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RESEARCH ARTICLE

Effect of Chlorine Dioxide on the Removal of
Sulfadimethoxine and Sulfamethoxazole in
Freshwater and Seawater

Zhen-Hao Liao a, Dai-Chee Ng a, Yu-Sheng Wu b, Fan-Hua Nan a,*

a Department of Aquaculture, National Taiwan Ocean University, No. 2 Beining Road, Jhong-jheng District, Keelung, 20224, Taiwan
b Department of Aquaculture, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung, 91201,
Taiwan

Abstract

This study aimed to understand the fate of sulfonamides (SAs) under dark condition in a laboratory-scale aquatic
system, and evaluate the removal of SAs by using Chlorine dioxide. Based on the mass spectrometry quantification, our
results have shown that two sulfonamides were transformed at very slow rate in the dark. The 180 day degradation
efficiencies (%) of sulfadimethoxine (SDM) in freshwater and seawater were 6.37 ± 2.56 and 4.38 ± 3.43, respectively,
while those of sulfamethoxazole (SMX) in freshwater and seawater were 7.81 ± 2.15 and 6.60 ± 2.69, respectively. In the
treatment of Chlorine dioxide for the removal of SAs in freshwater and seawater, it was found that the complete re-
movals can be achieved within 7 day at the 1:1 ratio. The removal efficiencies increased significantly as the concentration
ratio of treatment increasing to 5:1 and 10:1. SDM (0.1 mg/L) in freshwater was removed completely at 7.0, 2.0 and 0.5 day
by treating Chlorine dioxide of 0.1, 0.5, and 1.0 mg/L, respectively. It was noted that the removals of SDM in seawater
were improved to 0.25 day in both treatments of 0.5 and 1.0 mg/L. Similar improvements were also observed in the
removal of SMX (0.1 mg/L) under the same treatment. The complete removal of SMX in freshwater was done at 7.0, 2.0
and 0.5 day, respectively, whereas that of SMX in seawater was done at 4.0, 0.25 and 0.25 day, respectively.
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1. Introduction

A ntibiotics are widely used to treat disease and
protect the animal health. The growth rate

and feed efficiency can be improved by incorpora-
tion of antibiotics into animal feed [1]. The world-
wide consumption of antibiotic was estimated
around 200,000 tons annually [2,3]. The over-use and
misuse of antibiotics became a worldwide issue
including (1) the increase of antibiotic-resistant

bacteria which may transfer to human pathogens,
(2) the emission of antibiotics into the environment
and (3) drug residues in food chain [4,5]. Therefore,
WHO aim to decrease the demand of antibiotics in
veterinary fields since the year 2000.
Recent findings have shown that the ubiquitous

occurrence of antibiotics in aqueous matrices,
including groundwater, wastewater treatment
plants, surface water and sediment [6e9]. Most
pharmaceuticals are not completely metabolized in

Abbreviations: MRM, Multiple reaction monitoring; SAs, Sulfonamides; SDM, Sulfadimethoxine; SMX, Sulfa-
methoxazole; TFDA, Taiwan Food and Drug Administration; WHO, World Health Organization,
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animals result in both unmodified parent com-
pound and metabolites are excreted and enter the
water cycle through wastewater. Moreover, the use
of antibiotics impact the food safety because of their
residues in aquaculture [10]. To solve this issue,
removal and elimination of the parent antibiotics
and its metabolites is the primary task [11,12].
Sulfonamides (SAs) comprise a class of synthetic

sulfanilamide derivatives [1]. Since a case of treating
furunculosis of trout (Salvelinus fontinalis) with sul-
famerazine in the early 1949, SAs have been
considered one of the most widely used synthetic
antibiotics in aquaculture [13]. The SAs are bacte-
riostatic against most gram-positive and many
gram-negative bacterial by acting as competitive
inhibitors of p-aminobenzoic acid in the folic acid
metabolism [1]. A variety of strategies, including
oxidation, membrane filtration, biodegradation,
photocatalysis and adsorption, were developed for
SAs removal in water [14e16]. However, little is
known about the comparison of fate, removal effects
and risks of SAs under different aquatic environ-
ment. The two main SAs, sulfadimethoxine (SDM)
and sulfamethoxazole (SMX) were addressed in this
study. The degradations of SAs under both fresh-
water and seawater were quantified by using mass
spectrometry. Moreover, the efficiencies of Chlorine
dioxide for oxidative degradations of SAs were
evaluated.

2. Materials and methods

2.1. Materials

Samples of freshwater was double-distilled water
(Ultrapure Water System: Ultra Analytic; ELGA)
and seawater was collected from aquatic animal
culture room of Department of Aquaculture, Na-
tional Taiwan Ocean University. Seawater quality
was maintained at pH 8.0 ± 1 and salinity 34 ± 1‰
and was sterilized prior to experiment. Stock solu-
tions of SDM and SMX (SigmaeAldrich) for treat-
ments and analytic standard solutions were
prepared by dissolving in acetonitrile (HPLC grade,
Spectrum) to 1000 mg/L. Chlorine dioxide (3000 mg/
L) (Taiwan Pulp & Paper Co., Ltd) was prepared by
the combination of component A (7.5% sodium
chlorite), double-distilled water and component B
(hydrochloric acid) at the volume ratio of 1:10:1 and
kept in the dark for at least 30 min.

2.2. Experimental procedure

In viewing of the stabilities of SAs, SAs were
spiked into 20 mL of both water samples with the

final concentration of 100 mg/L. Samples were
collected after 0, 1, 2, 4, 7, 14, 30, 60, 90, 120, 150 and
180 days for the detection of SAs. In examining the
removal of SAs, chlorine dioxide was added into SA
solutions with three concentrations (0.1, 0.5, and
1.0 mg/L). The removal of SAs was measured in
0.25, 0.5, 1, 2, 4, and 7 days. All experiments were
performed at room temperature under dark envi-
ronment. The removal or degradation efficiency (%)
of SAs was fitted into the following equation [17]:
Removal (%) ¼ (Cinitial-Cfinal)/Cinitial) � 100%, where
Cinitial and Cfinal are the concentrations of SAs in the
control and experimental group, respectively. For
the extraction of SAs in solutions, 5 mL was sampled
into 50 mL centrifuge tube followed by the addition
of 20 mL of 100% acetonitrile and 10 g of anhydrous
sodium sulfate. Mixture was blended well for 1 min
and then centrifuged under 3750 rpm for 20 min.
The supernatant was moved to the round bottom
flask. The remnant was resuspended with 20 mL of
100% acetonitrile and underwent centrifugation
again. Supernatants were combined and the solvent
was removed using rotary vacuum evaporation at
40 �C. The residue was restored with 2 mL of 40%
acetonitrile. The final analytes was kept in a dark
brown vial bottle after filtration with 0.22 mm filter.

2.3. HPLC-MS/MS analysis

SAs were analyzed by high performance liquid
chromatography tandem mass spectrometry
(HPLC-MS/MS). The system consisted of an Agilent
1100 Series HPLC (Agilent, Germany) and an API
4000 Q-Trap mass spectrometry (Applied Bio-
systems, Canada) with electrospray ionization (ESI).
The compounds were separated by a 4.6 � 150 nm
Agilent Zorbax XDB-C18 column (Agilent Technol-
ogies, USA) at 35 �C with a flow rate of 0.8 mL/min.
The injection volume was 20 mL and the separations
were carried out with an eluent mixture of A (pu-
rified water with 0.1% formic acid (v/v)) and B
(acetonitrile with 0.1% formic acid (v/v)) as the
following linear gradient: A decrease from 95% to
5% over 9 min and hold for 1 min. Then A increase
to 95% over 2 min and hold for 3 min. Post-run was
maintained for 1 min until the next injection.
Quantitative analysis of each compound was per-
formed in the MRM mode using the highest char-
acteristic precursor ion/product ion transitions:
SDM (311 / 156), SMX (254 / 156). The parame-
ters for the MS analysis were as following: ioniza-
tion mode, ES+; capillary voltage, 3.3 kV; source
temperature, 120 �C; desolvation temperature,
450 �C; desolvation gas flow, 800 L/h. Detailed pa-
rameters were documented in supplementary file
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(https://jmstt.ntou.edu.tw/cgi/viewcontent.cgi?filen
ame¼1&article¼1588&context¼journal&type¼add
itional&preview_mode¼1). All data were acquired
using Analyte 1.4.1 software (Applied Biosystems,
USA).

2.4. Statistical analyses

Each experiment was repeated in triplicate and
data was shown as mean ± SD (standard deviation).
All data were analyzed by using Statistical Analysis
System (SAS-PC) software. Statistical significance
was set at a ¼ 0.05 for the One-way ANOVA with a
subsequent Scheffe's test.

3. Results

3.1. SAs degradation

Extraction and detection methods in this study
were modified from the Method of Test for Veteri-
nary Drug Residues in Foods-Method for Multi-
residue Analysis Part 2, TFDA. The method
verification for the analysis of SAs was documented
in supplementary file (https://jmstt.ntou.edu.tw/cgi/
viewcontent.cgi?filename¼1&article¼1588&context
¼journal&type¼additional&preview_mode¼1),
including Linearity, Specificity, Accuracy, Precision
and Limit of Quantification (LOQ). The self-degra-
dations of SAs in freshwater and seawater were
observed in a slow rate under dark condition. As
shown in Fig. 1 and Table 1, the concentrations of
SDM showed below 7% loss in both water systems
during the 180 day experimental period, while those
of SMX showed the similarity with 8% loss below
(Fig. 2 and Table 1).

3.2. Effect of chlorine dioxide on the removal of SAs

It was shown that SAs were efficiently degraded
within 7 days by Chlorine dioxide treatment and the
efficiency increased significantly as the concentration
of Chlorine dioxide increasing. As shown in Table 2
and Table 3, Chlorine dioxide of 0.1, 0.5, and 1.0mg/L
were effective to completely remove SDM in fresh-
water at 7.0, 2.0 and 0.5 day, respectively. It was noted
that the removals of SDM were more efficient in
seawater, while the complete removals were ach-
ieved at 0.25 day for the treatment of 0.5 and 1.0 mg/L
(Table 4 and Table 5). Similar improvements were
also found in removal of SMX. Using the same con-
centration of Chlorine dioxide, the complete removal
of SMX in freshwater was done at 7.0, 2.0 and 0.5 day,
respectively (Table 6 and Table 7), whereas that of
SMX in seawater was done at 4.0, 0.25 and 0.25 day,
respectively (Table 8 and Table 9).
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Fig. 2. The variation of SMX concentration in freshwater and seawater
during 180 days.
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Fig. 1. The variation of SDM concentration in freshwater and seawater
during 180 days.

Table 1. The degradation of SAs in freshwater and seawater during 180
days.

Elapsed
Time
(Day)

Degradation percentage
of SDM (%)

Degradation percentage
of SMX (%)

Freshwater Seawater Freshwater Seawater

1 0.28 ± 1.37a 0.42 ± 2.09a 0.28 ± 2.79a 0.57 ± 1.62a

2 0.25 ± 1.97a 1.03 ± 0.87a 0.63 ± 3.29a 0.86 ± 2.51a

4 0.28 ± 0.98a 1.13 ± 1.53a 0.42 ± 2.55a 0.93 ± 2.83a

7 0.57 ± 2.37a 1.41 ± 0.49a 0.84 ± 2.33a 0.71 ± 1.28a

14 0.46 ± 0.73a 1.98 ± 1.59a 1.15 ± 2.38a 2.00 ± 1.05a

30 1.13 ± 0.88a 2.62 ± 0.81a 1.36 ± 1.42a 2.10 ± 1.32a

60 2.05 ± 2.61a 2.93 ± 2.03a 2.51 ± 2.67a 2.85 ± 3.44a

90 2.69 ± 2.43a 3.04 ± 1.57a 3.45 ± 0.93a 3.00 ± 1.50a

120 3.54 ± 1.25a 2.51 ± 1.44a 4.32 ± 0.48a 5.71 ± 3.10a

150 5.52 ± 1.77a 4.42 ± 4.51a 7.53 ± 1.64a 6.49 ± 1.33a

180 6.37 ± 2.56a 4.38 ± 3.43a 7.81 ± 2.15a 6.60 ± 2.69a

(1) Values are presented as mean ± SD.
(2) The values with different letters are significant different
(p < 0.05).
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Table 2. The variation of SDM concentration (100 mg/L) in freshwater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0 0.25 0.5 1 2 4 7

Control 103.20 ± 2.43A 102.50 ± 1.51Aa 101.73 ± 3.23Aa 101.47 ± 2.66Aa 100.27 ± 1.62Aa 99.73 ± 2.81Aa 84.90 ± 3.32B

0.1 ppm 73.60 ± 2.09Bb 52.80 ± 1.03Cb 45.30 ± 1.10Db 30.31 ± 0.46Eb 9.43 ± 0.44Fb N.D.
0.5 ppm 43.50 ± 1.10Bc 10.91 ± 0.72Cc 6.72 ± 0.53Dc N.D. N.D. N.D.
1 ppm 14.45 ± 1.96Bd N.D. N.D. N.D. N.D. N.D.

(1) Data are means ± SD.
(2) N.D. means not detectable (below the limit of quantification).
(3) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(4) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).

Table 3. The removal efficiency (%) of SDM in freshwater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0.25 0.5 1 2 4 7

0.1 ppm 28.20 ± 2.04Ec 48.10 ± 1.02Dc 55.35 ± 1.09Cc 69.77 ± 0.46Bb 92.91 ± 4.74Ab 100.00 ± 0.00Aa
0.5 ppm 57.56 ± 1.07Db 89.27 ± 0.71Cb 93.38 ± 0.52Bb 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa
1 ppm 85.90 ± 1.91Ba 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa
(1) Data are means ± SD.
(2) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(3) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).

Table 4. The variation of SDM concentration (100 mg/L) in seawater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0 0.25 0.5 1 2 4 7

Control 102.93 ± 0.61A 102.67 ± 1.22Aa 101.33 ± 3.11AB
a 101.07 ± 1.15AB

a 96.40 ± 1.57BCa 95.87 ± 3.00BCa 92.13 ± 1.15C

0.1 ppm 82.90 ± 3.54Bb 77.10 ± 1.05Cb 67.60 ± 0.57Db 41.90 ± 1.91Eb 5.33 ± 0.54Fb N.D.
0.5 ppm N.D. N.D. N.D. N.D. N.D. N.D.
1 ppm N.D. N.D. N.D. N.D. N.D. N.D.

(1) Data are means ± SD.
(2) N.D. means not detectable (below the limit of quantification).
(3) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(4) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).

Table 5. The removal efficiency (%) of SDM in seawater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0.25 0.5 1 2 4 7

0.1 ppm 19.25 ± 3.45Db 23.91 ± 1.04Db 33.11 ± 0.56Cb 56.54 ± 1.99Bb 95.83 ± 2.82Ab 100.00 ± 0.00Aa
0.5 ppm 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa
1 ppm 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa
(1) Data are means ± SD.
(2) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(3) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).
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Table 6. The variation of SMX concentration (100 mg/L) in freshwater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0 0.25 0.5 1 2 4 7

Control 102.40 ± 1.06A 102.27 ± 0.83Aa 100.80 ± 2.12AB
a 98.80 ± 2.71AB

a 97.20 ± 0.40AB
a 93.00 ± 2.37Ba 92.80 ± 4.54B

0.1 ppm 74.10 ± 2.05Bb 66.10 ± 2.50Bb 51.20 ± 1.46Cb 32.88 ± 2.10Db 16.80 ± 2.24Eb N.D.
0.5 ppm 26.81 ± 1.39Bc 17.54 ± 1.14Cc 15.24 ± 0.27Cc N.D. N.D. N.D.
1 ppm 7.60 ± 0.77Bd N.D. N.D. N.D. N.D. N.D.

(1) Data are means ± SD.
(2) N.D. means not detectable (below the limit of quantification).
(3) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(4) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).

Table 7. The removal efficiency (%) of SMX in freshwater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0.25 0.5 1 2 4 7

0.1 ppm 27.54 ± 2.00 F
c 34.42 ± 2.48 E

c 48.18 ± 1.48 D
c 66.17 ± 2.16 C

b 81.94 ± 2.41 B
b 100.00 ± 0.00 A

a

0.5 ppm 73.78 ± 1.36 D
b 82.60 ± 1.13 C

b 84.57 ± 0.27 B
b 100.00 ± 0.00 A

a 100.00 ± 0.00 A
a 100.00 ± 0.00 A

a

1 ppm 92.57 ± 0.75 B
a 100.00 ± 0.00 A

a 100.00 ± 0.00 A
a 100.00 ± 0.00 A

a 100.00 ± 0.00 A
a 100.00 ± 0.00 A

a

(1) Data are means ± SD.
(2) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(3) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).

Table 8. The variation of SMX concentration (100 mg/L) in seawater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0 0.25 0.5 1 2 4 7

Control 97.33 ± 2.89A 92.50 ± 4.08ABa 95.70 ± 3.74AB
a 90.80 ± 1.60AB

a 91.87 ± 3.26AB
a 91.70 ± 3.12AB 86.70 ± 2.96B

0.1 ppm 53.50 ± 1.51Bb 50.50 ± 1.32Bb 46.40 ± 1.73Bb 18.79 ± 0.73Cb N.D. N.D.
0.5 ppm N.D. N.D. N.D. N.D. N.D. N.D.
1 ppm N.D. N.D. N.D. N.D. N.D. N.D.

(1) Data are means ± SD.
(2) N.D. means not detectable (below the limit of quantification).
(3) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(4) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).

Table 9. The removal efficiency (%) of SMX in seawater treated with different concentrations of Chlorine dioxide during 7 days.

Chlorine dioxide Elapsed Time (day)

0.25 0.5 1 2 4 7

0.1 ppm 42.38 ± 1.63Db 47.23 ± 1.38Cb 48.90 ± 1.90Cb 79.55 ± 0.80Bb 100.00 ± 0.00Aa 100.00 ± 0.00Aa
0.5 ppm 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa
1 ppm 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa 100.00 ± 0.00Aa
(1) Data are means ± SD.
(2) Means in the same row with different letters (A, B, C) are significantly different (p < 0.05).
(3) Means in the same column with different letters (a, b, c) are significantly different (p < 0.05).
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4. Discussion

The degradation of aqueous antibiotics have been
carried out under irradiation [18,19], photolysis [20]
and microbial environment [21e23]. The synergic
effects on the transformation of the SA occurred with
the contribution of light andmicrobial activity [24,25].
Under sterile and dark condition over a period of 180
days, the degradation efficiencies of SDM and SMX
(ranging from 4.38 to 7.81%) were anticipated low in
both freshwater and seawater (Table 1). Moreover,
our datawere in agreementwith previous studies that
SAs are hydrolytically stable with a long half-life
under neutral water (pH 6.0e8.5) [26e28].
Recent studies have shown that SAs are suscepti-

ble to chemical-oxidation processes such as chlori-
nation and ozonation [29e31]. Chlorine dioxide, a
stable free radical and powerful oxidant has been
used as free available chlorine for the removal of
SAs. The breakage of SeN and CeS bonds and the
hydroxylation of aniline moiety in the SMXmolecule
constituted the major degradation pathways [32]. As
shown in Table 2 to Table 9, the removal activities of
Chlorine dioxide toward SDM and SMX in both
freshwater and seawater were highly effective even
at low concentrations (0.1 ppm). ClO2

- is highly
reactive to specific functional groups of organic
compounds such as phenolic moieties and tertiary
amino groups in a pH-dependent manner [33]. The
strongly pH-dependent was presented in reaction of
SMX which exhibiting relative high reactivity to
ClO2

- at pH S7 [34]. Moreover, the oxidation of an-
iline by Chlorine dioxide has been demonstrated
that the reaction rate constant increases with
increasing pH [35]. Thus, regarding the treatment of
Chlorine dioxide in our studies, the removal of SAs
in seawater (pH ¼ 8) is reasonably faster than in
freshwater (pH&7). Overall, the present study could
provide useful information on the practical use of
Chlorine dioxide for removing SA antibiotics in
aquaculture waste water. Rapid removal of SAs in
freshwater and seawater can be achieved with
dosage of 1.0 ppm and 0.5 ppm, respectively.
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