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ABSTRACT 

In this paper, a face pose estimation (FPE) algorithm using 
active appearance model (AAM) with a k-nearest neighbor 
(kNN) classifier is presented.  AAM is a model-based image 
representation method used to describe non-rigid visual ob-
jects, with both shape and texture variations, using a mean 
vector and linear combinations of a set of variation modes.  
Since AAM is a deformable model, it has several variations.  
Owing to the variations, the model is adjusted to the input test 
face image using iterative searching and fitting.  The error, 
which measures the difference between the model and a test 
image, is minimized with the proposed searching algorithm.  
The face pose is then estimated using the distances between 
the landmark points in the AAM model with a kNN classifier.  
Experimental results demonstrate that the proposed FPE al-
gorithm can fit the face location with different face poses, with 
or without a hat, even wearing glasses, and identify the face 
pose accurately. 

I. INTRODUCTION 

In recent years, the human interface issue has become a 
very popular research field, particularly in robot controlling, 
computer gaming, computer vision, medical services, and 
people identification.  Many enthusiastic researchers, there-
fore, have dedicated themselves to developing and investi-
gating systems to detect and recognize human kinetics.  Face 
recognition systems are receiving the most attention.  Using 
biometric methods with low intrusiveness, they are delivering 
high accuracy.  Face recognition systems include face detec-

tion, face identification, face pose estimation, and facial ex-
pression recognition.  Early face recognition systems focused 
on feature-based methods, and face contour is a popular ex-
ample.  Because the contour of the human face resembles an 
ellipse, in the early years of facial research, this feature played 
an important role in identifying a face.  Specific distinct fea-
tures were marked as reliable landmarks for featured-based 
approaches.  Early works on face recognition were mostly 
based on feature-based methods.  Kanade [12] used landmark 
features as judging points to identify a face.  This research 
made use of a simple template-based method of calculating 
Euclidean distances to recognize faces.  Following this, some 
researchers employed more sophisticated feature extraction 
methods, including the Hough Transform [17], morphological 
operations [9], and Reisfeld’s symmetry operator [20].  These 
methods, however, could not fit the shape of the input images 
perfectly.  Statistical analysis is the task of calculating the 
correlation between input images and based-data.  Principal 
component analysis (PCA) is a popular method used to ana-
lyze correlation information.  Eigenvalues and eigenfeatures, 
which estimate the data distribution, are calculated by PCA.  
However, the results of the data distribution prediction by PCA 
were not acceptable.  Other methods investigated include 
linear discriminate analysis(LDA), independent component 
analysis (ICA), and probabilistic eigenfaces.  Other methods, 
such as machine learning and neural network, were able to 
distinguish important features from the training data.  Feature 
information is divided into several classes.  The best known 
binary classification methods are Adaboost and support vector 
machine (SVM).  Existing methods of face recognition can be 
categorized into three groups: holistic, local, and hybrid. 

1. Holistic Methods 

Conforming to the definition of the word holistic, the input 
data for these methods make use of a whole face image.  Early 
research used knowledge-based methods, such as Kirby and 
Sirovich [13], who applied features in eigenspaces to recog-
nize faces using PCA.  Because PCA cannot distinguish faces 
of different people, other methods, such as LDA [25], and 
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Fisherface [2] were used with PCA to make the algorithm 
more robust.  The key benefit of these methods is that they 
retain the entire shape, texture, and details of the human face.  
This information can be used to evaluate the human face.  
When the size of the judgment features differ from the size of 
the input images, however, holistic methods encounter prob-
lems, including pose angle and illumination. 

2. Local Methods 

Local methods extract essential feature points from limited 
regions of the face as the base for determining judgment fea-
tures.  A local template comparison was proposed [5] and 
Pentland et al. [19] extended PCA, extracting only the eyes, 
nose, mouth, and facial contour, instead of the whole face 
image.  Other researchers did not use the facial features di-
rectly.  The local facial features were mapped to other spaces.  
For example, Tan et al. [22] found a probability distribution 
for these local features.  With this relationship, the facial fea-
tures were mapped to a corresponding feature plane, called a 
self-organizing map (SOM) [14].  The plane with the mapping 
features was called the SOM-face.  This could express dif-
ferent facial features.  However, local methods are signifi-
cantly affected by face pose.  They are applied mainly, there-
fore, to frontal face views.  Localized gradient orientation 
histograms are employed with support vector regressors 
(SVRs) for pose estimation [16]. 

3. Hybrid Methods 

Hybrid methods combine both holistic and local methods 
[23].  However, the challenge is to integrate these two feature 
methods and use them effectively.  There are still many ob-
stacles to be conquered.  First, illumination is an important 
issue.  Testing images [1] are seriously affected by luminance.  
Second, the recognition of different face poses using 
kn1owledge-based methods is difficult.  This has become a 
popular topic in recent studies. 

Face pose estimation (FPE) is an interesting research topic 
in the field of human computer interface.  It is easy for human 
beings to determine face poses.  Unfortunately, it is a difficult 
technical challenge for computer vision.  In recent years, re-
search has addressed new methods to solve this challenge.  A 
brief description of some of these techniques follows.  Ap-
pearance template methods: A database of faces with different 
poses is created.  An input image is then compared with this 
database for a likeness [3].  Detector Array: The data array 
structure is similar to the appearance template.  However, the 
comparison process is quite different.  With detector array, 
every pose is set up in the database using supervised learning 
to acquire the judgment statistics.  These data are then used to 
recognize an input face pose.  In early research, SVM was 
used to define and recognize three standard face poses [10].  
Recently, methods utilizing neural networks [21] or Adaboost 
[11] to achieve FPE have been developed.  Nonlinear regres-
sion is used to develop a nonlinear function for every pose and 
features can fit to the function.  Neural networks, using the  

Capture Normalization Statistical analysis
 

Fig. 1.  Setup process for shape and texture models of AAM. 
 
 

structure of supervised learning, use feedback values, itera-
tively, to modify the weighting of previous layers and base 
points.  Until the results converge [18], Cootes et al. [6] util-
ized the relationship between facial features, including the 
eyes, nose and mouth.  Input images are compared to distinct 
locations to find the most similar face.  A flexible model is 
built utilizing a set of training data.  Initially, essential land-
marks are manually labeled and analyzed statistically to find 
the principal components.  Active appearance model (AAM) 
[7] is a popular fitting model.  Generally, the face in a 
non-frontal pose is harder to recognize.  In this paper, the face 
is approximated by an AAM model.  Using several iterations 
to determine the most fitting position, the face is recognized 
even though it may be in a different pose.  After the AAM 
fitting, the face pose can be identified using k-nearest neighbor 
(kNN) classifier and the distances of the landmarks.  In FPE, 
the fitting procedure exhibits good performance even if the 
person is wearing glasses or is in a different pose. 

The remainder of this paper is organized as follows.  In 
Section II, AAM is introduced, including shape, texture, and 
combined modeling.  Section III presents the procedures for 
AAM fitting.  Our FPE approach is discussed in Section IV.  
The experimental evaluations of our FPE methodology are 
discussed in Section V.  Finally, the conclusion is presented in 
SectionVI. 

II. AAM MODELING 

Dealing with the large variability of the image data has been 
difficult.  Recently, however, the deformable template model, 
which is a model-based method, has proven very successful  
in addressing this challenge.  In our face pose estimation ap-
proach, AAM, which is a deformable model method, is an im- 
portant procedure to model and fit the face image for pose 
estimation.  The setup process of the shape and texture models 
is the same.  Following the steps in Fig. 1,the shape and texture 
models are created.  The shape model is built first.  The texture 
model is then established based on the reference mean shape 
using the following procedure.  In the capture step, a shape 
model uses a finite number of points to determine the contour 
of the deformable shape.  At the same time, a texture model 
uses the piece-wise Affine warp bilinear interpolation to extract 
the texture features.  In the normalization step, a shape model 
aligns the shape with translation, scaling, and rotation.  Finally, 
in the statistical analysis step, the shape or texture model is 
analyzed by PCA to evaluate the eigenvalues and eigenvectors 
to describe the variations of the shape and texture model. 

1. Shape Model 

In order to extract the shape of faces, the landmark points of  
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Fig. 2.  Example landmarks for connectivity scheme. 
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Fig. 3.  Example landmarks for connectivity scheme [4]. 

 
 

the database images must first be labeled manually.  Fig. 2 
represents these points and contour. 

To prevent unrelated points from distorting the analysis 
result, choosing the landmark points is an essential task.  Ac-
cording to [4], three corresponding features should be suffi-
cient for our purpose, for example, an intersection of two 
boundaries, such as points 0, 3, and 5 in Fig. 3(a).  Faces, eye 
corners, mouth corners or other similar points could be se-
lected.  Prominent points of the image are shown in Fig. 3(b).  
Boundary line features label points along a boundary, such as 
points 1 to 2, and 6 to 9 in Fig. 3(a). 

To obtain a statistical model correctly, analyzing all the 
shapes should be based on the same reference point.  The 
classical data alignment solution is Procrustesanalysis (PA).  
The alignment of two shapes requires finding the best match of 
one shape to another by minimizing the Procrustes distance in 
(1), which indicates the distance between two shapes, with 
respect to scaling, rotation, and translation. 

 2 2
1 2 1 2 1 2

1

( , ) ( ) ( ) ,
n

i i i i
i

D x x y y
=

= − + −∑x x  (1) 

where x1 and x2 indicate the landmark points of two labeled  

Table 1.  Procrustes Analysis. 

Algorithm 1 

1. Find the centroid of each shape: 
1 1

1 1
( , ) ( , )

n n

i ii i
x y x y

n n= =
= ∑ ∑  

2. Align two shapes to their origin: ( , ) ( , )x y= − −c cx y x y  

3. Normalize each shape: ˆ
cx

= c
c

x
x  

4. Set shape matrices: 2
ˆ ˆ[ | ]nx y ×=X  

5. Evaluate SVD(X1 X2) = USVT 
    Find the optimal rotation matrix by SVD: R = UVT 

 
 

(a) (b) (c)  
Fig. 4. Result of Generalized Procrustes Analysis.  (a) Raw data, (b) The 

result of Generalized Procrustes Analysis, and (c) Mean shape. 
 
 

shapes.x1i, y1i, x2i, and y2i represent the coordinates of the ith 
point of shape x1 and x2.  During PA, the centroid of every 
shape is calculated first.  Then every shape is moved to its 
origin.  This removes the mean of every shape.  To prevent  
the scaling of a shape affecting the data alignment, every shape 
is normalized to the same size.  The rotation problem is solved 
by singular value decomposition (SVD).  The purpose of using 
SVD is to find the optimal rotation matrix R that leads to the 
minimum distance difference of the two shapes.  After ob-
taining the rotation matrix R, the last step of PA is to modify 
the aligned shapes using this rotation matrix R.  As a result,  
the minimum distance of the two shapes is determined.  The 
details of Procrustes distance are listed in Table 1.  However, 
PA only addresses the data alignment between two shapes.  
Generalized Procrustesanalysis (GPA), which specifically 
processes serial shape data alignment, is an extension of PA. 

In GPA, the first shape is set as the initial estimate mean 
shape and all the other shapes are aligned to this estimate mean 
shape using PA.  After the first data alignment pass, a new 
estimate mean shape is generated.  This data alignment pro-
cedure runs repetitively.  The procedure stops when the data 
alignment converges; that is, the new estimate mean shape is 
similar to the previous estimate mean shape.  The initial data 
of all the shapes are shown in Fig. 4(a); the results of GPA are 
shown in Fig. 4(b); and the mean of all the aligned data is 
addressed in Fig. 4(c).  Upon completing GPA, the serially 
new-aligned data is analyzed by PCA.  In the PCA process, the 
covariance matrix Cs is calculated in (2), 

 ( )( )
1

1
,

1

N
T

i i
iN =

= − −
− ∑sC x x x x  (2) 
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(a) -3σ1 (b) bs1 = 0 (c) +3σ1

(d) -3σ2 (e) bs2 = 0 (f) +3σ2

(g) -3σ3 (h) bs3 = 0 (i) +3σ3  
Fig. 5.  The top three shape variation modes in the shape model. 

 

 
1

1
,

N

i
iN =

= ∑x x  (3) 

where N is the total number of shapes in the training set, x  
indicates the mean shape of the deformable model as shown in 
Fig. 4(c), and xi represents each labeled shape.  Eigenvalues 
and eigenvectors, which demonstrate possible data distribu-
tion coordinates and the variance of each coordinate, are ob-
tained by PCA data analysis. 

The statistical variation shape x can be modeled in Eq. (4). 

 ,s sb= + Φx x  (4) 

where Φs and bs represent the eigenvector and a parameter, 
which controls the shape variance of the covariance matrix.  
The calculated mean shape is x .  Choosing different pa-
rameters for Φs and bs leads to different variations of the  
shape model.  Fig. 5 displays the different variations of the top 
three modes.  In Fig. 5, each row implies one mode, and each 
mode represents a variation of each eigenvector.  The mean 
shapes are presented in Fig. 5(b), (e), and (h).  The variances  
of the first, second, and third eigenvectors are illustrated in  
Fig. 5(a) and (c), Fig. 5(d) and (f), and Fig. 5(g) and (i). 

2. Texture Model 

Texture feature extraction is an essential process in the 
development of a texture model.  A texture model describes 
the intensity of the entire face and can display precise facial 
changes.  Every texture face of m pixels can be represented as 

 1 2 1, , , , ,
T

m mg g g g−=   g …  (5) 

where gi is the ith pixel value of the texture vector g.  The first  

(a) (b)  
Fig. 6. Mean shape Delaunay Triangulation (DT).  (a) Mean shape; (b) 

Mean shape after Delaunay Triangulation. 
 
 
step of building a texture model is to determine the points of 
the mean shape.  These indicate the important control points of 
the face.  The relationship of each shape and the mean shape 
must be established.  Delaunay triangulation (DT) is a method 
used to obtain the relationship of two shapes and textures.   
The purpose of DT is to connect a finite set of points in 2-D 
space into several triangulation networks.  The vertexes of 
each network are the control points in the mean shape.  These 
triangle networks do not intercept each other.  The resulting 
mean shape after applying DT is illustrated in Fig. 6. 

After the DT process, the aligned shapes are triangulated 
into a similar number of triangle networks.  To find the cor-
responding vertex of two shapes, barycentric coordinates are 
used.  Any point x = [x y]T in a triangle can be expressed as: 

 1 2 3,α β γ= + +x x x x  (6) 

where x1, x2, and x3 are vertexes of the triangle, α, β, γ are 
barycentric coordinates of x in relation to x1, x2, x3.  The so-
lution can be obtained using (7), 

1 ( )α β γ= − +  

3 1 3 1 3 1 3 1

2 3 2 1 1 3 3 2 3 1 1 2

yx x y x y y x x y xy

x y x y x y x y x y x y
β − − − + +=

− + + + − −
 

2 1 1 2 2 2 1 1

2 3 2 1 1 3 3 2 3 1 1 2

.
xy xy x y x y x y x y

x y x y x y x y x y x y
γ − − − + +=

− + + + − −
 (7) 

When finding point x in a triangle network with vertices x1, 
x2, x3, the solution of barycentric coordinates parameter 
should be between 0 and 1.  To minimize the amount of data 
that cannot be mapped to a corresponding data coordinate, 
backward barycentric coordinate mapping is applied.  After 
the backward mapping, some of the textures may still have 
tiny holes in the mapping texture.  A bilinear interpolation 
technique is used to eliminate these holes. 

When the texture is processed by bilinear interpolation and 
barycentric coordinates, reconstructed texture faces are ob-
tained.  Fig. 7 shows the original face, a textured face mapped 
into a mean shape, and the original shape with DT.  Combining 
the texture of every triangle network produces an entire tex-
ture face.  Every sample will generate a mapped texture face.   
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(a) (b) (c)  
Fig. 7. The mapping faces.  (a) original image, (b) mapping texture face 

into mean shape, and (c) original shape with DT. 
 
 

With these mapped texture faces, the characteristic of the data 
can be analyzed.  To find the variance of the texture, these 
mapped sample faces are analyzed using PCA.  The PCA for 
the texture model is computed as: 

 
1

1
,

N

i
iN =

= ∑g g  (8) 

 ( )( )( )
1

1
,

1

N
T

g m m i i
iN×
=

= − −
− ∑C g g g g  (9) 

where g  and Cg represent the mean of the texture and the 
covariance matrix of the texture.  gi is the ith texture image,  
and N is the sample number.  However, the dimension of 
Cg(m×m) will be too large to calculate.  Using the Eckart-Young 
theorem [8], this dimension problem is overcome.  The  
N × N covariance matrix is calculated in (10).  The first N 
eigenvalues are the same as the eigenvalues of Cg(m×m). 

(a) -2σ1 (b) bg1 = 0 (c) +2σ1

(d) -2σ2 (e) bg2 = 0 (f) +2σ2

(g) -2σ3 (h) bg3 = 0 (i) +2σ3  
Fig. 8.  The top three texture variation modes in the texture model. 
 

 ( )( )( )
1

1
,

1

m
T

g N N i i
iN×
=

= − −
− ∑C g g g g  (10) 

where gi is the ith pixel in the texture image, and m is the total 
pixel number in the mean texture. 

After applying PCA to the texture image, each texture im-
age g can be expressed as: 

 g gb= + Φg g  (11) 

where Φg and bg indicates the matrix of the eigenvectors and 
the eigenvalues. 

Fig. 8 presents the variance of the texture faces.  The mean 
textures are shown in Fig. 8(b), (e), and (h).  Fig. 8(a) and (c), 
Fig. 8 (d) and (f), and Fig. 8(g) and (i) are the variances of the 
first, second, and third eigenvectors, respectively.  As seen in 
Fig. 8, the first mode represents the change of face direction in 
the texture image.  The second mode indicates the change in 
the eye and eyebrow part.  Finally, the third mode shows the 
change in the mouth part. 

3. Combined Model 

Shape and texture are described by the parameters bs and bg.  
The combining parameter is described in (12): 

 
( )

,
( )

T
s s s s

T
g g

   Φ −
= =      Φ −   

W b W x x
b

b g g
 (12) 

where bs and bg indicate the distance units and intensity units, 
respectively.  Because distance units and intensity units do not 
have a direct relationship, Ws is the combination weighting 
matrix of bs and bg. 
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(a) -2σ1 (b) c1 = 0 (c) +2σ1

(d) -2σ2 (e) c2 = 0 (f) +2σ2

(g) -2σ3 (h) c3 = 0 (i) +2σ3  
Fig. 9.  The top three variation modes of the combined model. 

 

 Diag( ),s r=W  (13) 

where r is the weight ratio calculated in (14), 

 
1 1

,
i j

N n

g s
i j

r λ λ
= =

=∑ ∑  (14) 

where λs and λg are the eigenvalues of the shape and texture, 
respectively. 

To remove the correlation between the shape and texture 
model, the covariance of b is again analyzed by PCA.  After 
PCA, the new combinations of eigenvalues and eigenvectors 
are obtained as: 

 ,cs
c

cg

Φ 
= Φ =   Φ 

b c c  (15) 

where Φc and c are the eigenvectors and variance of the vector, 
respectively.  Moreover, parameter c is the essential parameter 
that can control both the shape and texture of the combined 
model. 

Due to the linear nature of the model, it is possible to ex-
press the shapes, and the texture g, using the combined model 
simultaneously in (16).  Several shape and texture faces are 
yielded. 

1 ,s s cs
−= + Φ Φx x W c  

.g cg= + Φ Φg g c  (16) 

To combine these two features, DT is used as a mapping 
tool that maps the texture features to the shape features.  The 

result of the combined model is shown in Fig. 9.  Fig. 9(b), (e), 
and (h) represent the mean texture of each mode.  Fig. 9(a) and 
(c), (d), and (f), and (g) and (i) are the variance of the first, 
second, and third eigenvector, respectively. 

III. AAM FITTING 

1. Training Mode 

The AAM search method calculates the texture difference 
between the combined model and an input image in (17).  The 
appearance variation parameters are updated iteratively.  
Therefore, the correlation between the texture difference and 
the parameters must be established in the training mode. 

 image modelarg min I −
c

I  (17) 

where Iimage and Imodel are the input and model image, and c is 
the variance of the vector. 

Because we are using more than one parameter, multi- 
linear approximation is applied to estimate the regression 
matrix representing the relationship between the texture dif-
ference and the parameters.  Using this concept, only a few 
different displacements are needed, and each of these dis-
placements is part of the training data for evaluating the re-
gression matrix. 

 δ δ=p gR  (18) 

where δp is the difference of the appearance parameters (in-
cluding translation parameter t and appearance parameter c), 
δg is the texture difference, and R indicates the regression 
matrix of δp and δg.  The consequence of the regression has  
a significant effect on the prediction of the appearance pa-
rameter.  The details of the training procedure are addressed in 
Table 2. 

2. Searching Mode 

The input image first generates a texture model.  To achieve 
this goal, the error between the input image and the base tex-
ture model is calculated.  This result is a judgment to evaluate 
the similarity between the base model and the input image.  
The current error (Ecurr) is compared to the previous error 
(Eprev).  If Ecurr is bigger than Eprev, the fitting procedure modi-
fies the step size and compares the step size with the threshold.  
Otherwise, FPE records the current data and updates the pa-
rameters that are used to predict the final position.  The above 
step processes iteratively until the final position, which indi-
cates the correct pose, is found.  From the previous steps and 
the camera parameters, the proposed FPE can estimate the 
different poses.  The flowchart for this process is addressed in 
Fig. 10.  After performing the searching procedure, the input 
image is fitted by the model and the positions of the landmarks 
are output as the face pose estimation inputs. 
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Table 2. Generation of displacement for training proce-
dure. 

Algorithm 2 
for each sample image 
for each displacement 

1. decide the dimension of parameter p 
 (that implies the dimension of parameter t; parameter c should 

be decided) 
2. update values of appearance parameter 
 c = δc + c0 
3. update values of t = δt + t0 
4. using the new parameters in steps 2 and 3, establish a new 

shape model x and texture model gm 
5. align shape ximage by using  parameter t 
6. obtain texture vector gimage under the shape ximage 
7. map texture vector gimage onto the normalize texture vector gi 
8. once all the texture vectors are mapped onto the normalized 

texture vector, the texture difference can be obtained, δg = gi - gm

9. fill δt into the corresponding places of the matrix ∆p 
10. fill δg into the corresponding places of matrix ∆g 

end for 
end for 

 
 

Texture model

Input image Difference
measure

Step
update

(Head pose)

parameter
update

Record
(Pprev = Pcurr

rprev = rcurr

Eprev = Ecurr)

Ecurr <=
Eprev?

Pfinal Step <=
threshold

Yes Yes

No

No

 
Fig. 10.  The flowchart for AAM searching. 

 

IV. FACE POSE ESTIMATION 

In order to identify the face pose of the input image, kNN 
classifier is adopted to distinguish the face direction.  kNN is 
an instance-based classifier that gives a high accuracy recog-
nition ratio with less computing load.  The half samples that 
include the front, left, and right pose, are set as training sam-
ples.  Then, the FPE process is executed according to the 
landmark distances of the AAM fitted result.  The flowchart  
of FPE is illustrated in Fig. 11.  Once the kNN classifier is 
trained, the distances of the landmark points from the AAM 
fitted result are fed as input x to the kNN classifier.  The pose 
is then identified by the kNN classifier.  Although the shape 
model and texture model are adjusted simultaneously, only  

AAM
Fitting

Feature
Extraction

Pose
Estimation

x

Landmark
position

Input
Image Front

Pose

Left
Pose

Right
Pose  

Fig. 11.  Flowchart of face pose estimation. 
 
 

the positions of the landmarks in the shape model are useful 
for FPE.  Therefore, the input parameters x are extracted ac-
cording to the distances of the landmark positions after the 
AAM fitting.  Though there are 58 landmark points defined in 
Fig. 2, the landmarks of the eyebrow, eye, mouth, and nose 
parts exhibit a weak difference in the different poses.  Ac-
cordingly, points in the chin and cheek are used for the feature 
extraction.  Input x is a feature vector with 24 dimensions, and 
the features are defined as follows, 

 ,  ,j j
i i j i i jdx x x dy y y= − = −  (19) 

 1 2 3 4 ,
T=   x x x x x  (20) 

 2 12 3 11 4 10
1 1 13 2 12 3 11 ,dx dx dx dx dx dx =  x  (21) 

 5 9 6 8 7 7
2 4 10 5 9 6 8 ,dx dx dx dx dx dx =  x  (22) 

 2 12 3 11 4 10
3 1 13 2 12 3 11 ,dy dy dy dy dy dy =  x  (23) 

 5 9 6 8 7 7
4 4 10 5 9 6 8dy dy dy dy dy dx =  x  (24) 

where dx and dy represent the distances in the x and y direction 
between the ith point and the jth point, respectively. 

The order of the feature vector is arranged according to the 
importance of the feature elements.  Because the difference in 
the x-direction is more obvious than the difference in the 
y-direction, the dx elements are placed in front of the dy ele-
ments.  Moreover, the movements of the landmarks in the 
cheek are clearer than the movements of the landmarks in the 
chin.  Therefore, the dx elements of the cheek are placed in 
front of the dx of the chin. 

V. EXPERIMENTAL RESULTS 

Experiments were carried out to evaluate the performance 
of the proposed FPE using AAM.  The testing images included 
several different frontal and angle face poses.  After the AAM 
fitting, the images that are fit successfully are divided into two 
sets, the training set and the testing set.  In the quantitative  
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(a) Person 1 without hat. 

 
(b) Person 1 with hat. 

 
(c) Person 2 without hat. 

 
(d) Person 2 with hat. 

 
(e) Person 3 without hat. 

 
(f) Person 3 with hat. 

Fig. 12. Different face pose estimation.  (a) (c) (e) Left, frontal and right 
face pose estimation without hat.  (b) (d) (f) Left, frontal and 
right face pose estimation with hat. 

 
 

evaluations of the proposed FPE approach, Recall and Preci-
sion in (25) and (26), are used to evaluate the performances. 

 Recall ( ),p p nT T F= +  (25) 

 Precision ( ),p p pT T F= +  (26) 

Table 3. Comparison of face pose estimation with differ-
ent k numbers in the training set. 

k definition 1 3 5 7 9 
Tp 19 18 19 18 18 
Fn 1 2 1 2 2 
Fp 0 1 2 0 0 

Recall 95 90 95 90 90 
Left 

Precision 100 94.74 90.48 100 100 
Tp 20 19 18 20 20 
Fn 0 1 2 0 0 
Fp 2 5 5 7 7 

Recall 100 95 90 100 100 
Front 

Precision 90 79.17 78.26 74.07 74.07 
Tp 19 17 16 15 15 
Fn 1 3 4 5 5 
Fp 0 0 0 0 0 

Recall 95 85 80 75 75 
Right 

Precision 100 100 100 100 100 
Tp 58 54 53 53 53 
Fn 2 6 7 7 7 
Fp 2 6 7 7 7 

Recall 96.67 90 88.33 88.33 88.33 
Total 

Precision 96.67 90 88.33 88.33 83.33 
 
 

Table 4. Comparison of face pose estimation with differ-
ent k numbers in the testing set. 

k definition 1 3 5 7 9 
Tp 8 11 12 12 10 
Fn 5 2 1 1 3 
Fp 2 3 3 4 4 

Recall 61.54 84.62 92.31 92.31 76.92 
Left 

Precision 80 78.57 80 75 71.43 
Tp 33 33 34 33 33 
Fn 6 6 5 6 6 
Fp 7 3 3 4 5 

Recall 84.62 84.62 87.18 84.62 84.62 
Front 

Precision 82.50 91.67 91.89 89.19 86.84 
Tp 8 9 8 7 8 
Fn 2 1 2 3 2 
Fp 4 3 2 2 2 

Recall 80 90 80 70 80 
Right 

Precision 66.67 75 80 77.78 80 
Tp 49 53 54 52 51 
Fn 13 9 8 10 11 
Fp 13 9 8 10 11 

Recall 79.03 85.48 87.10 83.87 82.25 
Total 

Precision 79.03 85.48 87.10 83.87 82.25 
 
 
where Tp (true positives), Fp (false positives), and Fn (false 
negatives) represent the number of correctly identified face 
pose direction, falsely identified face pose from the other pose 
direction, and the number of missing face in the correct pose, 
respectively. 
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Fig. 12 shows the pose estimation results with hat, as in  
Fig. 12(a), (c), and (e), and without hat, as in Fig. 12(b), (d), 
and (f).  As seen in Fig. 12, the AAM model can be adaptively 
adjusted to the input image with different poses.  Moreover, 
the proposed FPE algorithm can fit the model to input images 
under different illuminations or wearing glasses.  As seen in 
Fig. 12(c) and (f), even with different illumination, AAM can 
still fit the face accurately.  After the AAM fitting, the posi-
tions of the landmarks are output and the feature vector is 
extracted.  Using the feature vector and kNN classifier, the 
face pose, left, front and right-directions, can be identified 
correctly. 

Tables 3 and 4 illustrate the classification results of FPE in 
the training and testing sets, with a different k number for kNN.  
As shown in Table 3, Precision is always 100 percent regard-
less of what k is in the classifier, because there is no other 
directional face recognized as the right pose face.  However, 
Recalls in the right and left poses are much lower than the 
front pose, since the feature vectors in the front pose are more 
uniform than the other two direction poses.  Recall in the front 
face set is high and the precision is low, because front pose 
faces are not as easy to recognize as the other direction faces.  
Other direction pose faces are easily classified into a front 
pose.  Table 4 illustrates that Recall and Precision in the testing 
set are not as good as in the training set.  However, Recall and 
Precision do achieve 80 percent with a k of 3, 5, 7, and 9 in the 
total testing set.  Precision in the front pose face is better than 
that of the other two directional faces, and Recall is still 
greater than 90 percent.  The performance of 1NN in both sets 
are changed severely, since using only one nearest neighbor is 
unreliable when the variance of the image is large. 

In order to achieve a high Precision, the number of features 
for kNN was analyzed.  The classification results in the train-
ing set and testing set with different feature numbers are 
shown in Figs. 13 and 14, respectively.  The number of used 
first feature in the feature vector x, denoted as F.  F is eight, 
twelve, and twenty-four representing the x-directional dis-
tances in the cheek, entire x-directional distances of the feature 
vector, and both x- and y-directional distances used.  F is two, 
indicating that only the first two features are used.  As seen in 
Figs. 13 and 14, Precision approaches 100 percent when F is 8 
and 12 in 1NN.  However, Precision in 1NN does not perform 
well, because considering only one nearest neighbor as a 
classification result is unreliable.  The result of using only two 
features is worse than others in both the training and testing 
sets.  In general, Precision in the testing set when F is 12 in 
5NN is better than other results.  If we do not consider 1NN in 
the training set, when F is 12 in 5NN, we get the best results in 
the training set.  Precision when F is 12 in 5NN in the training 
set and testing set is over 95 and 90 percent, respectively.  The 
y-directional features are not helpful, especially when k in-
creases.  This is reasonable in that the y-directional distances 
of the landmarks in the chin and cheek are not obviously dif-
ferent in the three-directional pose faces. 

The experimental results of the Adaboost classifier [11]  
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Fig. 13. Pose recognition results by kNN witha different feature number 

F in the training set. 
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Fig. 14. Pose recognition results by kNN with a different feature number 

F in the testing set. 

 
 

are listed in Table 5.  Adaboost is comprised of many weak 
classifiers.  As seen in Fig. 15, after the weak classifier number 
(W) is adjusted, the best classification result, which appears 
when W is 30 and F is 12, is still lower than 85 percent.  In 
Table 5, in any directional face, Recall and Precision of the 
proposed FPE approach are better than the Adaboost classifier 
when F is 12. 

VI. CONCLUSION 

A new FPE algorithm based on AAM and kNN is presented 
in this work.  The shape and texture variation are modeled in 
AAM simultaneously.  In FPE, the face is searched by itera-
tively fitting the model to the face image.  By using AAM, the 
input images are fitted, including the different pose faces 
under different luminance and wearing glasses.  Using AAM,  
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Table 5. Comparison of face pose estimation when F is 12 
in the testing set.  W is 30 for Adaboost, and k is 5 
for kNN. 

Definition Left Front Right Total 
 Ada. kNN Ada. kNN Ada. kNN Ada. kNN 

Tp 11 12 34 35 7 9 52 56 
Fn 2 1 5 4 3 1 10 6 
Fp 3 2 5 2 2 2 10 6 

Recall 84.6 92.3 87.2 89.7 70 90 83.9 90.3 
Precision 78.6 85.7 87.2 94.6 77.8 81.8 83.9 90.3 
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Fig. 15. The pose recognition resultsusing the Adaboost classifier with 

different feature number F in the testing set. 
 
 

the controlling parameters that adjust the model to fit the input 
image are obtained, and the feature vector for FPE is extracted.  
The different face poses can be estimated by using the trained 
kNN classifier.  According to the analysis of the value of k, the 
performance in 5NN is better than the other k numbers when 
twelve features, meaning only x-directional distances of the 
landmark points, are used.  The results showed that the pro-
posed FPE performs better than the Adaboost classifier. 
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