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RESEARCH ARTICLE

Fire Resistance of Steel Connectors of Precast
Lightweight Concrete Walls

Jen-Hao Chi a, Maochieh Chi a,*, Yue-Lin Huang b

a Department of Fire Science, WuFeng University, Chiayi County, Taiwan, ROC
b Department of Civil Engineering, National Chung Hsing University, Taichung, Taiwan, ROC

Abstract

In this study the fire test was performed to investigate the mechanic behaviors and failure patterns of precast normal
weight concrete (NWC) and lightweight concrete (LWC) walls with three types of commonly used steel connectors,
namely dry (61), wet (81), and bearing (56E) connectors. For the LWC wall specimens, on lateral application of tension,
the cracking load values of the dry, wet, and bearing-type connectors were 95.1%, 86.3%, and 83.0%, respectively, of the
original loads, and their ultimate load values were 81.6%, 90.7%, and 85.0%, respectively, of the original. In the shearing
test after the fire resistance test, the cracking load value of the bearing-type connector was 88.2% of the original load.
Moreover, all specimens exhibited a considerable loss in the ductility ratio after the fire resistance test. However, the
hysteresis energy that can be absorbed and the seismic resistance of the LWC wall were superior to those of the NWC
wall. Therefore, although the LWC and NWC walls exhibited similar failure patterns, steel connectors exhibited superior
fire resistance for precast LWC walls.

Keywords: Steel connectors, Precast lightweight concrete wall, Failure patterns, Fire resistance

1. Introduction

P recast concrete is used in construction projects
to ensure high construction quality and to

reduce the construction time. Precast concrete in-
creases the construction speed, improves engineer-
ing quality, reduces the construction period, and to
a certain extent ameliorates the problem of labor
shortage. Standardized and automated production
of precast concrete benefits the environment and
improves engineering quality [1].
Structural precast lightweight aggregate (LWA)

concrete (LWAC) is generally used in marine envi-
ronments for constructing long-span bridges,
breakwaters, oil and gas platforms, and offshore
structures, such as floating docks, decks, and rail-
ings along the waterfront. Precast lightweight con-
crete (LWC) counteracts the buoyant forces of water
better than normal or heavy weight concrete.

Furthermore, precast LWC exhibits relatively low
unit weight, superior thermal insulation character-
istics, and enhanced durability, which contribute to
a long service life of concrete structures [2]. In the
United States, numerous material and design in-
novations have been achieved in constructing
floating pier infrastructure with precast concrete
technology [3]. Kim et al. [4] revealed that double
walls made of precast concrete exhibit high integ-
rity, and in their construction, enhanced quality is
evident and relatively few delays occur. Further-
more, LWAC has been widely used in ship building
because of its low density.
Fires are the most frequent disasters. Fires cause

structural damage and render buildings unstable
[5e8]. Most buildings in Taiwan are constructed
of reinforced concrete. Although these concrete
structures exhibit decent fire resistance, high-tem-
perature fires may degrade concrete strength, which
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may endanger the structural integrity of buildings
[9e12]. LWAC consists of LWA inside LWC sintered
at a high temperature, which results in more pores
inside the aggregate. This process results in superior
thermal stability and low thermal conductivity as
well as a low coefficient of thermal expansion
[13e21].
The fire test was performed to study the fire

resistance and mechanical properties of LWC and
normal weight concrete (NWC) walls. The results
revealed that after the fire test, the LWC wall
exhibited cracking, yield, and ultimate strengths of
93.6%, 94.1%, and 95.8%, respectively. Furthermore,
the stiffness and ductility of the wall were 85.4% and
99.6%, respectively. By contrast, the cracking, yield,
and ultimate strengths of the specimen after the fire
test decreased to 76.3%, 78.3%, and 72.5%, respec-
tively. Furthermore, the stiffness and ductility
decreased to 74.8%, and 81.0%, respectively.
Therefore, the fire resistance performance of LWAC
components is superior to normal weight aggregate
concrete (NWAC) [22]. In the fire resistance test, the
failure patterns of the LWC wall specimens were
similar to those of the NWC wall specimens.
Although a clear downward trend was observed for
the stiffness of the heavy wall and the change of the
hysteresis energy after the fire test, the stiffness and
hysteresis energy changes of the LWC wall after the
test did not differ considerably from those before
the fire resistance test. Thus, the hysteresis energy
and seismic resistance of LWC walls are superior to
those of NWC walls [23,24]. Furthermore, the use of
LWAC in construction can reduce the weight of
each concrete component and consequently reduce
the lifting and transportation costs [25].
Steel connectors are typically used during the

construction and installation of precast concrete
walls. The connecting function of the steel connec-
tors can be categorized into structural functions
(suspension, support, fixation, sliding, and rotation),
physical properties (wind pressure resistance and
interlayer displacement absorption), construction
requirements (construction facilities, interlayer
displacement), and three other parts [25]. The con-
nectors of precast concrete walls are critical com-
ponents of the joint between the wall and the
building's structure [25]. Therefore, in this study,
three types of commonly used connectors, namely
dry (61), wet (81), and bearing (56E) connectors,
were placed in LWC and NWC wall specimens. The
mechanic behaviors and failure patterns of the test
specimens before and after the fire test were
compared to understand the applicability of the
three connectors commonly used in LWC walls.

The LWA used in this study was obtained from
expanded clay from reservoir sludge. After high-
temperature sintering, the aggregate appears red-
dish-brown or black and spherical in shape. The
unit weight, particle density, porosity, and water
absorption of the aggregate are 0.3e0.9 g/cm3,
0.6e0.8 g/cm3, 70%, and 8%e20%, respectively.
Because of the low density and multiporous prop-
erties, LWA is applied in building structures to
reduce the weight and cross-sectional area of the
structures and achieve the optimum use of space
[26e30]. LWAC has been applied in housing struc-
tures and bridge structures in several countries. For
example, LWAC was extensively used in the con-
struction of the 42-story Prudential Life Building in
Chicago and the 50-floor Australia Square Tower.
Since 1954, LWA has been used for constructing
buildings and bridge structures in the United
Kingdom [31]. Since 1989, LWAC with a strength of
up to 75 MPa has been used for constructing large
bridges in Norway [32]. Overall, LWAC outperforms
NWAC. LWA produced using reservoir sludge can
address the problems of resource scarcity and
environmental concerns simultaneously [23,24].

2. Experimental program

2.1. Materials and mix design

In this study, type I ordinary Portland cement
manufactured according to the ASTM C 150 stan-
dard ("ASTM C 150. Standard Specification for
Portland Cement. American Society for Testing and
Materials," 2017 [33]) was obtained from Taiwan
Cement Co., Ltd. and used as the main binder ma-
terial. Coarse aggregates of sizes 4.76e9.52 mm and
9.52e12.7 mm were prepared. River sand and tap
water from the city waterworks of Taipei (Taiwan)
were used in this study. NWC and LWAC with
compressive strength of 210 kgf/cm2 were used.
Mix designs and variables considered are given in
Table 1.
In practice, the dry (61) and wet (81) connectors

are only subject to tensile force, whereas the bearing
(56E) connector is subject to both tensile and
shearing forces. Photographs of various steel con-
nectors are displayed in Fig. 1.

Table 1. Concrete mixture parameter of specimens.

Items LWAC NWAC

Cement (kg/m3) 470 310
Water (kg/m3) 220 204.56
Coarse aggregate

(kg/m3)
12.7 mme9.52 mm 148.46 486.04
9.52 mme4.76 mm 186.31 484.19

Sand (kg/m3) 713.17 797.93
Air content (%) 2.5 2.5
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2.2. Specimen preparation

The three connectors were placed in LWAC and
NWC wall specimens having the same compressive
strength (210 kgf/cm2), and the mechanic behaviors
and failure patterns of the specimens before and
after firing were determined. Among them, dry-type
(61) and wet-type (81) connectors are mostly used in
the joint construction of “physical properties” and
“construction requirements” in the construction of
precast concrete, and the structures are less used for
bearing weight. Therefore, only tension tests were
performed in this study. The bearing-type (56E)
steel connector is used in the connection function of
“structural action,” necessitating the conduct of two
tests, tension and shearing.
The specimens were 30-m thick and had di-

mensions of 1000 � 1000 � 150 mm3 (L � W � H), as
displayed in Fig. 2. The steel connector was placed
between two pieces of wire mesh, and the rein-
forced steel was added around the hole. All sam-
ple numbers and experimental items are listed in
Table 2.

2.3. Configuration of steel connectors and steel
walls

The configuration of steel connectors within the
wall specimens are displayed in Fig. 3. Wooden
molds were used because of the number of wall
specimens and workability requirements.

2.4. Fire resistance test

The aforementioned samples were placed in a
high-temperature furnace and heated according to
the ASTM E 119 standard. The samples were heated
for 10 min to 700 �C. The samples were then heated
for 50 min to 950 �C. To ensure that the temperature
change in the high-temperature furnace conformed
to the standard temperature rise curve, a thermal
sensor (CH4 in Fig. 4) was placed on the outside of
the wall. The measured temperature rise curve of

Fig. 1. Display of the steel connectors in this study (a) photo of the dry
type (61) (b) top view's photo of the wet type (81) (c) side view's photo of
the wet type (81) (d) top view's photo of the bearing type (56E) (e) side
view's photo of the bearing type (56E).

Fig. 2. Specimen size of the schematic diagram.

Table 2. Statistical sample numbers and experimental items.

No Seriesa Mechanic
behavior

Fire resistance
test

Type of
concrete

1 NC(61)T1 Tension test � NWAC
2 NC(61)T2b Tension test B NWAC
3 LC(61)T1 Tension test � LWAC
4 LC(61)T2b Tension test B LWAC
5 NC(81)T1 Tension test � NWAC
6 NC(81)T2b Tension test B NWAC
7 LC(81)T1 Tension test � LWAC
8 LC(81)T2b Tension test B LWAC
9 NC(56E)T1 Tension test � NWAC
10 NC(56E)T2b Tension test B NWAC
11 LC(56E)T1 Tension test � LWAC
12 LC(56E)T2b Tension test B LWAC
13 NC(56E)V1 Shearing test � NWAC
14 NC(56E)V2b Shearing test B NWAC
15 LC(56E)V1 Shearing test � LWAC
16 LC(56E)V2b Shearing test B LWAC

X: No fire resistance test, O: Fire resistance test was conducted.
a (61): dry type (61); (81): wet type (81); (56E): bearing type (56E).
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the high-temperature furnace matched the ASTM
E119 curve (Fig. 5). Thermocouples (K type, AZ-
8855) CH1 and CH3 and a thermal sensor CH4 were
arranged as displayed in Fig. 4. The internal and
external temperature changes in the wall under
heating are displayed in Fig. 5. After the fire resis-
tance test, the wall sample was removed from the
furnace for further testing.

2.5. Tension and shear tests

First, the tension mold was installed on a 600-ton
MTS universal testing machine, and the wall spec-
imen was lifted at the test site using a stacker. The
connector on the wall penetrated into the tension
mold. A strong bolt was passed through the tension
mold and the connector. The nut was then locked.
The wall specimen was suspended on the afore-
mentioned MTS universal testing machine by using
the connector and tension mold. Then, the wall
specimen was gently lowered to the rail; the four
ends of the wall specimen of the fixed wall were
used to lock the test specimen to the high-strength
floor surface. After the strain gauges and other
measuring devices were appropriately arranged, the
tension test was performed, as illustrated in Fig. 6.
The displacement control pulled the samples up at a
rate of 0.03 mm/s. The measured data of the
displacement and tension values were processed in
the data collection system and analyzed.
For the shearing test of the wall specimen, the

steel beam was first installed on the MTS universal
testing machine. The vertical centerline of the
measuring wall specimen was consistent with the
center point of the steel girder; in the case of no

Fig. 3. Configuration of steel connectors within wall specimen (a) dry
type (61) (b) wet type (81) (c) bearing type (56E).

Fig. 4. The location of measuring point for specimens in the fire resis-
tance test.
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eccentricity, the base was fixed using the groove
steel seat and the bolt. A stacker was used to hang
the wall specimens upright on the base, as displayed
in Fig. 7, and the bolts were tightened. A strain

gauge was attached to the appropriate surface of the
wall specimens. Strain gauges were connected to the
information collection system. In this experiment, a
displacement control was used to reduce the pres-
sure applied to the side of the wall specimens at a
rate of 0.03 mm/s so that the bearing connection
produced an upward shear force. The displacement,
shear force, and measured data were collected by
the data collection system and then analyzed.

3. Analysis and discussion of test results

As presented in Table 1, dry, wet, and bearing-
type connectors were used to prepare 16 lightweight
and NWC wall specimens. Eight groups were first
subjected to the fire resistance test and then the
mechanical tests. The other eight groups were
directly subjected to mechanical tests. The results of
the experiments are analyzed in subsequent
sections.

3.1. Effect of the fire resistance test on the
mechanical behaviors of the specimens

3.1.1. Dry connector
As displayed in Table 3, the cracking loads (Pcr) of

samples LC(61)T2b and LC(61)T1 were 2442 and
2569 kgf, respectively, and the ratio of their Pcr was
2442/2569 ¼ 95.1%; the ultimate loads Pu were 4847
and 5940 kgf, respectively, and the ratio of the ulti-
mate load was 4847/5940 ¼ 81.6%. Similarly, the Pcr
of specimens NC(61)T2b and NC(61)T1 were 2214
and 2808 kgf, respectively, and the ratio of the two
cracking loads was 2214/2808 ¼ 78.8%. The Pu of the
NC specimens was 3884 and 6023 kgf, respectively,
and the ratio of the ultimate load was 3884/
6023 ¼ 64.5%. The strength of the NWC wall spec-
imens after the fire resistance test was considerably
higher than that of the LWC wall specimens. The
ultimate load decreased by 64.5%. The fire resis-
tance of the NWC wall was poor, whereas the fire
resistance of the LWC wall was excellent. This result
could be attributed to the manufacturing process.
LWA is quenched at higher temperatures and has
more pores. Limited loss of strength occurred in the
LWA when subjected to a fire test because of its
superior thermal stability, low thermal conductivity,
and small thermal expansion coefficient. Although
generally NWA has a good crystal structure, various
rock components exhibit distinct expansion ratios
[34,35]. Moreover, lower permeability may result in
higher humidity in the heating process. The low
porosity of the NWA caused the pore pressure to
increase rapidly, which caused cracking and spal-
ling of the wall, resulting in poor fire resistance.

Fig. 5. The rising temperature curve of specimens in the fire resistance
test.

Fig. 6. Photos of tension test of wall specimens (a) dry type (61) (b) wet
type (81) (c) bearing type (56E).

Fig. 7. Photo of shearing test of the bearing type (56E).
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Regarding ductility, the Dmax/Du ratios of LC(61)
T2b and LC(61)T1 were 1.25 and 3.48, respectively
(Table 3). Similarly, the Dmax/Du ratio of NC(61)T2b
and NC(61)T1 were 1.03 and 2.63, respectively. After
the fire resistance test, the difference in the ductility
loss between the lightweight and NWC wall speci-
mens was obvious because after LC(61)T2b and
NC(61)T2b were subjected to the fire test, the coef-
ficient of elasticity of the concrete and the aggregate
was reduced, which resulted in a decrease in the
stiffness of the wall. After the fire test, the concrete
samples gradually exhibited decomposition of
cement hydrate and decay of pellets. Concrete
spalling occurred on the surface of the specimen,
which reduced the ductility of the specimen [23].

3.1.2. Wet connector
As presented in Table 4, the Pcr of LC(81)T2b and

LC(81)T1 was 2187 and 2533 kgf, respectively, and
the ratio of the cracked load was 2187/2533 ¼ 86.3%;
Pu was 4693 and 5176 kgf, respectively, and the ratio
of the ultimate load was 4693/5176 ¼ 90.7%. The Pcr
of NC(81)T2b and NC(81)T1 was 1569 and 2456 kgf,
respectively; the ratio of the cracked load was 1569/
2456 ¼ 63.9%. The Pu values of NC concrete speci-
mens were 3781 and 5591 kgf, respectively. The ratio
of the ultimate load was 3881/5591 ¼ 67.6%. Simi-
larly, the high temperature of the fire test caused a
greater reduction in the NWC wall than in the light

wall; the cracked load decreased by as much as
63.9%. Thus, the LWC wall exhibited excellent fire
resistance.
In addition, the Dmax/Du ratios of LC(81)T2b and

LC(81)T1 were 1.29 and 1.61, respectively, whereas
the Dmax/Du ratios of NC(61)T2b and NC(61)T1
were 1.1 and 1.29, respectively. A similar phenom-
enon was observed for the ductility of the two
specimens. The cause of ductility loss after the wall
test specimens were subjected to the fire test is
described in the previous section.

3.1.3. Tension test
As listed in Table 5, the Pcr of LC(56E)T2b and

LC(56E)T1 was 4568 and 5501 kgf, respectively;
the ratio of Pcr of the two specimens was 4568/
5501 ¼ 83.0%; the Pu values of the two specimens
were 9510 and 11,184 kgf, respectively; the ratio of
their ultimate loads was 9510/11,184 ¼ 85.0%.
When subject to high temperature, the decrease of
the two strengths was small, indicating that
the light specimen has excellent fire resistance.
Similarly, the cracking loads of NC(56E)T2b and
NC(56E)T1 were 4233 and 5536 kgf, respectively;
the ratio of the cracked load was 4233/5536 ¼ 76.5%;
Pu was 7310 and 11,642 kgf, respectively, and the
ratio of the cracked load was 7310/11,642 ¼ 62.8%.
A similar phenomenon was observed for the NWC

Table 4. Tension test results for wall specimens of the wet type (81).

Series Pcr
(kgf)

b/a
(%)

Pu
(kgf)

b/a
(%)

Du
(mm)

Dmax
(mm)

Ductility
Dmax/Du

(a)LC(81)T1 2533 86.3 5176 90.7 6.49 8.1 1.61
(b)LC(81)T2b 2187 4693 5.66 6.95 1.29
(a)NC(81)T1 2456 63.9 5591 67.6 5.52 6.81 1.29
(b)NC(81)T2b 1569 3781 4.59 5.69 1.1

Table 5. Tension test results for wall specimens of the bearing type (56E).

Series Pcr
(kgf)

b/a
(%)

Pu
(kgf)

b/a
(%)

Du
(mm)

Dmax
(mm)

Ductility
Dmax/Du

(a)LC(56E)T1 5501 83.0 11,184 85.0 9.12 14.09 4.97
(b)LC(56E)T2b 4568 9510 10.81 13.31 2.5
(a)NC(56E)T1 5536 76.5 11,642 62.8 14.47 18.19 3.72
(b)NC(56E)T2b 4233 7310 8.85 11.73 2.88

Table 3. Tension test results for wall specimens of the dry type (61).

Series Pcr
(kgf)

b/a
(%)

Pu
(kgf)

b/a
(%)

Du
(mm)

Dmax
(mm)

Ductility
Dmax/Du

(a)LC(61)T1 2569 95.1 5940 81.6 8.5 11.98 3.48
(b)LC(61)T2b 2442 4847 6.9 8.64 1.25
(a)NC(61)T1 2808 78.8 6023 64.5 11.41 14.04 2.63
(b)NC(61)T2b 2214 3884 8.18 9.21 1.03
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wall; the decrease in the extreme load was as high
as 62.89%.
Regarding ductility, as evident in Table 5, the

Dmax/Du ratios of LC(56E)T2b and LC(56E)T1 were
2.5 and 4.97, respectively. The Dmax/Du ratios of
NC(56E)T2b and NC(56E)T1 were 2.88 and 3.72,
respectively. The ductility ratio losses of NC(56E)
T2b and NC(56E)T1 were higher than those of the
LWC wall. However, as displayed in Fig. 8, after the
fire test, the loadedisplacement curve (the area
covered by the loadedisplacement [PeD] curve [i.e.,
the hysteresis energy referred to in [23,36] was
considerably larger than that of the NWC wall.
Under the same conditions, the absorbed hysteresis
energy and seismic resistance of the LWC wall were
still higher than the NWC wall.

3.1.4. Shear test
As presented in Table 6, the Pcr of LC(56E)V2b and

LC(56E)V1 were 45,044 and 51,067 kgf, respectively;
the ratio of their Pcr values was 45,044/
51,067 ¼ 88.2%. The Pcr of NC(56E)V2b and NC(56E)
V1 were 41,217 and 51,229 kgf, respectively; the ratio
of their cracked loads was 41,217/51,229 ¼ 80.6%.
The effect of the high temperature of the fire test on
the NWC wall was greater than that on the LWC
wall, but the difference was not large. Furthermore,
the results of the shearing test revealed that irre-
spective of the wall, once the specimen cracked,
then the structure was destroyed immediately;

therefore, the Pcr and Pu values were close. The
Dmax/Du ratios of LC(56E)V2b and LC(56E)V1 were
1.37 and 1.17, respectively. The Dmax/Du ratios of
NC (56E)V2b and NC(56E)V1 were 1.64 and 1.10,
respectively. After the fire resistance test, the dif-
ference in ductility between the LWC wall and the
NWC wall was not large.
As presented in Table 6, the Dmax/Du ratios of

LC(56E)V2b and NC(56E)V2b were 1.17 and 1.10,
respectively. As displayed in Fig. 9(a), the area
covered by the loadedisplacement curve of LC(56E)
V2b (i.e., the hysteresis energy), was still larger than
that of NC(56E)V2b. Under the same conditions, the
hysteresis energy that can be absorbed and the

Fig. 8. The loadedisplacement (P-D) curve of the bearing type (56E)
specimen for tension test after fire resistance test.

Table 6. Comparison of shearing test results for wall specimens of the bearing type (56E).

Series Pcr
(kgf)

b/a
(%)

Du
(mm)

Dmax
(mm)

Ductility
Dmax/Du

(a)LC(56E)V1 51,067 88.2 11.32 15.56 1.37
(b)LC(56E)V2b 45,044 10.34 12.06 1.17
(a)NC(56E)V1 51,229 80.6 7.84 12.86 1.64
(b)NC(56E)V2b 41,271 10.61 11.69 1.10

Fig. 9. The loadedisplacement (P-D) curve of the bearing type (56E)
specimen for shearing test (a) lightweight and normal weight wall after
the fire resistance test (b) before and after the fire resistance test for
normal weight wall.
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seismic resistance of the LWC wall were still higher
than those of the NWC wall. Fig. 9(b) displays that
the NC(56E)V2b and NC(56E)V1 specimens exhibi-
ted a large difference in the area covered by the two
loadedisplacement curves before and after the tests.
Thus, the NWC walls exhibited a large decrease in
hysteresis energy and seismic resistance.

3.2. Effect of the fire resistance test on the failure
patterns of specimens

3.2.1. Dry connector
The crack growth condition, shape, position, di-

rection, and specimen failure of LC(61)T2b and
NC(61)T2b were similar. When the tensile force was
lower than the cracked load, the tensile force and
joint displacement maintained a linear relationship.
As the tensile force approached the cracked load,
cracks began to form on the concrete surface around
the connector, as displayed in Fig. 10(b). The cracks
gradually extended, the width of the cracks
increased, and the concrete protective layer on the
wall surface began to collapse. The concrete func-
tion was gradually lost. Most of the tensile force was
transferred to the joint of the iron and steel inside
the wall until the sample was destroyed, as pre-
sented in Fig. 10(a). The cracks and damage related
to the specimen are displayed in Fig. 10.

3.2.2. Wet connector
The LC(81)T2b connector did not have any rein-

forcement mesh or concrete protection layer; when
the tensile force was lower than the cracked load,
the tension and displacement maintained a linear
relationship. As the tension increased to the cracked
load, the concrete underneath the steel connector
began to crack. When the tension load equaled the
cracked load, the connector was pulled, and the
turning trend of the strain increased. As the exper-
iment progressed, the cracks gradually extended,
the width of the cracks increased, and the concrete
protective layer on the surface of the specimen

began to collapse, as displayed in Fig. 11(a). The
tensile force was mostly concentrated on the steel
connector until the structure was destroyed.
The phenomena of crack growth, shape, position,

direction, and destruction of NC(81)T2b were
similar to those of LC(81)T2b, but the cracked load
and ultimate load were both lower than those of
LC(81)T2b. When the wall was subjected to a ten-
sion test, the first obvious crack occurred in the
concrete at the bottom of the connector. In addition
to the tensile force at the connector, a bending
moment occurred at the connector between the
connector and the concrete. The final failure pattern
was a reverse cone below the connector, as dis-
played in Fig. 11(b). In addition to the upward
displacement caused by the vertical tension at the
connector, a slight angle of inclination due to the
bending moment also occurred. The cracks and
damage of the wall specimens are displayed in
Fig. 11.

3.2.3. Bearing tension test
After the fire resistance test, when the tensile force

was lower than the cracked load, the tension and the
connector displacement maintained a linear rela-
tionship. As the tension increased to the cracked
load, the concrete protective layer around the
connector began to crack. When the connector was
subjected to tension, the strain in front of the

Fig. 11. The failure patterns of the wet type (81) specimen for tension
test after the fire resistance test (a) specimen LC(81)T2b (b) specimen
NC(81)T2b.

Fig. 12. The failure patterns of the bearing type (56E) specimen for
tension test after the fire resistance test (a) specimen LC(56E)T2b (b)
specimen NC(56E)T2b.

Fig. 10. The failure patterns of the dry type (61) specimen for tension test
after the fire resistance test (a) specimen LC(61)T2b (b) specimen
NC(61)T2b.
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connector differed from that in the rear reinforce-
ment. As the experiment progressed, the cracks
gradually extended; the width of the cracks
increased and extended to the periphery, as dis-
played in Fig. 12(a). The concrete surface of the
specimen surface began to collapse, and most ten-
sile force was transferred to the steel connectors
until the specimen was destroyed, as displayed in
Fig. 12(b).
When LC56E)T2b and NC(56E)T2b were sub-

jected to tension tests, the failure patterns of the two
specimens were similar. In addition to the upward
vertical tension force, the connectors produced a
bending moment. The reinforcement on the back of
the connector could withstand the upward vertical
tension and bending moment. Therefore, the con-
crete on the back of the connector caused serious
damage and breakout. In Fig. 12(b), the damage on
the back of the connector was severe. By contrast,
only concrete cracks were generated on the front
concrete of the connector and no obvious failure
patterns were observed, as displayed in Fig. 12(a).
The cracks and damage of wall specimens are dis-
played in Fig. 12.

3.2.4. Shearing test
When the shearing test was performed on LC56E)

V2b and NC(56E)V2b, the failure patterns of the two
specimens were similar. As illustrated in Fig. 7, the
center of the wall and the base were not in the same
line.Due to the eccentric action,when thewallmoved
downward, the reaction force of the base generated
an eccentric bending moment to the connector. The
aforementioned bending moment exerted pressure
on the concrete above the steel connector and
generated a tensile force below. Furthermore, when
the wall moved downward, the wall and connector
interface produced an upward shear force, which in
turn caused a shear force on the concrete above the
connector. This shear force caused a pull force on the
lower side. In summary, the concrete above the
connector was subjected to pressure and shear force
simultaneously; its failure patterns are displayed in

Fig. 13(b). Conversely, the concrete under the
connector was subjected to two-way tensile forces
simultaneously. The failure patterns are displayed in
Fig. 13(a). As displayed in Fig. 13, the cracks produced
in the NWC wall were more pronounced than those
in the LWC wall; after the specimen was destroyed,
the steel connectors were slightly inclined because of
the bending moment.

3.3. Summary

The results indicate that the three connectors are
suitable for precast LWC walls and NWC walls. The
ductility, tension, and shearing test results of light-
weight and NWC walls were similar, and they
exhibited similar mechanic behaviors and failure
patterns. No two-stage failure occurred during the
shearing test of lightweight and NWC walls. How-
ever, the mechanic behavior and seismic resistance
of the LWC walls were superior to those of NWC
walls because the LWC inside the wall specimen
was produced under high heat. Therefore, the effect
of the high temperature on LWC was not as severe.
By contrast, NWC concrete is not manufactured
under high temperature. When subjected to fire and
high temperature, the internal material properties of
the aggregate are partially destroyed, resulting in
the reduction of the E value (coefficient of elasticity)
of the normal weight aggregate and concrete.

4. Conclusions

This study evaluated three connectors commonly
used in precast engineering and determined the
differences in mechanic behaviors and failure pat-
terns of lightweight and NWC wall specimens
before and after the fire resistance test. Further-
more, the effect of three steel connectors on fire
resistance was investigated. According to the results
of the tests, the three steel connectors used for the
fire resistance of the LWC wall enabled it to exhibit
superior resistance to the NWC wall. Thus, the LWC
wall retained its excellent structural performance
after being heated at a high temperature of the
standard heating curve.
The study revealed that in the tension test after the

fire resistance test, the lightweight and NWC walls
exhibited similar mechanic behaviors and failure
patterns. For the LWC wall specimen with the dry
connector, the cracked and ultimate loads decreased
to 95.1% and 81.6% of the original load, respectively,
after the fire test. For the NWC wall with the dry
connector, the cracked and ultimate loads decreased
to 78.8% and 64.5% of the original load, respectively.
The LWC wall exhibited fire resistance superior to

Fig. 13. The failure patterns of the bearing type (56E) specimen for
shearing test after the fire resistance test (a) specimen LC(56E)V2b (b)
specimen NC(56E)V2b.
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that of the NWC wall. For the wet connector, the
cracked and ultimate loads decreased to 86.3% and
90.7% of the original load, respectively. For the NWC
wall specimen with the wet connector, the cracked
and ultimate loads decreased to 63.9% and 67.6% of
the original load, respectively. The LWC wall
exhibited superior fire resistance to that of the NWC
wall. For the bearing-type connector, the cracked and
ultimate loads were 83.0% and 85.0% of the original
loads, respectively. The cracked and ultimate loads of
the bearing-type NWC wall specimens decreased to
76.5% and 62.8% of the original loads, respectively.
Although the loss ratio of the NWC wall was higher
than that of the LWCwall after the fire resistance test,
the hysteresis energy that was absorbed and the
seismic resistance of the LWC wall were still higher
than those of the NWC wall.
The experiment results revealed that in the

shearing test after the fire resistance test, the
cracked load of the LWC specimen of the bearing
type decreased to 88.2% of the original load. For the
NWC wall specimen, the cracked load of the
bearing type decreased to 80.6% of the original load.
Furthermore, the ductility loss of LWC and NWC
wall specimens was considerable. However, the
hysteresis energy that was absorbed and the seismic
resistance of the LWC wall were still higher than
those of the NWC wall.
Furthermore, the failure patterns of the bearing-

type connector in the LWC and NWC walls were the
same. Two-stage failure patterns of cracking and
ultimate load did not occur and the specimens were
damaged instantly once broken. Dry and wet con-
nectors were subjected to tension, and the bearing-
type connector was subjected to shearing. The
cracking behavior of the wall specimens basically
reflected the tension and shearing behaviors of
concrete before a crack occurred in the specimens.
When the tensile force was subjected to the bearing-
type connector, except for the steel connector, it was
based on the tension behavior of reinforced mesh
and reinforced steel inside the wall specimen.
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