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ABSTRACT 

Scientists remain uncertain about numerous aspects of 
hydrothermal vent (HV) ecology, including the reproductive 
biology of their biota, as well as their recruitment and dis-
persal during larval stages (meroplankton) in the plankton 
above the HV sites.  We studied the meroplankton from a 
shallow HV site off the northeastern coast of Taiwan, in the 
northwest Pacific Ocean.  Our findings potentially explain 
how fauna endemic to HVs persist at specific HV sites.  With 
the exception of some damaged Cnidaria and Ctenophora, the 
plankton net catches were in good condition and sufficient for 
identification. 

INTRODUCTION 

Other than their trophic advantage being closer to the pe-
lagic primary producer level in the euphotic zone of the water 
column [1, 9, 23], drifting organisms show effective dispersal 
and recolonisation of areas that have been disturbed by biotic 
and abiotic agents [2, 29].  Stray members of epiplankton can 
be found here as well as their dormant stages [11, 21].  Pelagic 
drift makes an effective genetic exchange between geographi-
cally disjunct populations of bottom-living invertebrates fea-
sible [8], which is specifically relevant for larvae of otherwise 
benthic macrofauna.  It is assumed that the distribution and 
abundance of benthic populations are influenced by larval 
recruitment processes (e.g., [45]).  The vast majority of these 
larvae, as well as other developmental instars (e.g., gametes, 
zygotes, juveniles, adults of invertebrates, or their vegetative 
parts) may colonize their prospective benthic habitats by  
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Fig. 1. HV Site A – collection site of meroplanktonic larvae throughout 

the water column (0 to 14 m depth) at Gueishandao. 
 
 

actively swimming and/ or passively drifting in the pelagic 
zone as meroplankton [11, 52, 53].  Hence, determining the 
sources of benthic recruitment variability is partially a prob-
lem relating to zooplankton ecology [10].  Specifically, demer-
sally drifting stages following disturbance events are critical 
for the provision of propagules for recruitment processes [12]. 

Since the discovery of deep-sea hydrothermal vents (HVs) 
in 1977, over 400 new species have been encountered in these 
environments throughout the world’s oceans [18].  HVs are 
characterized by various extreme physicochemical conditions, 
such as high temperature, high sulfide and metal content, high 
carbon dioxide levels, low oxygen levels, and low pH [40, 44].  
Biological communities associated with the vents exhibit 
behavioral, physiological, morphological, and reproductive 
adaptations [4, 6, 46, 48].  HV habitats are characterized by the 
spatially and temporally variable input of hydrothermal fluids 
[3].  Although specific vent fauna have adapted to these habi-
tats, the extreme conditions are lethal to other organisms. 

Gueishandao (Turtle Island) is located at a tectonic junction 
of the fault system extension of Taiwan and the southern rift-
ing end of the Okinawa Trough [24, 49].  A cluster of more 
than 50 HVs at water depths ranging between 10 and 80 m off 
the eastern tip of Gueishandao emits hydrothermal fluids  
and volcanic gases such as HSO3- (Fig. 1).  The HV discharges  
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Fig. 2. Seasonal variations of meroplankton larvae in the watercolumn at Kueishantao at HV Site A at three depth layers.  Crab zoea 1 (a); crab zoea  

2 (b); crab zoea 3 (c); crab zoea 4 (d); Megalopa (e); Polychaeta trochophora (f); Polychaeta juvenile (g); Bivalvia veliger (h); Ctenophora cy-
dippe (i); Echinoidea echinopluteus (j); Asteroidea bipinnaria (k); Ophiuroidea ophiopluteus (l); Bryozoa cyphonautes (m); Porifera paren-
chymula (n); and Anthozoa planula (o) recorded at the HV site during each sampling from November 2007 to September 2008. 

 
 

are sulfur-rich and highly acidic (1.75 to 4.60 pH).  They 
commonly have high numbers of sulfur rock formations at the 
chimney outlets [39] and elevated temperatures up to 116°C.  

The gases comprise a similar composition to that of low- 
temperature fumaroles worldwide; that is, with high CO2 and 
H2S but low SO2 and HCl contents of a mantle source region 
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without significant crust contamination [3, 51].  How and to 
what extent HV effluents and gases affect the plankton of 
overlaying waters has not been investigated.  [27] mentioned 
that the vent plumes were lethal to zooplankton, although they 
provided a scavenging opportunity for specific vent crabs that 
feed on dead zooplankton. 

It is unknown how crabs become dispersed and recolonize 
their fluctuating habitats of newly developed HV sites, or  
how they persist in their generally isolated habitats.  Dispersal 
and recruitment at HV sites remain generally popular topics 
for the supply-side ecology at HVs [34, 42].  Although pri-
mary dispersal stages might be pelagic larvae, adults may  
also have evolved recognition systems to HV signaling cues.  
However, these cues remain elusive because of difficulties 
conducting experiments at deep-water HV sites.  Specifically, 
it has not been shown whether invertebrates from HV regions 
use various environmental cues to locate their vent habitat [34, 
50].  The HVs at Gueishandao provide a unique opportunity 
for an experimental approach to the supply-side ecology of 
vent fauna because of their shallow water location. 

The objective of this study was to evaluate specific sup-
ply-side ecology aspects of macrofauna larvae by reporting on 
the vertical and seasonal distribution of meroplanktonic larvae 
in the area of a shallow HV at Gueishandao. 

II. MATERIAL AND METHODS 

1. Invertebrate Meroplankton Collection, Identification, 
and Enumeration 

We collected seasonal drift assemblages between Novem-
ber 16, 2007 and March 12, 2008, and again from May 27, 
2008 to September 21, 2008 from surface waters (up to 1 m), 
midwater (6 m), and above ground (14 m) at an HV site (Site  
A) at Gueishandao (Turtle Island, Fig. 1).  The plankton sam-
ples predominantly comprised copepods were fixed in 4% 
buffered formalin.  We subsequently identified and counted 
meroplanktonic larvae in the laboratory. 

2. Data Analyses 

To elucidate the variations of invertebrate larvae at Site A, 
we employed the Paleontological Statistics software package 
to analyze the invertebrate larvae community of each sample 
[19].  Among the 12 samples taken, we applied the Bray- 
Curtis method to evaluate the relative similarities in compo-
sition for the 15 dominant invertebrate larvae groups.  The 
meroplanktonic larvae characteristics of each cluster were 
further identified using the Indicator Value Index (IndVal) 
proposed by [14].  To estimate the invertebrate larvae diversity 
of each sample, we applied the Shannon-Wiener diversity 
index, Pielou’s evenness index, and Margalef’s richness index. 

III. RESULTS 

1. Taxon Composition of Meroplankton at HV Site A 
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Fig. 3. Abundance of meroplankton larvae, number of meroplankton 

larvae group (a); indices of richness (b); evenness (c); and diver-
sity (d) during sampling from November 2007 to September 2008. 

 
 
From the 12 samples, we identified 15 meroplankton larvae 

in the water column at Gueishandao from 3 depths at HV Site 
A.  The abundance of meroplankton larvae in each sample is 
shown in Fig. 2.  The relative abundance (RA) and occurrence 
ratio (OR) of each meroplankton larvae group varied by the  
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Fig. 4. Percentages of seven highly abundant meroplankton larvae groups (RA > 5%) which were identified at each sample of the sampling cruise from 

November 2007 to September 2008. 

 
 

month the samples were obtained.  The results show that 
among all samples, the RA of crab zoea 3 was highest (16.82%), 
followed by crab zoea 2 (12.62%), megalopa (11.68%), crab 
zoea 1 (11.21%), and crab zoea 4 (9.35%).  The highest OR  
of meroplankton larvae was crab zoea 1 and crab zoea 2 
(66.67%), followed by crab zoea 3, crab zoea 4, polychaeta 
trochophora, and anthozoa planula (58.33%). 

Fig. 4 shows the seasonal variations of meroplankton larvae 
abundance, number of groups, and the richness, evenness, and 
diversity indices over the sampling period.  The varied abun-
dance and group composition of meroplankton larvae among  
all samples are shown in Fig. 3(a).  Only the surface water 
sample collected in November 2007 did not contain any mero-
plankton larva.  Among the remaining 11 samples, the abun-
dance of meroplankton larvae ranged from 0.63 (surface  
sample – March 2008) to 14.46 individuals m-3 (midwater  
sample – September 2008).  The number of the meroplankton 
larvae group in each sample ranged between 1 (surface sample – 
Mar/2008) and 14 station-1 (midwater sample – May 2008 and 
September 2008).  The indices of richness, evenness, and di-

versity showed high variation between samples.  Because the 
record of the identified meroplankton larvae group was less than 
2 for the March 2008 surface sample, the richness, evenness, 
and diversity indices could not be calculated.  Among the re-
maining 10 samples, the richness index ranged from 2.02 
(aboveground sample – November 2007) to 6.3 (surface sam-
ple – September 2008) (Fig. 3(b)).  The evenness index of  
each sample ranged between 0.81 (aboveground sample – No-
vember 2007) and 0.98 (midwater sample – November 2007) 
(Fig. 3(c)).  The Shannon-Wiener diversity index ranged from 
1.31 (aboveground sample – November 2007) to 2.43 (midwa-
ter sample – September 2008) (Fig. 3(d)). 

2. Seasonality Succession, Distribution and Composition 
at Three Depths 

The seasonal succession patterns of meroplankton com-
positions recorded at the 3 depth layers are clear.  Fig. 4 
shows the proportions of dominance, meroplankton larvae 
composition and distribution for each sample.  This figure 
also provides the dynamic composition of meroplankton for  
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Fig. 5. Dendrogram showing the similarities between stations measured 

using the Bray-Curtis distance measurement for meroplankton 
larvae composition. Recorded during sampling from November 
2007 to September 2008. 

 
 

RA values greater than 5% of the total abundance.  The RA 
data indicate that Gueishandao endemic crab larvae (Xeno-
grapsus testudinatus; i.e., zoea 1, zoea 2, zoea 3, zoea 4, and 
megalopa) comprise the dominant organism in the waters at 
this HV site.  Furthermore, the crab larvae were distributed 
widely over the 3 depths. 

Among the 3 discussed depths strata, anthozoa planula 
and crab larvae were dominant in surface samples (Fig. 4(a)).  
In the sample obtained in March 2008, only the surface 
sample contained anthozoa planulae.  In addition, high pro-
portions of megalopa (Fig. 4(b)) and polychaeta trochophora 
(Fig. 4(c)) occurred in the midwater and aboveground sam-
ples, respectively. 

3. Meroplankton Larvae Community Structures 

The Bray-Curtis analysis of meroplankton larval assem-
blages shows various larval community structures (Fig. 5).  
Table 1 demonstrates zooplankton meroplankton larvae with 
index values (IndVal) greater than 5% for each group.  At the 
highest level, a single sample (surface – Nov/2007) without 
any identified meroplankton larvae was allocated into Group 
I-B (Fig. 5).  The remaining 11 samples were separated into 
Group I-A.  The second hierarchical level distinguished sam-
ples by abundance.  The samples comprising Group-II A con-
tains 5 samples characterized by low abundance (0.67 ± 0.90 
individuals m-3, mean ± SD).  The dominant meroplankton in 
Group II-A are crab zoea 1 (5.63%), crab zoea 1 (6.25%), and 
anthozoa planula (34.38%), indicating that the majority of 
surface samples had a low abundance.  Group II-B comprised 
6 samples with high abundance (3.81 ± 9.02 individuals m-3), 
and was dominated by the following 7 meroplankton larvae: 
crab zoea 1 (9.62%), crab zoea 2 (12.09%), crab zoea 3 
(19.23%), crab zoea 4 (8.24%), megalopa (10.53%), poly- 

Table 1. Indicator meroplankton larvae and index values 
(%) for each cluster identified using the Bray- 
Curtis cluster analysis method (Fig. 5). 

Group 
Merozooplankton 

II A II B 

crab zoea 1 5.63 9.62 

crab zoea 2 6.25 12.09 

crab zoea 3  19.23 

crab zoea 4  8.24 

Megalopa  10.53 

Polychaeta trochophora  5.04 

Bivalvia veliger  5.49 

Anthozoa planula 34.38  

Cumulative contribution (%) 46.25 70.24 
 
 

chaeta trochophora (5.04%), and Bivalvia veliger (5.49%) 
(Table 1). 

IV. DISCUSSION 

Previous studies emphasized the ecological role of pelagic 
larvae for bottom-living invertebrates [43], and assumed an 
inverse correlation between planktotrophic larvae and depth as 
well as toward the polar regions – whereas there is enhanced 
direct development and brood care along these gradients.  
Numerous subsequent studies (e.g., [16, 36-38]) amended this 
assumption.  Lecithotrophic larvae, as well as other ontoge-
netic stages with direct development, have been shown to 
potentially occur as meroplankton in the water column [17, 
31].  Effective dispersal may enhance the recolonization  
potential of disturbed bottom-living areas, which generally 
influences succession speed and direction, as well as benthic 
community attributes.  Therefore, restricted dispersal capa-
bilities should become a key factor for evolution and zo-
ogeographic distribution patterns.  Dispersal and recruit- 
ment remain an eminent topic of investigation, particularly for 
invertebrates from HV sites considering their fragmented and 
otherwise isolated occurrence [34, 41]. 

Few macrofauna species have been identified at the 
Gueishandao HV site discussed in this study – among them, X. 
testudinatus Ng, Huang & Ho, 2000 (Crustacea: Decapoda: 
Brachyura: Grapsidae) described by [35] in a volume edited 
by [25].  Megalopa stages were identified and juvenile crabs 
in the fissures and crevices of 3 sulfur aggregates that 
weighed 38.27 kg.  HV studies have resulted in the discovery 
of numerous new species of crabs [33].  In a review of HV 
decapods, [32] listed 125 species belonging to 33 families.  
We studied X. testudinatus that was discovered by Takeda 
and Kurata in 1977 as the third species of the genus Xeno-
grapsus (Bythograeidae) from shallow water HVs off the east 
coast of Taiwan. 

Low abundances of the crabs at the discussed HV sites  
of Gueishandao during winter may indicate that individuals 
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translocate into deeper waters and return to shallower sites 
during summer.  Reproduction is interrupted only during 
winter for approximately 4 months (unpubl. data).  In labora-
tory studies, we successfully reared the megalopa larvae 
through metamorphosis and several juvenile stages [22].  
Laboratory observations of the behavior of pelagic larval zoea 
and benthic megalopa stages of X. testudinatus indicate that 
they tend to stay near the bottom, even when swimming.  The 
field distribution of larvae clearly indicates that zoea and 
megalopa stages are distributed throughout the water column 
(Fig. 2).  Furthermore, there is a positive correlation between 
abundance and depth, with the highest densities recorded at 
the sea bottom.  When juvenile or adult vent crabs collected 
from the HV outlet of a shallow water HV site off Gueishan-
dao were released approximately 10 m from the gas bubble- 
and flume-emitting outlet, they returned immediately to the 
outlet, indicating an attraction to currently unknown HV site 
conditions (unpubl. observations). 

Previous research on the behavior of megalopa stages in-
dicated that these larvae swim actively over a range of tem-
peratures (2 to 25°C) near the vents.  It is unknown whether 
these crabs exhibit migratory behavior caused by factors other 
than the attraction of food [26]. 

Previous studies have examined the reproductive biology 
[47] and behavior of larval stage crabs [47] at several HV 
sites.  In addition, [22] reported that HV chimneys provide 
structurally complex habitats for larval and juvenile X. 
testudinatus crabs.  These microhabitats comprise cavities 
that have at least partially been created by the juvenile crabs 
themselves.  Settlement of larvae to habitats with adequate 
protection, food, and temperature is critical for the survival 
of individual crabs during early development stages.  Set-
tlement on unprotected sea bottom exposes young crabs to 
predation and dislocation caused by ocean currents.  The 
spatial heterogeneity of sulfur aggregates may, therefore, 
provide a crucial habitat. 

Effective dispersal becomes particularly critical when the 
sea bottom is disturbed, devastated, or even defaunated, 
providing the recruitment for the recovery of bottom com-
munities.  The particular disturbance could be biotic (e.g., 
predation or bioturbation) or abiotic (e.g., HV effluents, 
sediment suspension, translocation caused by storms, cur-
rents, or tides, as well as anoxia, salinity, or temperature 
change).  Regarding other plankton above HVs, it remains 
unclear to what extent meroplankton is affected by toxic  
HV effluents [7, 13], which also applies to invertebrate lar-
vae that provide meroplankton at HV sites [5, 20, 28].  Major 
holoplankton taxa were represented by the coelenterates 
hydrozoa and scyphozoa, and further unidentified taxa  
were observed irregularly during sample collection.  When 
considering recolonization processes that are also caused  
by various disturbances, scales of time and space where 
disturbance events occur are crucial.  Water-column drift, 
however, is restricted to the reproductive periods and larval 
release of relevant macrofauna [30]. 
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