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ABSTRACT 

For a class of linear MIMO uncertain systems, a dynamic 
output feedback sliding mode control algorithm that avoids the 
chattering problem and high gain control is proposed in this 
paper.  Without using any differentiator, we develop a modi-
fied asymptotically stable second order sliding mode control 
law in which the developed controller can guarantee the finite 
time convergence to the sliding mode and the system states 
asymptotically approach to zero.  Finally, a numerical example 
is explained for demonstrating the applicability of the pro-
posed scheme. 

I. INTRODUCTION 

Sliding mode control (SMC) has been successfully used in 
controlling many uncertain systems [10, 19].  For a system 
with the matched disturbance, SMC can obtain the perfect 
disturbance rejection during the sliding mode.  In many prac-
tical systems, only the system output is available and therefore, 
researchers [1, 8, 10, 12, 20] have designed the output feed-
back controllers via the sliding mode technique to stabilize 
multivariable plants with matched uncertainties.  The control 
objectives are attained by constraining the system dynamics 
on a properly chosen sliding variable by means of discon-
tinuous control laws.  In theory, SMC offers robust stability  
to systems through high gain control with the infinite fast 
switching action.  However, high-gain control designs suffer 
from the drawback of peaking phenomenon, in which the 
control input peaks to an extremely large value during the 
transient stage.  The peaking phenomenon can easily violate 

the control saturation constraint.  Moreover, SMC using the 
discontinuous high speed switching action results in the chat-
tering problem.  The chattering action may excite the un- 
modeled high order dynamics and even cause instability [2, 10, 
19].  There are two major approaches reported to cope with  
the chattering problem.  The first approach is the boundary 
layer control [2, 6, 18] which uses the saturation function 
instead of the signum function inserts a boundary layer around 
the sliding variable.  However, the boundary layer control 
cannot guarantee the property of perfect disturbance rejection 
and hence reduces control accuracy. 

Another approach to eliminate the control chattering is to 
derive a dynamic sliding mode controller [17] or design high 
order sliding mode control [3-5].  High order sliding mode 
control not only removes some of the fundamental limitations 
of the traditional approach but also provides improved track-
ing accuracy under sliding mode.  For example, the case of 
second order sliding mode corresponds to the control acting on 
the second derivative of the sliding variable.  The main prob-
lem in implementation of high order sliding modes is the in-
creasing information demand.  Several such second order 
sliding mode algorithms have been presented in the literatures 
[7, 9, 13-16].  Levant [13, 14] presented the twisting algorithm 
to stabilize second order nonlinear systems but required the 
knowledge of the derivative of the sliding variable.  Bartolini 
[3, 4] presented a sub-optimal version of the twisting algo-
rithm to cope with the chattering problem.  However, this 
method requires at least the knowledge of the sign of the de-
rivative of the sliding variable.  The super twisting algorithm 
[14, 15] does not require the output derivative to be measured 
but it has been originally developed and analyzed for system 
with relative degree one.  A robust exact finite time conver-
gence differentiator is proposed in Levant [15] and utilized  
to estimate the derivative of the sliding variable.  For these 
abovementioned approaches, estimation of extend sliding 
variable becomes the main control difficulty. 

An alternative dynamic second order sliding mode con-
troller for avoiding the chattering problem and high gain con-
trol is proposed in this paper.  A dynamic output feedback 
sliding mode controller is developed based on modified sec-
ond-order sliding mode techniques and the resulting control 
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forces are chattering-free.  Introducing a reduced-order state 
estimator into the controller, the proposed control law can 
provided theoretically the finite time convergence to the slid-
ing mode.  We show that the system states asymptotically 
approach to zero.  As a result, the control accuracy is better 
than those performed by the conventional boundary layer 
control.  A sufficient condition for the closed-loop stability is 
given and the implementation of the proposed control algo-
rithm is simple.  Finally, the feasibility of the proposed method 
is illustrated by a numerical example. 

The work of this paper is organized as follows.  Section 2 
describes a class of uncertain MIMO linear systems and Sec-
tion 3 presents the dynamic output feedback sliding mode 
controller design.  The simulation result is included in Section 
4.  Section 5 offers a brief conclusion. 

II. PROBLEM FORMULATION 

Consider an uncertain system satisfying the matched con-
dition of the form 

( )( ) ( ) ( ) ( , )t t t t= + +�x Ax B u d x  

( ) ( )t t=y Cx   (1) 

where n∈ℜx  is the state vector, m∈ℜu  is the control input 

vector, p∈ℜy  is the output vector, and m∈ℜd  is the un-

known matched disturbance vector with the known upper 

bounds 1( , )t a≤d x  and ( , )t�d x ≤ a2.  Suppose that the 

system output in system (1) is only measurable.  Let the sliding 
variable be chosen as  

 ( ) ( )t t=s Gy  (2) 

where the matrix m p×∈ℜG  is designed to stabilize the re-
duced-order system.  To satisfy the reaching and sliding con-
dition, the control input for the conventional sliding mode 
controller is designed as [10, 19] 

 ( ) ( )( )1
( ) ( ) ( )t t sign tγ−= − +u GCB Sy s  (3) 

where 0γ >  is a high gain to design such that the system 
reaches and slides on the sliding surface in finite time.  The 
main disadvantages of (3) are that it produces the chattering 
phenomena and requires high gain control.  However, unde-
sired chattering effect produced by the high switching action 
of the control input is the main implementation problem of 
SMC.  The continuous approximation techniques [2, 6, 18] 
have been presented to reduce the chattering.  A drawback of 
continuous approximation methods is the reduction of the 
control accuracy. 

For a linear MIMO system with the matched disturbance, 
in this paper we develop a dynamic output feedback sliding 

mode control algorithm in which the proposed procedure can 
effectively reduce the chattering effect.  Introducing a PI-type 
control input into the controller, the finite time convergence to 
the sliding mode is guaranteed.  Moreover, the system states 
asymptotically approach to zero once the system is in the 
sliding mode.  Before introducing the proposed method, the 
following assumptions are made throughout this paper. 

 
Assumption 1. System (1) is minimum phase and rank(CB) = 
m. 

 
Assumption 2. The pairs (A, B) and (C, A) are stabilizable and 
detectable, respectively. 

III. DYNAMIC OUTPUT FEEDBACK SLIDING 
MODE CONTROLLER DESIGN 

In this section, we propose a dynamic output feedback slid- 
ing mode control algorithm which can successfully avoid the 
chattering.  A modified second-order sliding mode control 
algorithm that does not require the derivative of the sliding 
variable is presented.  Introducing a reduced-order state esti-
mator into the controller, the proposed control law can guar-
antee the finite time convergence to the sliding mode and 
stabilize the reduced-order system in which the system states 
asymptotically approach to zero. 

Since system (1) is minimum phase and rank(CB) = m, 
Edward and Spurgeon [10] have shown that a matrix F ∈ℜm×p 
can be found such that the matrix (In – B(FCB)−1FC)A has 
n m−  non-zero eigenvalues λi, i = 1, 2, …, n – m, satisfying 
Re{λi} < 0.  Then we define a new measurable state s ∈ ℜm of 
the form 

 ( ) ( )1 1
( ) ( ) ( )t t t

− −
s = FCB Fy = FCB FCx  (4) 

There exists a full rank matrix ( )n n mC × −∈W  such that 

 ( )( )1

n

−−I B FCB FC AW = WΛ  (5) 

where Λ is the Jordan form of eigenvalues 1 2{ , , , }n mλ λ λ −�  

and W contains the right eigenvectors corresponding to Λ.   

As for the other m eigenvalues of 1( ( ) ) ,n
−−I B FCB FC A   

they are all zeros.  This can be easily seen from (5) that 
1( ( ) )n

−− =FC I B FCB FC A 0  and rank(FC) = m.  Also, pre- 

multiplying C into (5) yields 

 ( )( )1

n

−− = =FC I B FCB FC AW FCW Λ 0  (6) 

Because Λ is of full rank, we have  

 =FCW 0  (7) 
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Now, let’s focus on ( ) ,n n mC × −∈W  a complex matrix possess-

ing n m−  complex eigenvectors in accordance with λi, i = 1,  

2, …, n – m, satisfying Re{λi} < 0.  It is known if a complex 
eigenvalue λ belongs to 1 2{ , , , }n mλ λ λ −� , so is its conjugate 

λ ; therefore, H n n×∈ℜWW  where ,H T=W W  the conjugate 
and transpose matrix of W.  Therefore, applying the singu-
lar-value decomposition technique to W leads to 

 H 
 
 

Q
W = U V

0
 (8) 

where n n×∈ℜU  is orthogonal, i.e. T
n=U U I , ( ) ( )n m n mC − × −∈V  

is unitary, i.e. H
n m−=V V I , and ( ) ( )n m n m− × −∈ℜQ  is invertible.  

Let [ ]1 2=U U U  where ( )
1

n n m× −∈ℜU , then from (8) we ob-

tain 

 1
H=W U QV  (9) 

Note that 1 1
T

n m−=U U I  since T
n=U U I .  Substituting (9) into 

(7) leads to 1
HCU QV  = 0.  Obviously, 

 1 =CU 0  (10) 

since H
n m−=V V I  and Q is invertible.  Based on (7), (10) and 

1 1 ,T
n m−=U U I  we have 

 
( )

( )( ) [ ]
1

11

1

nT
n

−

−

 
  =
 −
 

FCB FC
B U I

U I B FCB FC
 (11) 

Define 

 
( )

( )( )
1

1

1
T

n

−

−

 
 =
 −
 

FCB FC
M

U I B FCB FC
 

and 

 [ ]1=N B U  

then both n n×  square matrices M and N are real and M =  

N −1.  Most significantly, M can be used as a transformation 

matrix.  Let 1
1 ( ( ) ) ,T

n
−= −z U I B FCB FC x  which is not meas- 

urable, then  

 
( )

( )( )
1

1

1
T

n

−

−

 
  = =   −  

 

FCB FC s
Mx x

zU I B FCB FC
 (12) 

or 

 1
1

−    
   
   

s s
x = M = N = Bs + U z

z z
 (13) 

Pre-multiplying M into (1) becomes 

 ( ) ( )1 1

1( ) ( ) ( )t t t
− −= +�s FCB FCABs FCB FCAU z  

( )( ) ,t t+ +u d x   (14) 

and 

 ( )( )1

1 1( ) ( )T
nt t

−= −�z U I B FCB FC AU z  

 ( )( )1

1 ( )T
n t

−+ −U I B FCB FC ABs  (15) 

From (9), H
n m−=V V I , and 1 1

T
n m−=U U I , we have 

 ( )( ) ( ) 11 1 1
1 1
T

n

−− − −− =U I B FCB FC AU QV Λ QV  (16) 

Evidently, ( )( )1
1 1
T

n
−−U AUI B FCFCB  has eigenvalues 

related to Λ, i.e., { }1 2, , , n mλ λ λ −� , all located in the left-half 

complex plane.  Viewing from (15), an estimator for z can be 
built up as 

 ( )( )1

1 1ˆ ˆ( ) ( )T
nt t

−= −�z U I B FCB FC AU z  

 ( )( )1

1          ( )T
n t

−+ −U I B FCB FC ABs  (17) 

Let ˆ= −�z z z .  From (15) and (17), we have 

 ( )( )1

1 1( ) ( )T
nt t

−= −�� �z U I B FCB FC AU z  (18) 

where all the eigenvalues of ( )( )1

1 1
T

n

−−U I B FCB FC AU  

possess negative real part.  As a result, we can conclude  

 ˆ( ) ( )               for  t t t→ → ∞z z  (19) 

This completes the design of state-estimator (15) for z. 
With the use of the state-estimator (17), the total system is 

rewritten as 

( )( ) ( ) ( ) ( , )t t t t= + +�x Ax B u d x  

( ) ( )t t=y Cx  
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( )( )1

1 1ˆ ˆ( ) ( )T
nt t

−= −�z U I B FCB FC AU z  

( )( )1

1         ( )T
n t

−+ −U I B FCB FC ABs  (20) 

Now choose the sliding variable as ( ) 1−= =s FCB FCx  

( ) 1−
FCB Fy  in (4), then from (14) we obtain 

 ( ) ( )1 1

1( ) ( ) ( )t t t
− −= +�s FCB FCABs FCB FCAU z  

( )          ( ) ,t t+ +u d x   (21) 

Based on the state estimator (17), we design the PI-type dy-
namic sliding mode controller as 

( ) ( )1

1 ˆ( ) ( ) ( )t t t
−= − +u FCB FCABs FCAU z  

 ( )1 2 0 0
          ( ) ( ) ( )

t t
t d sign dτ τ τ τ− − −∫ ∫L s L s K s  (22) 

where 1
m m×∈ℜL , 2

m m×∈ℜL  and m m×∈ℜK  are the positive 

definite diagonal matrix given by 

 ( ) ( )1 11 1 2 21 2, ,  ,m mdiag l l diag l l= =� �L L  

and 

 ( )1, mdiag k k= �K  

Moreover, these parameters in the matrices are designed in the 
latter.  Substituting the control input (22) into (21) can obtain 

( ) 1

1( ) ( ) ( , )t t t
−= +� �s FCB FCAU z d x  

 ( )1 2 0 0
         ( ) ( ) ( )

t t
t d sign dτ τ τ τ− − −∫ ∫L s L s K s  (23) 

Further differentiating (23) yields the following dynamics 

 ( )1 2( ) ( ) ( ) ( ) ( )t t t sign t t+ + = − +�� �s L s L s K s f  (24) 

where  

 
( ) ( )( )1 1

1 1 1( ) ( )

           ( , )

T
nt t

t

− −= −

+

�

�

f FCB FCAU U I B FCB FC AU z

d x
 

It follows that 1 .
T m

mf f= ∈ℜ  �f   Before giving the 

main result, we have the following lemmas. 

σ
k
l2l2

−k

(t) > 0σ(t) < 0

(t0)σ̇

σ̇

σ̇

(t1)σ̇  
Fig. 1.  Phase paths of the second-order system. 

 
 

Lemma 1 
Consider the unperturbed system as  

 ( )1 2( ) ( ) ( ) ( )t l t l t ksign tσ σ σ σ+ + = −�� �  (25) 

If the roots of the characteristic equation s2 + l1s + l2 = 0 are 
located in the left-half plane, then ( )tσ  and ( )tσ�  asymptoti-

cally converge to zero in finite time for a sufficiently large 
value of k > 0. 
 
Proof:  

First, we choose the parameters l1 and l2 such that the roots 
of the characteristic equation, s2 + l1s + l2 = 0, are located in the 
left-half plane.  Assume now for simplicity that the initial 
conditions are 0( ) 0tσ =  and 0( )tσ�  > 0.  Thus the trajectory 

enters the half-plane ( ) 0tσ >  (quadrant I), given in Fig. 1.  

When ( )tσ  > 0, we have 1 2( ) ( ) ( )t l t l t kσ σ σ+ + = −�� �  and ob-

tain its equivalent point as ( )
2

, ,0 .
k

l
σ σ

 −=  
 

�   Let the function 

( )g t  be generated by  

 ( )( ) ( ) ( ) ( )
k

g t t r t sign tσ σ σ
µ

= + +�  

where µ + r + l1 and µr + γ = l2.  The parameters µ > 0, r > 0 
and γ ≥ 0 are real constants and are chosen such that the 
equation, s2 + l1s + (l2 − γ) = 0, has real distinct roots.  Since 

( )tσ  > 0, it follows from 1 2( ) ( ) ( ) 0t l t l t kσ σ σ+ + + =�� �  that 

 

( )

( )1 2

( )
( ) ( ) ( ) ( )

                    ( ) ( ) ( )

                    ( )

dg t
g t t r t r t k

dt

t l t l t k

t

µ σ µ σ µ σ

σ σ γ σ

γσ

+ = + + + +

= + + − +

= −

�� �

�� �  

The solution to g(t) is then given by  
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0

( ) (0) ( )
ttg t g e e t dµ µτγ σ τ τ− −= − −∫  

Since µ > 0 and the characteristic equation s2 + l1s + l2 = 0 has 
the stable roots, we have (0) ( )tσ σ≥  for 0t >  and then 

obtain 

 

( )

0
( ) ( )

(0)
       1

tt

t t

g t Ce e t d

Ce e

µ µτ

µ µ

γ σ τ τ

γ σ
µ

− −

− −

≤ + −

≤ + −

∫
 

where C > 0 is a constant.  Choose a Lyapunov function as 

 ( ) ( )V t tσ=  

and then obtain its time derivative as 

 

( ) ( )

( )

( ) ( ) ( ) ( ) ( )

(0)
1 ( )t t

k
V t sign t g t sign t r t

k
Ce e r tµ µ

σ σ σ
µ

γ σ
σ

µ µ
− −

 
= − − 

 

≤ + − − −

�

 

Since µ > 0, there exists a finite time, T1 > 0, such that 
(0)t k

Ce µ γ σ
ρ

µ µ
− + < −  for a sufficiently large k and t > T1, 

where ρ > 0 is a constant.  Hence  

 1( ) ( ) forV t r t t Tρ σ≤ − − >�  

The above equation implies that the function ( )tσ  converges 

to zero in finite time.  Let the trajectory of (25) intersect next 
time with the axis ( ) 0tσ =  at the point 1( ).tσ�   Since the roots 

of the characteristic equation, s2 + l1s + l2 = 0, are stable, we 
know that the spiral trajectories converge to the equivalent 
point and the behavior of ( )tσ�  changes monotonously.  

Hence, 

 1

0

( )
1

( )

t
q

t

σ
σ

= <
�

�
 

Extending the trajectory into the half plane ( ) 0tσ <  after a 

similar reasoning achieves that successive crossing the axis 

( ) 0tσ =  satisfies the inequality 1( )
1

( )
i

i

t
q

t

σ
σ

+ = <
�

�
.  Therefore, 

its solutions cross the axis ( ) 0tσ =  from quadrant II to 

quadrant I, and from quadrant IV to quadrant III.  Every tra-
jectory of the system crosses the axis ( ) 0tσ =  in finite time.  

After gluing these paths along the line ( ) 0tσ = , we obtain the 

phase portrait of the system, as shown in Fig. 1.  This algo-
rithm features a twisting of the phase portrait around the origin 
and an infinite number encircling the origin occurs.  Accord-
ing to Lavent’s papers [13, 14], the total convergence time is 
estimated as 

 ( ) ( ) ( ) ( )02
0 1

1i

t
T t t q q

q

σ
σ σ≤ ≤ + + + =

−∑
�

� � �  

As a result, we show that the trajectories perform rotations 
around the origin while converging in finite time to the origin 
of the phase plane.  The finite time convergence to the origin is 
due to switching between two different control amplitudes as 
the trajectory comes nearer to the origin.  The proof of the 
lemma is finished. 
 
Lemma 2 

Consider the following system 

 ( )1 2( ) ( ) ( ) ( ) ( )t l t l t ksign t f tσ σ σ σ+ + = − +�� �  (26) 

where the function f(t) has the upper bound ( )f t η≤  and  

η > 0 is a known constant.  If the parameters l1 and l2, and the 
gain k are chosen to satisfy the following condition: 

 
2

1
2 and

4

l
l k η< >  (27) 

then ( )tσ  and ( )tσ�  converge to zero in finite time. 
 

Proof: 
When σ(t) > 0, Eq. (26) becomes 

 1 2( ) ( ) ( ) ( )t l t l t k f tσ σ σ+ + = − +�� �  

Let 1
2

k
v

l
σ= +  and 2 1 .v v σ= =� �   It follows that 

 1

2 1 2

0 1 ( ) 0
( ) ( ) ( )

( ) ( )

v t
t t f t

l l v t f t

     
= + = +     − −     

Φ�v v b , 

where 2
1 2 ,

TT Tv v = ∈ℜ v
2 1

0 1
,

l l

 
=  − − 

Φ and
0

.
1

 
=  
 

b  Write  

the above dynamic equation as its solution in an explicit form 

 
0

( ) (0) ( )
ttt f t dτ τ τ= + −∫

Φ Φv e v e b  

where 
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( ) ( )

( ) ( )

1 1

1

t t t t

t

t t t t

e e e e

e e e e

α β α β

α β α β

β α
β α β α

αβ α β
α β α β

− − − −

− − − −

 − − − −
 =
 − − − − 

Φe . 

We take the parameters l1 and l2 to satisfy 
2

1
2 4

l
l >  and then 

obtain the characteristic polynomial of system (26) having  
two distinct real roots λ1,2 = −α, −β where α > 0, β > 0,  
β > α, l1 = α + β and l2 = αβ.  The upper bounds of v1(t) and 
v2(t) can be constructed as 

 

( )

1 1 0

1 0

1 0

1 1
2

1
( ) ( )

       

       

       

tt

tt

t

t t

v t C e e e f t d

C e e e d

C e e e d

C e C e
l

α ατ βτ

α ατ βτ

α ατ βτ

α α

τ τ
β α

η τ
β α

η τ
β α

η β α η
β α αβ

− − −

− − −

∞− − −

− −

≤ + − −
−

≤ + −
−

≤ + −
−

 −= + = + −  

∫

∫

∫
 

and 

( )
( )( )
( )( )

2 2 0

2 0

2 0

2 2
2

( )

2
 

tt

t

t

t t

v t C e e e d

C e e e e d

C e e e e d

C e C e
l
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where C1 > 0 and C2 > 0 are constants.  It follows that 
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Since 1
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,
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v
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σ= +  we can from (28) obtain  
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 is an attractor Bs1.  Similar to the work, we 

have, when σ(t) < 0, the ball of radius r, with center located at 

2

, 0
k

l

 
 
 

 is another attractor Bs2.  Choose the gain k to satisfy 

the inequality k > η and then we have 
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It follows from the above two inequalities that the two at-
tractors Bs1 and Bs2 do not intersect each other, and the be-
havior of the perturbed system (26) will be qualitatively 
similar to the behavior of the nominal system.  Therefore,  
the perturbed system converges to the origin in the same  
way of the nominal system and the condition that ( )tσ  and 

( )tσ�  converge to zero in finite time can be guaranteed.  We 
complete the proof of the lemma. 

Since 2( , )t a≤�d x  and ( ) 0t →�z  as t → ∞, we know 

2( ) ( , )t t aϕ ϕ≤ + = +�f d x  where ϕ > 0 is a given constant.  

Based on linear algebraic theory, we have 

 2( ) ( )if t t a ϕ< ≤ +f  

Theorem 1 
Consider system (1) with the sliding variable (4) and the 

control input (22).  Let η = a2 + ϕ where ϕ > 0 is a known 
constant.  If the elements of these matrices L1, L2, and K in  
the controller satisfy the following conditions: 

 
2

1
2 and , for 1, ,

4
i

i i

l
l k i qη< > = �  (29) 

then the system states x asymptotically approach to zero. 
 
Proof: 

We first express system (24) as a set of second-order sys-
tems with the form 

 ( )1 2( ) ( ) ( ) ( ) ( )i i i i i is t l s t l s t k sign s t f t+ + = − +�� �  (30) 

where 1, ,i q= �  and ( )if t ≤ η.  Applying the result of 

Lemma 2 into (30), if the parameters l1i, li2 and ki can satisfy 

 
2

1
2 and , for 1, ,

4
i

i i

l
l k i qη< > = �  

then si(t) asymptotically converges to zero in finite time ac-
cording to Lemma 2.  It follows that the sliding variable con-
verges to zero in finite time.  When the condition ( )t =s 0  is 
guaranteed, it follows from the concept of the equivalent con-
trol [10, 19] that the system dynamics in the sliding mode is  
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 ( )( )1
( ) ( ).t t

−= −�x A B FCB FCA x  

As a result, we can from the above equation conclude that the 
system states asymptotically approach to zero and finish the 
proof of the theorem. 

IV. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed method, 
we consider an unstable batch reactor where the matched 
disturbance is introduced into the system as 
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The sliding variable is chosen as 

 
0 0.1761
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 
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s y  

where the nonzero eigenvalues of the system in the sliding 
mode are assigned as { 5.0394, 1.1916}− − .  The estimator is 
designed as 
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The conventional boundary layer controller is designed as 
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Based on the proposed algorithm, we design the control input 
as 
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Fig. 2.  System states using the proposed method. 
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Fig. 3.  System states using the saturation function. 

 
 

Two cases are simultaneously simulated under the initial con-
dition (0) [1 2 2 2]T= − −x  and the simulation is carried 
out at a fixed step size of 1 milliseconds.  The time responses 
of the system states in the two cases are shown in Fig. 2 and 
Fig. 3, respectively.  The proposed method can guarantee that 
the responses of the system states asymptotically approach to 
zero.  Figs. 4 and 5 are the responses of the sliding variable and 
Figs. 6 and 7 depict the control inputs of two cases.  It is clear 
from Figs. 6 and 7 that the input gain in our method is smaller 
than the conventional boundary layer controller.  As can be 
seen from these figures, the proposed method can produce the 
finite time convergence to the sliding mode and obtain the 
desired performance. 

V. CONCLUSION 

In this paper we have proposed a modified second-order 
sliding mode control algorithm to avoid the chattering prob-
lem for a MIMO uncertain system.  The algorithm does not 
require the derivative of the sliding variable, thus eliminating 
the requirement of designing a differentiator.  Under the de-
veloped dynamic output feedback sliding mode controller, we 
show that the finite time convergence to the sliding mode is 
guaranteed and the system states can asymptotically approach 
to zero.  Simulation results demonstrate that the proposed 
control scheme exhibits reasonably good performance. 
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Fig. 4.  Responses of s1(t) using the two methods. 
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Fig. 5.  Responses of s2(t) using the two methods. 
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