directly influ-
ence the effectiveness of channel- forming events [5].  Mont-
gomery and Buffington [15] distinguished between bedrock  
and alluvial channels in forested drainages by using slope-area 
plots.  The roughness configurations or energy-dissipating fea-
tures that distinguish these channel types reflect downstream 
changes in the sediment supply that are relative to capacity. 

1. Topographic Data 

The materials used in this study include an airborne  
LiDAR-DEM and the derived roughness data.  The LiDAR- 
DEM was derived from point clouds and then resampled into 
1-m grids.  The LiDAR data were collected both before and 
after the Typhoon Morakot disaster, which occurred in August 
2009. 

2. Surface Roughness 

The surface roughness is an expression of the topographic 
surface variability at a given scale.  The roughness is deter-
mined using surface-elevation values, and can be used to 
characterize landforms according to various scales [11].  In 
remote sensing, the roughness can also be quantified using  
the electromagnetic radiation reflections (i.e., ranging from 
specular to diffuse) from landform surfaces.  A single defini-
tion of surface roughness may be insufficient.  In this study, 
surface roughness is treated as a geomorphometric variable, 
not a parameter.  A variable is a measurable property of a 
phenomenon (e.g., slope angle), whereas a parameter is a 
summary measurement of the characteristics of a population 
(e.g., mean slope angle) [7].  Several methods have been de-
veloped for defining, calculating, and applying surface rough-
ness [2, 6]. 

3. Slope-Gradient Index 

As previously mentioned, a landscape can be treated as a 
measurable phenomenon.  The landforms of the surface 
roughness are mostly quantified through slope measurements; 
the slope is the rate of change in elevation.  Slopes are re-
garded as the most vital geomorphic parameters because they 
can be used to describe the relief and structure of the land 
surface [17].  A simple definition of a slope is  

 2 2arctan x yS f f= +  (1) 

where fx and fy defined in Eq. (2) are the gradients at W–E  
and N–S directions, respectively. 
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Fig. 2. Surface roughness is calculated as the difference between LiDAR- 

DTM and mean DTM (modified from Cavalli et al. [2]). 

 
 

where z is the topographic elevation.  An algorithm developed 
by Sharpnack and Akin [16] and modified by Horn [8] uses 
eight grid points to calculate each gradient value by using  
a 3 × 3 moving window.  This algorithm applies a third- 
order finite-difference technique that involves using the eight 
neighboring elevation values bordering the central elevation 
cell.  This algorithm was validated using lower root mean 
square residuals in topographic analysis [17]. 

4. Slope-Based Roughness Index 

In this study, the roughness index was defined as the 
standard deviation of the residual topography (Fig. 2).  The 
variable moving window (5 × 5, five times the grid size of the 
original DEM) was used to derive the smoothed DEM, and 
the residual topography was the difference between an 
original and the smoothed DEM.  Each cell corresponded to 
the mean DEM value of the 25 neighboring cells.  The in-
terval of the moving window for the roughness index was 
also determined using 5 × 5 cells; these values were consid-
ered to identify the upper limits of the analysis.  The upper 
range of the limits corresponded to the river topography 
characteristics between 2.5 m to 5 m [2, 9]. 

Some studies have determined the relationship between  
the standard deviation of the residual topography and the 
riverbed roughness [2].  The formula is expressed as follows: 

 
( )
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where r is the roughness index and also the standard deviation 
of the residual topography, xi represents the value of the spe-
cific cell, xa is the mean value corresponding to the specific 
cell (xi), and 25 represents the number of the 5 × 5 neighboring 
cell value of the DEM. 

The spatial variability of geomorphometric variables is 
crucial; knowing that an area is rougher or smoother than 
another is inadequate; instead, the degree and position of this 
difference must be determined because the degree and position  
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Fig. 3. Two roughness index measurements: (a) Slope-Gradient; (b) Slope- 

Based. 
 
 

may be related to geological features such as lithological 
boundaries and tectonic structures [7]. 

The surface roughness index was derived from the LiDAR- 
DEM by using the standard deviation of the residual topog-
raphy (r), and the roughness index was also used to generate 
the slope, which was then compared with the elevation-based 
slope.  An algorithm of the third-order finite difference 
weighted by the reciprocal of the squared distance was used to 
assess the slope gradient. 

2 2arctanr x yS f f= +  
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where r is the standard deviation of the residual topography.  
The slope-based roughness was then computed in a 3 × 3 
moving window. 

5. River Change Characteristics Analysis 

Analysis of changes in the riverbed area can provide es-
sential information on the disaster.  The analysis was per-
formed by calculating the change in area between predisaster 
and postdisaster periods.  The results revealed three statuses  
in the riverbed (i.e., gained, unchanged, and lost).  Further-
more, a cross-sectional profile (Fig. 3) survey was conducted 
to assess the riverbed morphology change. 

IV. RESULTS AND DISCUSSION 

The slope-based roughness index was used for the predis-
aster and postdisaster analyses.  Different river reaches were  
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Fig. 4.  Comparison of roughness indices in different river reaches. 

 
 

compared using this method, and slope-gradient and sur-
face-roughness indices were included in the comparison. 

The results indicated that both methods reflected the vari-
ability of a topographic surface.  Fig. 4 indicates that the 
stream topography in the slope-gradient and slope-based 
roughness indices reveal a substantial curve feature that cor-
responds in streams and flood land areas.  However, the 
slope-gradient index at a stream boundary exhibits a higher 
value than that of the slope-based roughness index, indicating 
that the slope-based roughness index reveals smoother reflec-
tions than the slope-gradient index does.  In addition, the 
slope-gradient index can reflect only the peak value clearly; 
however, the slope-based roughness index can depict more 
detailed curvilinear feature variations in topographic charac-
teristics. 

Both indices exhibit an increasing tendency in roughness 
when topographic breaks occur.  The slope-gradient index in 
particular appears to be more sensitive than the slope-based 
roughness index does when the break point appears.  Figs. 4 
and 5 depict substantial differences in the spectrum profiles;  
as mentioned, the slope index shows a higher amplitude than 
does the roughness index in the vertical dimension.  In uni-
form areas where the slope value is less than 10° (Fig. 4), the 
slope-based roughness index appears smoother than the 
slope-gradient index does; however, the slope-based rough-
ness index reveals more detailed variability of topographic 
features and reflects a continuous relief. 

Fig. 5 shows the box plots for the slope-based and slope- 
gradient roughness indices.  Fig. 5(a) depicts the predisaster 
(2005) and postdisaster (2010) slope-gradient indices, indi-
cating that they depict the same topographic features for the 
upper river and lower river reaches.  Thus, that the slope in the 
two reaches decreased after the disaster, and the highest values 
for the slope-gradient and slope-based roughness indices de-
creased rapidly because of the increased elevations in these 
reaches.  This increase may be attributed to the landslide ma-
terials transported from the upper reach and the increased 
flooding area. 

The major difference between the slope-gradient index and 
the slope-based roughness index on riverbed measurement 
was determined through analysis (Fig. 5).  For the predisaster  

Table 1. Typhoon event induced flooding area and rough-
ness change. 

  
Pre-disaster  

(2005) 
Post-disaster 

(2010) 
Change Rate 

Area (m2) 1614029 2631741 63% 
Mean Slope 

(degree) 
7.6 6.2 -22% 
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Fig. 5. Box plots for roughness measures of different river reaches: 2005, 

predisaster; 2010, postdisaster.  (a) Slope Gradient Index; (b) Slope- 
Based Roughness Index. 
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and postdisaster periods, the slope-based roughness method 
obtained a smoother value than that of the slope-gradient 
method.  Table 1 shows the results obtained using the LiDAR 
technique to analyze the two periods.  After the typhoon event, 
the flooded land area increased by 63%; the slope was also 
influenced by the materials transported from the upper stream. 

The slope-based roughness index reveals a smoother sur-
face after the disaster; the predisaster period exhibited higher 
median slope values than did the postdisaster period (Fig. 5). 

According to a analysis of the changes in the riverbed area, 
(Fig. 6) the typhoon delivered a high amount of materials from 
the upper reach, and the landslide materials comprised the  
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Fig. 7. Comparison the disaster effect exerted by channel morphologies on the riverbed. 

 
 

most substantial contribution to the riverbed, of which the net 
gain was greater than the net loss (Table 1). 

Fig. 7 shows the cross-sectional profile surveying results.  
All of the profiles indicate that the postdisaster riverbed ele-
vation increased.  The maximal elevation increase exceeded 
10 m.  In addition, the profiles indicated that the major eleva-
tion change occurred in the upper reach.  The wide river 
channel afforded a large sediment deposition space and may 
have exhibited higher elevation values in the upper reach 
(Profiles 4 and 5, Fig. 7).  In addition, the riverbed morphol-
ogy was affected by the input of landslide sediments, which 
deepened the river in the upper reach and broadened the river 
in the lower reach.  The postdisaster river-channel roughness 
appeared to be smoother than that of the predisaster river- 
channel roughness.  The velocity of the stream flow decreased 

when sediment input increased. 

V. CONCLUSION 

The slope-based roughness index can be used for investi-
gating disasters and river conditions, and river roughness can 
be treated as a parameter and used in hydrological models.  
The experimental results indicated that these two methods can 
reflect the morphologic characteristics of riverbeds.  The 
spectrum pattern revealed the major difference between the 
slope-based roughness index and the slope-gradient index 
when describing topographic morphology. 

The slope-based roughness appeared smoother than did the 
slope gradient index, possibly because the slope-based rough-
ness is the standard deviation of residual topography.  Thus, 
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this index can reflect all the features of the entire river, and can 
show the constant properties of the river channel and the pat-
terns of the riverbed.  The postdisaster roughness of the river 
channel was smoother than the predisaster roughness was; 
thus, the typhoon deepened the river in the upper reach and 
broadened the river in the lower reach. 

The results indicate that LiDAR data can be considered to 
be a rapid and useful investigation tools for river condition 
surveys. 
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