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RESEARCH ARTICLE
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Variation of Sea Surface Temperature in the
Taiwan Strait
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Yi-Chen Wang b,*, Jui-Wen Chan f
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e Coastal Resilience and Climate Change Adaptation Research Group, Dept. of Fisheries and Marine Science, University of Brawijaya,
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Abstract

Long-term observations of interannual and decadal variation of sea surface temperature (SST) in the Taiwan Strait
(TS) were studied for the period 1870e2018; the climatology data were obtained from the Met Office Hadley Centre,
UK. In the study period, the highest annual mean and lowest SST observed were 25.3 �C in 1998 and 22.4 �C in 1919,
respectively. Six distinct regimes were identified. The first regime of fairly stable or slightly cooling SST lasted through
the 1920s. The two regime shifts of 1919e1945 and 1976e1977 to 1998 led to the two fast warming trends of 2.0 �C in 26
years, from 22.5 �C in 1919 up to 24.5 �C in 1945, and of 2.4 �C in 22 years, from 22.9 �C in 1977 up to 25.3 �C in 1998,
respectively. Another two regime shifts initiated in 1945 (1945e1976) and 1998e1999 (1998e2011) that led to 1.6 �C and
1.0 �C cooling, respectively. A recent and fast warming trend with 0.63 �C/decade suggested that the warming hiatus
from 1998 to 2011 faded away since 2012. The spatial distribution of climate trends through the decades across the
TS revealed a strong spatial gradient along the Strait. In the north (southern East China Sea), the magnitude and rate
of the overall SST warming between 1870 and 2018 were approximately 1.5 times than those in the south (northern
South China Sea).

Keywords: Taiwan strait, Sea surface temperature, Decadal variation, Warming hiatus

1. Introduction

T he Taiwan Strait (TS) is one of the world's most
important passages connecting two large ma-

rine ecosystems (LMEs), namely the East China Sea
(ECS) and South China Sea (SCS). A total of 504 and
288 million tons of fish were fished from the SCS
and ECS LMEs, respectively, between 1950 and
2014; however, climate change is one of the major
anthropogenic stressors impacting these two LMEs

currently [1]. For example, under a high emissions
scenario (representative concentration pathway 8.5)
with status quo fishing in 2100, a 99% decline in
biomass of 17 functional groups (e.g., benthic crus-
taceans, juvenile large croakers, and pomfret) in the
SCS and eight functional groups (e.g., small
demersal fishes, jellyfish, and large croakers) in the
ECS were evaluated [1]. Interestingly, this strait is a
favorable habitat zone for marine fishing grounds
[2e9]. Investigations regarding distribution and
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habitat suitability zone of coastal commercial spe-
cies were conducted in the coastal waters of the TS,
considering stock restoration and conservation
[10e12]. In addition to climate variability, the ECS
LME experienced a fast warming rate between 1982
and 2006 compared with the adjacent SCS LME;
when area-averaged annual mean sea surface tem-
perature (SST) of the ECS LME rose by 1.22 �C, the
SST of the SCS LME rose by 0.44 �C [13]. Belkin and
Lee [14] revealed the three epochs identified in the
TS from 1957 to 2011. The first epoch of the SST
cooling lasted through 1976. The regime shift from
1976 to 1977 led to an extremely rapid warming of
2.1 �C in 22 years. Another regime shift occurred
from 1998 to 1999, resulting in a 1.0 �C cooling by
2011. A similar trend was observed by another study
using the 5�� 5� Hadley Centre Sea Ice and SST
(HadISST1) for the period of 1900e2006 [15]. The
largest warming trend appears near to the estuary
and the offshore region of the ECS with the annual
mean warming rates more than 2.4 �C in 100 years.
Water in the TS mainly flows northward owing to

the pressure gradient associated with large-scale
circulation [16e18]. In wintertime, northeasterly
monsoon winds drive the cold China Coastal Cur-
rent (CCC) to flow southward along the west coast
of the TS, whereas the warm Kuroshio Branch
Current (KBC) enters the TS through the Penghu
Channel from the southeast [19]. However, the
winter SST in the TS is influenced by the large-scale
climate variability such as El Ni~no-Southern Oscil-
lation (ENSO) [20,21]. It has been reported that the
winter SST in the TS is colder with strong wind in
the northwestern part and warmer in the south-
eastern region during a La Ni~na period (1998/1999,
2008, 2011) [3,22], whereas the influence was
reversed during an El Ni~no period (1997/1998) [20].
Thus, continuous strong winds drove the cold cur-
rent from southeast to southern Taiwan, and the
warm currents of higher than 20 �C retreated to the
SCS, which resulted in a significant drop in water
temperature [23]. Hsieh et al. [24] and Chang et al.
[23] reported an extremely low water temperature
event in February 2008 that resulted in the death of
wild fish surrounding the coasts of the Penghu
Archipelago (PHA) in the southern TS. The influ-
ence of the cold SST variation relating to La Ni~na
also reflected through the catch per unit effort
(CPUE) of pelagic species, such as hairtail, skipjack
tuna, and rabbitfish [25]. Otherwise, the influence of
the extreme cold water event on cage aquaculture
resulted in an economic loss of approximately US$1
million for fish farmers at the PHA in the 2008
winter [3]. The annual production of cage culture at
the PHA was 4600 tons in 2007. However,

production declined to 1200 tons after the cold
water event in 2008 that led to the death of more
than 70% of cultured cobia and groupers. A similar
cold water event with the low SST (less than 18 �C)
occurred again in the 2011 winter [3]. More than
70% of the cobia (Rachycentron canadum), a major
species of the cage culture, died at the end of the
January 2011, and more than 500 tons of the caged
fish were cleaned in 1 week by fish farmers.
Although the strong winds (>6 m/s) during the La
Ni~na event in winter affect the cold SST intrusions
into the TS, the relationship between cold water
intrusions and wind speeds during the La Ni~na
event is not precisely understood [3]. One of the
most intriguing aspects of the climate variability in
the TS is related to the strait fishery. Lan et al. [26]
indicated that the CPUE of grey mullet had signif-
icantly high correspondence with the annual Pacific
decadal oscillation (PDO) index. They also sug-
gested that the PDO affects the migration of the
grey mullet, but increases in SSTs have a more
significant influence on the decreased catches of the
grey mullet after 1980. The fishing grounds of the
grey mullet might have shifted to the north
following changes in the 20 �C isotherm of the strait
after 1998. Kuo et al. [27] analyzed the long-term
advanced very high resolution radiometer SST
change in the TS using the rotated empirical
orthogonal function method for the period of
January 1980 to February 2013. The relationship
between the ENSO phase and the SST variation in
the TS exhibited spatial and decadal variations. The
SST in the northern TS tended to be warmer
(cooler) during El Ni~no (La Ni~na) years compared
with normal years. However, an opposite relation-
ship was found in the southern TSe the SST cooling
(warming) occurred during El Ni~no (La Ni~na) years
and this phenomenon existed only after the SST
warming regime shift (1992e1994).
The aforementioned assessments indicate that

some consequences of the climate variability in the
TS are detrimental to certain areas of the human
activities, such as fisheries, aquaculture, and coastal
development. Ho et al. [28] further recommended
that the catch ratio of coastal species with dual
peaks in both summer and fall varied greatly before
1978. Increasing trends began in the 1980s and
accelerated until 1998. As a result of this increase,
the previous concentration of the fishing season in
the winter months became highly diffuse. However,
the change coincides with trends in sea surface
temperature fluctuations. In this study, we exam-
ined the interannual and decadal variability of the
SST in the TS during the period of 1870e2018,
considering the importance of the TS.
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2. Data and methods

The main dataset used in this study is the global
climatology of the SST maintained by the Met Office
Hadley Centre, UK. The Hadley climatology con-
sists of the global fields with 1 �� 1 � spatial reso-
lution and monthly temporal resolution, from 1870
till date [29,30]. This dataset has been used in
numerous climate-related studies and climate as-
sessments that include the most recent reports of
the International Panel on Climate Change (IPCC),
IPCC-2007 [31] and IPCC-2013 [32]. Being the data-
set of choice for global studies, the Hadley clima-
tology has been recently explored to study regional
variability of the global climate change [13], a sub-
ject largely ignored by the IPCC-2007 and IPCC-
2013.
Following the methodology of the Belkin and Lee

[14]; we approximated the study area by a polygon
defined on a 0.25 �� 0.25 � grid between 22�N and
26�N and smoothly interpolated the HadISST1 onto
this grid using the bilinear interpolation algorithm
[33] based on the MATLAB software. The monthly
SSTs were area-weight averaged to generate indi-
vidual monthly SSTs; these individual monthly
SSTs were averaged to produce annual mean SSTs
for the entire TS and to estimate climate trend for
this strait. The quality check of the HadISST1 data in
the TS was validated using the field data of the
Central Weather Bureau and satellite data [34] by
Belkin and Lee [14]. To study regional variations in
climatic trends across the TS, the SST time series
were extracted from the original HadISST1 dataset
for each 1� node of a total of 17 nodes (Fig. 1). The
occurrence of the global warming since the mid-
1970s has been noted [31]. Therefore, the monthly

SST anomaly was retrieved based on the monthly
means from 1971 to 2000 [35]. Further, February,
May, August, and November were designated as the
representative months for winter, spring, summer,
and autumn, respectively. The analysis annual SST
changes (e.g. warming or cooling rate) in decadal
scale were described in Belkin and Lee [14]. The
seasonal SST changes were compared for the
warming trends in three periods of 1870e1919,
1920e1969, and 1970e2018. Some attempts have
been made to predict the 10-year climate over re-
gions using this approach, including assessments of
the role of the internal decadal variability [36].
Linear trends were estimated from the time series of
the annual and decadal SSTs for each 1� node.

3. Results

3.1. Climatological patterns

Fig. 2 illustrates the monthly averaged climato-
logical SST patterns in February, May, August, and
November from 1870 to 2018. The climatological
SST in the TS varied seasonally. The monthly mean
SST increased from February to August and subse-
quently decreased again from August to February.
The SST also decreased spatially from the southeast
toward the northwest from 22.5 �C to 15.5 �C in
February (wintertime) and from 28.6 �C to 27.8 �C in
August (summertime). The SST gradient was low in
summertime compared with that during the other
seasons. In February, the SST in the northwestern
TS was generally lower than 16 �C, which was
employed as an index for the winter thermal front
boundary between the CCC and the KBC in the TS
[3]. The SST gradient increased gradually from

Fig. 1. Water depth (m) of the study area in the TS. The Hadley SST data are defined on a 1� grid (black numbers).
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November onward as the CCC intruded southward
along the Chinese coast [37].

3.2. Tempospatial variation of the SST

The time series of the decadal SST for the entire
TS is presented in Fig. 3. The decadal SST presented
a cooling trend from 1870 to 1920 and a warming
trend from 1920. The highest decadal mean SST was
approximately 24.7 �C in the period of 2000e2018,
whereas the second highest decadal SST was
approximately 23.7 �C in the period of 1945e1965.
After the year 1965, the decadal SST subsequently
decreased from 23.7 �C in 1950e1960 to approxi-
mately 23.3 �C in 1970e1980, which was approxi-
mately equal to the decadal SST in 1870e1880. The
mean SSTs for the 50-year decadal time scales of
1870e1919, 1920e1969, and 1970e2018 were
23.05 �C, 23.23 �C, and 24.17 �C, respectively.
Six distinct epochs from 1870 to present were

found for the time series of the interannual SST
(Fig. 4; Table 1). The interannual trend of the SST

was similar to the decadal trend, but was more clear.
The first epoch with a cooling rate of 0.15 �C/decade
was characterized by a gradual cooling from 23.8 �C
in 1870 to 22.4 �C in 1918 (Table 1). After bottoming
out in 1919, the SST rose to 24.5 �C in 1945e a 2.1 �C
increase in 26 years. During this period the SST
warming rate was 0.4 �C/decade. After peaking in
1945, the third epoch was characterized by a gradual
cooling from 24.5 �C in 1945 to 22.9 �C in 1976; the
same cooling rate as that during the first epoch.
After bottoming out in 1976, the SST rose to 25.3 �C
in 1998e a 2.4 �C increase in 22 years. The SST
warming rate was 0.61 �C/decade from 1976 to 1998,
as the annual mean SST (25.3 �C) reached the peak
of the study period in 1998. After peaking in 1998,
the SST decreased to 24.2 �C in 2011. The last epoch
indicated that the SST significantly rose at a fast
warming rate of 0.63 �C/decade from 2012 to present
(Table 1).
In spatial variation, individual time series of the

decadal SST analysis in grid nodes revealed signif-
icant details of the spatial variability across the

Fig. 2. The average climatological SST pattern in February, May, August, and November. The solid lines represent the isothermal lines.

Fig. 3. Time series variability of the decadal SST in the TS.
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strait. The stacked offset plot of the SST in 17 one-
degree nodes (Fig. 5) demonstrated the synchroni-
zation of the SST changes. The decadal SST
increased from 20.5 �C in the north node to

approximately 27 �C in the south node. For all of the
nodes 1e17, the time series of the decadal SST
trends was similar, but two SST gaps were observed
in the northwestern TS “node 1” and the middle TS

Fig. 4. Long-term annual variability of the SST in the TS (bounded by a polygon in Fig. 1).

Fig. 5. Composite no-offset plot of the decadal SST time series in 17 one-degree nodes in the TS, 1870e2018.

Table 1. Comparison of maximum, minimum, and warming rates of the SST in the TS, ECS and YS since 1870.

Regions TSa Periods YS þ ECSb Periodsd TS þ ECSc

Maximum
(�C)

Minimum
(�C)

Warming rate
(�C/decade)

Trends Warming rate
(�C/decade)

Periods

1870e1918 23.8 22.4 �0.15 1870e1940 cooling Annual mean þ0.24
1919e1945 24.5 22.4 þ0.40 1940e1950 warming February þ0.27
1946e1976 24.5 22.9 �0.15 1950e1977 cooling August þ0.15
1977e1998 25.3 22.9 þ0.61 1977e2016 warming
1999e2011 25.2 24.2 �0.52
2012e2018 24.9 24.2 þ0.63
a: this study; b: source: Pei et al. [38]; c: source: Liu and Zhang (2013) [15]; d: years from 1900 to 2006.
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near the Taiwan Bank “nodes 9e10.” At node 17 in
the southeastern waters of the TS, the decadal SST
was the highest (more than 25.3 �C), whereas the
SST was 1 �C warmer than the neighboring node. At
the nodes 8e10 in the waters of the south side
Chang-Yuan Rise (CYR), the temperature difference
was larger (~0.8 �C) during 1870e1930 and subse-
quently reduced to approximately 0.5 �C since 1970.
At the nodes 1e3 in the waters of the northern
Taiwan, the decadal SST was the lowest (less than
22 �C) during 1870e1920, but the decadal tempera-
ture significantly increased since the 1970s.

3.3. Long-term changes and trends in the SST

Fig. 6 depicts the interannual variability of the
monthly SST anomaly based on the period of
1971e2000 in the TS. It is evident that the SST
anomaly was significantly higher during 1990e2018,
whereas it was relatively low during 1870e1940.
Although the stacked offset plot of the SST time
series in 17 nodes indicates the synchronous nature
of temporal variability across the TS (Fig. 7), the SST
anomaly from 1940 to 1990 varied seasonally (Fig. 6).
The mean SST change was slightly lower (0.33 �C)

in the southern nodes (nodes 11e17) than that in the
northern nodes (nodes 1e3), whereas the change in
SSTs in the southern nodes in winter (December to
February) and summer time (June to August) were
lower (~0.03 �C and 0.46 �C, respectively), than those
in the northern nodes. The highest and lowest SST
changes were approximately 2.53 �C at node 7 in the
February and 0.73 �C at node 11 in the August,
respectively (Fig. 7).
The spatial SST change between 1870 and 2018 in

different time scales in the TS are presented in

Fig. 8. Till now, the warming SST trends were
examined, but the spatial SST changes at 1� grid
spatial resolution significantly varied in different
time scales. The SST change in space decreased
approximately from �0.26 �C to �0.91 �C during
1870e1919, whereas the SST change increased
approximately from 0.39 �C to 1.36 �C and
0.8 �Ce2.15 �C for the two periods of 1920e1969 and
1970e2018, respectively.
Analyzing seasonal time series of the SST changes

in three periods, namely 1870e2018, 1920e2018, and
1970e2018, revealed significant spatiotemporal de-
tails of the decadal variability across the strait (Figs.
9e11). The SST changes significantly varied by
season. The SST changes in February during
1920e2018 and 1970e2018 were higher (approxi-
mately 1.0 �C) than that during 1870e2018, whereas
the changes in August in the former two periods
were lower than that in the latter. The SST change
significantly increased (more than 2.4 �C) across the
TS, especially in February during 1920e2018. This
indicated that the decadal warming rates in recent
(approximately 50 and 100) years (e.g., 1970e2018
and 1920e2018) were different and higher than that
in approximately 150 years (e.g., 1870e2018). In
addition, a two-fold increase in warming rates from
the southwest (0.8�C-1.18 �C) to the northeast
(2.1�C-2.23 �C) during 1920e2018 and 1970e2018
was evident.

4. Discussion and conclusion

This study examined the interannual and decadal
variability of the SST in the TS during 1870e2018.
The composite no-offset plots of the interannual and
the decadal SST time series in the TS (Figs. 4e5 and
9e11) present the obvious difference. They revealed

Fig. 6. Long-term variations in the SST anomalies in the TS for the period of 1870e2018.
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that the highest annual mean (25.3 �C) and the
lowest SST (22.4 �C) were observed in 1998 and 1919,
respectively. The SST change significantly
decreased during 1870e1919, whereas the change
subsequently increased during 1920e1969 and
1970e2018. These findings were similar to those of
Pei et al. [38]; who described that the decadal SST
trends were interactive between cooling and
warming across the ECS and YS. They revealed that
warming trends were observed during 1940e1950
and 1977e2016, whereas cooling trends were
observed during 1870e1940 and 1950e1977 (Table
1).
Analyzing interannual SSTs revealed six epochs

between 1870 and 2018. The first two epochs of fairly
stable cooling rate (0.15 �C/decade) were observed
between 1870 and 1920 and of slightly warming rate
(0.40 �C/decade) lasted through the 1950s. Another
study presented similar trends for the YS and ECS
[38]; it revealed that SST cooling trends were
observed during 1870e1940 and they slightly
increased from 1940 to 1950. After these warming
trends in the 1940s, the third epoch with a fairly
stable cooling rate (0.15 �C/decade) was observed
from 1946 to 1976. Belkin and Lee [14] reported
similar trends, but further discussions on possible
mechanisms of the cooling trends are still scant.
The fourth regime shift from 1976 to 1977 to 1998

led to a fast warming of 2.4 �C in 22 years; an in-
crease from 22.9 �C in 1977 to 25.3 �C in 1998. Yeh
and Kim [39] inferred that this warming SST trend
may be associated with global warming caused by

enhanced ocean thermal advection associated with
the Kuroshio [40]. Indeed, the warming rate of the
TS was comparable with that of the ECS and much
exceeds the warming rates of the Kuroshio and
especially of the SCS [13]. However, Tseng et al. [41]
did not observe any increasing trend in the simu-
lated Kuroshio volume transport, presenting a
doubt regarding the relationship between the SST
and the intensification of the Kuroshio heat trans-
port. Belkin [13] postulated another key role of the
Yangtze River outflow associated with this warming
trends of the TS. Park et al. [42] indicated that
Yangtze River plays a positive role in the SST in-
crease during summer because its temperature in
the estuary has been increased by 2 �C since 1986
[43]. Belkin and Lee [14] speculated that the annual
discharge of 800 Gt of fresh water creates a buoyant
plume that spreads across the entire southern ECS,
occasionally reaching as far as the Japan Sea. In
summer, the plume is warmer than the ambient
offshore water. However, the role of the Yangtze
River is still uncertain because its discharge has
presented no increasing trend (e.g., [44]).
The last two epochs occurred between 1998 and

1999 and 2011, leading to a 1.0 �C decreasing from
1998 to 2011, and a 1.6 �C warming from 2012 to
2018. For the former, it is widely recognized that the
global and regional (e.g., TS, ECS, YS) warming has
slowed down drastically after the global tempera-
ture peaked in 1998 [14,45]. Liao et al. [46] found that
this cooling trend coincided with the phase shift
from decadal-to-multidecadal (DM) climate

Fig. 7. Stacked offset plot of the SST time series in 17 nodes across the TS. The synchronous nature of the temporal variability is evident.
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variability (e.g., PDO and North Atlantic Oscillation
[NAO]) in the coastal oceans of low and middle
latitude. The coastal SST changes were larger than
the changes of the global mean and open ocean,
resulting in a fast increase in extreme hot or cold
days, and thus, extreme hot or cold events [3,47].
This slowdown in the rate of the SST increase over a
decade or more may be a pause in a DM variability
process “warming hiatus” [46]. A global warming
hiatus might imply a pause in the rate of heat en-
ergy increase in the Earth's system [48].

Interestingly, a fast warming trend with 0.63 �C/
decade since 2012 was accompanying this “warming
hiatus” after 1998. Kuo et al. [37] suggested that the
East Asian winter monsoon (EAWM) may appear as
one of the most important phenomena. They
postulated that the SST warming and cooling phe-
nomena were attributable to the weakening and
strengthening of the EAWM before and after 2000,
respectively. Ding et al. [49] revealed that the
waning of the EAWM that occurred in the mid-
1980s ended in the early 2000s; the EAWM has been

Fig. 8. The spatial SST change between 1870 and 2018 at different time scales in the TS.

Fig. 9. Seasonal SST changes between 1870 and 2018 in the TS.
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becoming stronger since the mid-2000s. This trend
of EAWM variation has been examined using
different winter monsoon indices [50,51]. The
waning of the EAWM beginning in the mid-1980s
was attributable to the shift in the dominant mode,
the Arctic oscillation, considering atmospheric cir-
culation [50], and this coincided with the most rapid
warming of winter temperatures in East Asia, as
well as was highly consistent with the global mean
temperature trends [50,51]. Fig. 12 illustrates a plot
of the winter (December to February) EAWM index,
as defined by Liren et al. [52]. Larger (smaller) value
indicates weaker (stronger) EAWM. From 1980 to
1998, the EAWM index demonstrated an increasing
trend, peaking in 1998, indicating the weakening of
the northeasterly monsoon. Subsequently, the
EAWM index decreased over the following 13 years,
exhibiting the strengthening trend of the north-
easterly monsoon in the past decade [37]. After 2012,
the EAWM index slightly increased again. This
phenomenon coincided with a study by Liao et al.
[46]; which suggested that the warming trend
continued and strengthened after 1998. The DM
variability, including Atlantic multidecadal oscilla-
tions, PDO, and NAO indices, can accelerate or
decelerate global warming on the DM timescales
[53]. Since 2013, the DM component has entered a
warming phase; this is evident from the global, land,
and ocean surface temperature time series. The
larger contribution of the DM component and the
long-term warming trend imply that warmer years
may occur more frequently in the near future.
Therefore, we revealed that the signal of so-called
SST warming hiatus in the TS has faded away, and a
warming trend is more remarkable and has even
accelerated since 2012.
For long-term spatial variation in the TS, the mean

SST changes in the southern nodes (nodes 11e17)

were slightly lower 0.33 �C than those in the
northern nodes (nodes 1e3), whereas the SST
changes in the southern nodes in winter (December
to next February) and summer (June to August)
were lower approximately 0.03 �C and 0.46 �C,
respectively, than those in the northern nodes. The
highest and lowest SST changes were approxi-
mately 2.53 �C at node 7 (west of the Taiwan Bank)
in February and 0.73 �C at node 11 in August,
respectively. These findings were similar to that of
Kuo and Lee [21]; who discovered that this variation
in the SST warming may relate to topography,
where cold water bulge occupies the upper layer of
the area north to the CYR in wintertime [18]. The
most substantial warming region was around the
winter fronts extending from the northwest of the
CYR to the southern Taiwan Bank. Belkin and Lee
[14] further reported this phenomenon: the northern
Strait, which is colder than the southern Strait,
warmed more than the southern Strait, resulting in
a sharply reduced SST gradient along the Strait.
They also induced an important practical ramifica-
tion whether the possibility of a spillover across the
shallow CYR in the upper layer (10e20 m) is
because the Kuroshio/SCS waters move north along
the east side of the TS. The Kuroshio impact is
limited by the southeastern part of the TS, Penghu
Channel, and Penghu Islands area. Warm waters of
the SCS contribute to the Kuroshio branch flowing
north via the Penghu Channel [18]. Park and Choi
[54] presented the long-term warming trend over
the SCS in winter and summer. The warming rates
in winter and summer between 1950 and 2008 were
0.16 �C/decade and 0.13 �C/decade, respectively.
Although the overall warming was similar in both
the seasons, the governing processes were different.
In winter, reduced heat loss to the air partially
contributed to the warming, but in summer, heat

Fig. 10. Seasonal SST changes between 1920 and 2018 in the TS.
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loss to the air was increased and thus the ocean
warming was reduced. The partitioning of the
northward warm water flow between the SCS/
Kuroshio waters and the TS waters is thus an open
question. The establishment of a monitoring pro-
gram to repeat in situ observations along with the
CYR appears as a high-priority task. A cable ob-
servatory with multiple sensors distributed along
the Rise is a viable alternative to the more expensive
ship-based monitoring [14].
In summary, the multidecadal variability of the

oceanic climate in the TS was studied using 1 �� 1 �

monthly climatology of the SST available from the
Met Office Hadley Centre, UK, which is the most
conveniently measured and frequently observed
variable related to maritime climate. Six distinct
regimes were identified between 1870 and 2018. The
first regime of the fairly stable or slightly cooling
SST lasted through 1930. The two regime shifts of
1930e1945 and 1976e1977 to 1998, respectively, led

to two fast warming trends of 2.0 �C in 16 years,
from 22.5 �C in 1930 up to 24.5 �C in 1945, and of
2.4 �C in 22 years, from 22.9 �C in 1977 up to 25.3 �C
in 1998. Another two regime shifts that initiated
from 1945 (1946e1976) and 1998e1999 (1998e2011)
leading to 1.6 �C and 1.0 �C cooling, respectively.
The recent regime shift (since 2012) appears to have
a warming trend. The spatial distribution of climatic
trends in a decade across the Taiwan Strait revealed
a strong spatial gradient along the Strait. In the
north (the southern ECS), the magnitude and rate of
the overall SST warming between 1870 and 2018 was
approximately 1.5 times than those in the south (the
northern SCS). Overall, HadISST1 may be a good
data source for long-term observation on the trend
and variation of SST in different time scale even if
the spatial resolution 1 �� 1 � is rough. Even though
large amount of uncertainties with respect to the
mechanisms for increasing the SST in the TS still
exist. Various factors, including the topography,

Fig. 11. Seasonal SST changes between 1970 and 2018 in the TS.

Fig. 12. The long-term annual variation of the winter (December to February) EAWM index during 1980e2018.
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surface net heat flux, surface wind, and geostrophic
current velocity, affect the SST warming; however,
their roles in high spatial resolution (e.g., 1e9 Km)
are still difficult to quantify. In future, to discuss the
possible factors that affect the interannual and the
decadal SST variability in the TS, associated up-to-
date data products in high spatial resolution are
required to be collected.
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