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RESEARCH ARTICLE

Integrated Simulation of Virtual Prototypes and
Control Algorithms of Unmanned Surface Vehicles
Based on a Robot Operating System

Hye-Won Lee a, Joo-Hyun Woo b, Myung-Il Roh c,*, Seung-Ho Ham d, Luman Zhao e,
Sol Ha f, Nak-Wan Kim g, Chan-Woo Yu h

a Research Institute of Marine Systems Engineering, Seoul National University, Seoul, Republic of Korea
b Department of Naval Architecture and Ocean System Engineering, Korea Maritime and Ocean University, Republic of Korea
c Department of the Naval Architecture and Ocean Engineering, and Research Institute of Marine Systems Engineering, Seoul National
University, Seoul, Republic of Korea
d School of Industrial and Naval Architecture, Changwon National University, Seoul, Republic of Korea
e Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, Norway
f Department of Naval Architecture and Ocean Engineering, Mokpo National University, Republic of Korea
g Research Institute of Marine Systems Engineering, Seoul National University, Republic of Korea
h Agency for Defense Development, Republic of Korea

Abstract

Unmanned surface vehicles (USVs) require autonomous software with a high level of liberalization and automation to
complete various missions. Therefore, experimental verification and validation of this software at the initial design stage
are essential. However, such experiments are impossible before the actual hardware is developed, and the creation of an
external environment for the mission requires substantial cost and time. In this study, virtual prototypes of the mission
environment and hardware for the USV are developed. Then, a simulation environment for testing the control algorithms
in the autonomous software is constructed. Data communication with the USV hardware is necessary for the autonomous
software to acquire information from the sensors and to operate the actuators. Similarly, data communication between the
programs of the virtual prototypes and the autonomous software is required for the integrated simulation environment. In
this study, the robot operating system (ROS) software platform is adopted to construct the interface for this data
communication. Finally, the integrated simulation environment of the control algorithms and the virtual prototypes are
constructed based on ROS to verify the autonomous software of the USV. The applicability of the suggested simulation
environment is evaluated by application to three scenarios: mine detection, path following, and port entry.

Keywords: Unmanned surface vehicle (USV), Autonomous software, Virtual prototype, Integrated simulation, Control
algorithm

1. Introduction

A s the patterns of warfare change, the appli-
cations of unmanned war systems (UWSs)

are increasing considerably. The use of UWSs has
many advantages, such as the reduction of human
risk or loss and operational costs. Moreover, UWSs
can be integrated with existing manned war systems

to sustain monitoring mission performance. The
classification of UWSs is shown in Fig. 1.
UWSs can be classified into three categories: un-

manned ground systems (UGSs), unmanned aerial
systems (UASs), and unmanned maritime systems
(UMSs). UMSs, which perform maritime missions,
are divided into unmanned underwater vehicles
(UUVs) and unmanned surface vehicles (USVs)
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according to whether the operation area is under-
water or on the sea surface. The main mission of
USVs is mine detection, marine reconnaissance, and
surveillance. USV is the target of this study.
The autonomous software mounted in a USV is

very important for unmanned operation. Because
the USV does not carry people on board, the
autonomous software must control the process of
recognition, judgment, and command. Therefore,
testing and validation for high accuracy and
robustness are indispensable for the development of
the autonomous software mounted in USVs. The
main procedure used to develop this software is
summarized in Fig. 2.
Firstly, the requirements for the USVs are derived

from missions, environmental conditions in the
operational area, and previous development. Based
on these requirements, several control algorithms
are developed to perform missions such as mine
detection, autonomous port entry, and path
following. The next step is to install the control al-
gorithm in a real USV. Then, tests of the control
algorithm are conducted at sea. After the tests,
feedback is provided to the developer for the
modification of the control algorithms.
This general procedure has three problems. The

first problem is that testing the control algorithm is
impossible before the hardware of the USV (such
as the hull, propeller, and engine) is constructed.
The second problem is that testing all cases ac-
cording to the environmental conditions and mine
locations is not sufficient. The third problem is that
testing at sea requires considerable time and cost.

Therefore, a virtual prototype of the USV and
replication of the test environment can solve these
problems. The virtual prototype of the USV can test
the control algorithm any time and anywhere
without restrictions and generate all cases to be
tested. Moreover, it does not require much time
and cost.
In this study, we propose a virtual prototype of the

USV for three scenarios (path following, mine
detection, and port entry), which are shown in Fig. 3.
The path following scenario involves following a

given path despite disturbances in the motion of the
USV by external forces. The mine detection scenario
requires finding mines in the image obtained from
the side-scan sonar (SSS). The port entry scenario
involves entering a port by estimating the position
and orientation of the USV from the camera image.
The key to successfully conducting these scenarios

is determining how to make the virtual prototype of
the USV realistic. The USV itself contains various
sensors to obtain data from its surroundings. Data
obtained from the sensors must be transferred to
the module containing the control algorithms to be
analyzed. Based on the analysis results, the USV
decides to give a command to control a rudder or a
propeller. In other words, the data should be
exchanged between the virtual prototype of the USV
and the control algorithms through the network
interface. Therefore, we adopt the robot operating
system (ROS), which is widely used to develop
hardware and control algorithms rapidly. The ROS
is a framework and a set of tools that provide the
functionality of an operating system. ROS provides

Fig. 1. Classification of UWSs.
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functionality for hardware, device drivers, commu-
nication between processes over multiple machines,
and much more [1]. Therefore, the ROS allows us to
easily integrate the control algorithms with the vir-
tual prototype of the USV and with the real hard-
ware in the USV (see Fig. 4).

2. Related works

There are plenty of works that performed dy-
namics modeling and simulation of UMSs for
various missions. Heo et al. [2] developed a virtual
experimental environment based on modeling and
simulation for USVs. The integrated mission plan-
ning system was designed with a multi-agent pro-
cess. The virtual prototype of the USV model was
developed, and the mission scenario for the path
following was performed. Similarly, Kim et al. [3]
studied a simulation-based approach for the highly
autonomous multi-agent architecture. In their
study, object identification, state estimation, mission
planning, and decision were performed for the mine
search mission. Although the modeling and simu-
lation of the USVs in the existing studies have been
developed at a high-level, including situation
awareness and task planning, the virtual prototypes
of the environment such as SSS were not presented,
and the mission scenarios were limited to mine
searching.
Meanwhile, considering an extension to actual

hardware, several studies have applied the ROS to
integrate the systems of the UMS. Demarco et al. [4]
developed an integrated development system for
the Yellowfin autonomous underwater vehicle
(AUV) that integrates the low-level controller
simulation, mission planning, and mission

execution processes. The ROS was implemented to
interface with several individual communication
systems. In the underwater robotics community, the
Mission Oriented Operating Suite (MOOS) has
been widely used for communication between pro-
cesses. However, Demarco et al. [4] integrated the
ROS with the MOOS by building the MOOS/ROS
bridge and focused on the advantage of using the
ROS, namely, the flexibility in organizing libraries
in the ROS build system. Cashmore et al. [5] con-
structed a system to find a suitable plan for a single
inspection tour of the AUV that optimizes the time
required to complete the mission. The mission
planning and execution procedure were integrated
using the ROS framework. The suggested system
was validated through physical trials performed in a
large underwater tank. Mendonca et al. [6] devel-
oped a multi-robot simulator for water-surface and
aerial vehicles, Kelpie. Kelpie is fully compliant with
the ROS, which provides standard operating-system
services, enabling a distributed computing devel-
opment framework. Because Kelpie is a node of the
ROS, other ROS nodesdsuch as virtual robots, ac-
tuators, and sensorsdcan interact with Kelpie.
Conte et al. [7] developed a multi-agent navigation,
guidance, and control (NGC) system structure
designed for a low-cost autonomous surface vehicle.
The individual agents were implemented using the
ROS, which provides the high computational capa-
bility and easy interfacing with sensors and actua-
tors. Zhao et al. [8] adopted the ROS as an interface
to formulate a HILS (Hardware-In-the-Loop Simu-
lation) for the anti-heave control system of an
offshore support vessel. An integrated simulation
environment was constructed by implementing the
data communication interface of the ROS for the

Fig. 2. Development of autonomous software used in USVs.
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communication between the control system and the
HIL simulator. Recently, the ROS was used in the
collaboration system and the framework of an in-
tegrated simulation environment for heterogeneous
unmanned vehicles by Kim and Lee [9]. In their

study, the ROS was integrated with Pixhawk, which
is actively used for unmanned vehicles and robot
development, for the construction of cooperative
system of USVs carrying out illegal fishing vessel
capture mission.

Fig. 3. Three scenarios used for the virtual prototype of the USV.

Fig. 4. Integration of the control algorithm and the USV by using the ROS.
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The previous works implementing the ROS to the
UMS have been mostly applied to the actual ex-
periments to validate the on-board control algo-
rithms and the integrated systems. However, since it
is difficult to test the actual USVs with the auto-
nomic software, the virtual prototypes of the envi-
ronment and USV are still necessary. This study
defined the mission scenarios that USVs perform
into three; mine detection, path following, and port
entry scenarios. The simulation management and
control algorithms for the USV were developed, and
the virtual prototypes of the environment and the
sensors of USV, such as SSS and camera, were
constructed. The ROS was implemented for the
communication between modules, with the actual
sensors and actuators of the USV, and with addi-
tional control algorithms for other missions. Finally,
the integrated system framework was constructed to
validate the control algorithms for the simulation
and actual operation.

3. System configuration

3.1. Overall configuration

The integrated system, which includes the simu-
lation management, virtual prototype, and the con-
trol algorithm, can be divided into several modules
according to their functions, as shown in Fig. 5.
The scenario management and display modules

help construct the simulation environment and the
scenario and manage the whole simulation. The vir-
tual prototype represents the sensors and actuators of

the USV. The control algorithm is mounted on the
autonomous software of the USV and gives a com-
mand to the USV to execute the assigned mission.
Eachmodule interacts with the others by transferring
data through the ROS interface.

3.2. Scenarios

In each scenario, the corresponding modules
transmit and receive data for communication.

3.2.1. Path following
In the path following scenario, the USV follows

the target path under the given environmental
conditions. For this purpose, the path following
control algorithm mounted on the USV gives com-
mands to the propeller and the rudder. Fig. 6 shows
the configuration of the active modules in this
scenario.
The motion analysis module is the virtual proto-

type of the USV. It includes the global positioning
system (GPS), which is the sensor, and the propeller
and rudder, which are the actuators. The scenario
management module gives the information of the
USV, the scenario, and the environmental condi-
tions (such as the target path, wave, and current) to
the motion analysis module. Then, the virtual pro-
totype of the USV transmits the current position to
the path following control module in the autono-
mous software of the USV. As a result of the algo-
rithm, the control command is transferred to the
virtual propeller and the rudder of the USV. The

Fig. 5. The overall configuration of the virtual prototype, scenario management, and control algorithm.
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actual path that the USV follows is displayed in the
display module so that the user can see the result.

3.2.2. Mine detection
Mine detection using SSS is one of the major

missions that USV performs. The SSS is a sonar
system that uses sound propagation to detect ob-
jects on the seabed. In the mine detection scenario,
the SSS is towed by the USV and generates the
underwater image that contains the mine. The
modules and the transferred data in the mine
detection scenario are presented in Fig. 7.
In this scenario, the virtual prototype of the

SSSdthe subsea image composition moduledis
included. The scenario management module pro-
vides the information of the mines that are scattered
in the mission area to the subsea image composition
module. Then, it generates the subsea image based
on this information and the position of the USV. The
subsea image is then transferred to the mine
detection module, which is the control algorithm.
The mine detection module detects the mines in the
received image, and this information is transmitted
to the display module.

3.2.3. Port entry
When the USV enters a port, detailed control is

required because the location given by the GPS is
not sufficiently accurate for port entry and contains
errors. In the port entry scenario, the camera
mounted on the USV is used to recognize the exact
distance from the port. The entry control algorithm
then gives a command to the propeller and the

rudder to make the USV stop at the target point.
Fig. 8 shows the configuration of the modules used
in the port entry scenario.
The docking image generation module is the vir-

tual prototype of the camera on the USV. It receives
information about the port from the scenario man-
agement module and the position of the USV from
the motion analysis module. Then, it generates the
virtual image of the port seen by the camera. Based
on the docking image, the control algorithms esti-
mate the relative position of the USV and the port
and control the USV the target point in the port.

3.3. Virtual prototypes

The control algorithms in the autonomous soft-
ware of the USV are essential because they e
instead of people on board e give commands to the
USV. Therefore, testing and validation of the
developed control algorithms with actual hardware
are required before the installation of the control
algorithms.

3.3.1. Scenario management
The scenario management and display modules

manage the information of the virtual scenario for
the simulation. They construct the virtual environ-
ment of the mission area, execute the simulation,
and display the result.
The scenario management module creates the

USV units and assigns specific missions to them.
The main information that is necessary to create the
scenarios is shown in Table 1.

Fig. 6. The configuration of the modules in the path following scenario.
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For all scenarios, the USV and the mission area
should be defined. The USV can be created with
given physical and rudder properties. In the mine
detection scenario, several USVs can operate
together along different paths, as shown in Fig. 9.
The mission area is defined as a region that contains
mines. For a given number of mines, the mines are
located randomly in the mission area. The target
path that the USV follows is generated automatically
in a mine detection scenario with a given heading
angle and the search area of the SSS. In other sce-
narios, the user can add the waypoints of the target
path. In the path following scenario, the environ-
mental conditions due to the current can be
considered. When the simulation is executed, the
above information is transmitted to the other
modules.
The scenario management module also manages

the execution of the simulation. It can communicate
with the other modules through the ROS interface.
Thus, the module can start, pause, and stop the
simulation, sending the signal to the other modules.
The simulation execution information includes the
simulation time and the time step.
Lastly, the display module shows the current

conditions on a two-dimensional map for conve-
nience. As shown in Fig. 10, the USV, mission area,
mines, and target path of the scenario are displayed
on the map. During the simulation, the display
module receives the current condition of the USV,
the subsea image generated by the SSS, and the
detected mines. With this information, the user can

see the result of the simulation and evaluate the
performance of the control algorithms.
The graphical user interface (GUI) of the scenario

management and display modules is presented in
Fig. 10. The user interface consists of five parts: the
menu, progress bar, model builder, property view,
and visualization.

3.3.2. Motion analysis
The motion analysis module represents the sen-

sors and the actuators of the USV itself. The sensor
(the GPS) provides the location of the USV, and the
actuators, propeller, and rudder control the motion.
In the engineering model, the motion of the USV is
based on the maneuvering equations of motion in
the horizontal plane, which have three degrees of
freedom (DOF). The maneuvering equations of
motion suggested by Gertler and Hagen [10] are
formulated as in Fig. 11. In this study, the equations
for the surge, sway, and yaw motion used in the six-
DOF maneuvering equations of motion of Gertler
and Hagen [10] are implemented. The motion of the
surface ship can be represented by simplifying the
six-DOF equations, reducing three-DOF (roll, pitch,
and heave) from six-DOF [11].
The motion analysis module calculates the posi-

tion and the heading angle of the USV based on the
physical properties received by the scenario man-
agement module and the control command from the
path following control module. The obtained posi-
tion and the heading angle are transmitted to the
other modules of virtual prototypes and the control
algorithms.

Fig. 7. The configuration of the modules in the mine detection scenario.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2021;29:453e475 459



3.3.3. Subsea image composition
The subsea image composition module aims to

synthesize the subsea image detected by the SSS,
which is mounted on the USV, and transmit the
image to the mine detection module in real-time.
The subsea image is generated according to the
relative position and direction of the SSS and the
mines, which are received from the scenario man-
agement module.
The SSS towed by the USV uses a wide-angle to

emit sound frequencies at right angles to detect
mines on the sea bed. The SSS emits acoustic signals
and then receives the returning echoes when the
signals arrive at the sea bed. When the SSS is reset,
it emits sound again, and the cycle continues. The
acoustic signals are converted to electrical signals
and displayed on a monitor in real-time. The subsea
image shown on the monitor is adjusted to different
color schemes based on the subsea appearance. For
example, if mines are mounted close to the SSS,
they will provide fast-return echoes and produce
stronger reflected acoustic signals than the sur-
rounding flat sea bed. In this instance, the raised

Fig. 8. The configuration of the modules used in the port entry scenario.

Table 1. Information for scenario management.

Object Property

USV Physical properties (inertia, length, mass, search radius)
Rudder properties (initial angle, limit)

Mission area Region, number of mines, port information (location, angle)
Path Waypoints
Mine Position, angle
Environment Current property (speed, heading)

Fig. 9. An example of the mine detection scenario using two USVs.
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body (mines) will be easily detected as a brighter
color in the image compared with the surrounding
flat sea bed.
The right side of Fig. 12 shows an image in which

the acoustic signals are propagated out of both sides
of the SSS. When synthesizing the subsea image
with mines, we applied a hybrid technique to syn-
thesize the highlighted and shadow regions that can
imitate the effect of the virtual mines on the real
subsea background image. The synthesis of the
subsea image is performed in three stages: firstly,
when the SSS emits signals on a mine (Fig. 12 ①),
the mine is projected on the seabed. Secondly, the
shape of the mine in the section view is assumed to
be a circle (Fig. 12 ②). Based on the information
including the relative position and direction q of the
SSS and the mine, the distance of the SSS to the
seabed H, the position and dimensions of the mine

(length L and diameter D), and the positions of the
highlighted region (AeB) and the shadow region
(BeC) on the original subsea image can be calcu-
lated. Thirdly, to represent the highlighted and
shadow region of the mine on the original subsea
image, the brightness of the pixels of the highlighted
region and the shadow region should be adjusted
(Fig. 12 ③). Because the pixel value ranges from 0 to
255, where zero is black, and 255 is white, the pixel
value can be increased in the shadow region and
decreased in the highlighted region.
Consequently, as shown in Fig. 13, the subsea

image with the virtual mines is synthesized.

3.3.4. Docking image generation
The docking image generation module is

designed to produce a virtual monocular camera
image while the USV enters the port. In the port

Fig. 10. GUI of the scenario management and display modules.

Fig. 11. Three-DOF maneuvering equations of motion.
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entry scenario, as the USV uses the monocular
camera image to estimate its relative position from
the docking station, generating an accurate and
realistic virtual docking image is critical. The dock-
ing image generation module produces a virtual
image from the perspective of a camera mounted on
the USV. To produce a realistic docking image, we
used a docking image database of the actual docking
site. It means that we recorded a set of images in
advance before the USV was docking and used this
database to make virtual docking images during the
simulation. Fig. 14 shows the flowchart of the
docking image generation module; as stated, dock-
ing images are collected in advance (offline) and
used as source images to generate virtual

perspective docking images for use during the
simulation (online).
When creating the docking image database,

instead of using a conventional mono-vision cam-
era, we used a 360-degree camera to capture the
scene of the port. While the docking simulation
progresses, the position and attitude of the USV
constantly change while the USV approaches the
docking destination. One advantage of using a 360-
degree camera is that we can easily extract a two-
dimensional (2D) rectangular image (monocular
camera image) with a certain attitude (any specific
roll, pitch, and yaw angular position) at the desig-
nated USV position where the 360-degree image is
taken. The 360-degree image is obtained in an

Fig. 12. Scheme of subsea image synthesis procedure.

Fig. 13. Example of the synthesis of virtual mines in the original subsea image.
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equirectangular image form, which has
360� horizontal and vertical field of view (FOV).
After the attitude and FOV of the virtual monocular
camera have been defined, we can extract a 2D
image of a specific perspective by applying a recti-
linear projection to the source image. Fig. 15 shows
an example of the 360-degree camera image. The
left panel shows a 360-degree image and two
extracted images with two different perspectives.
The right panel presents a top view of the USV and
the FOVs that correspond to the two extracted
images.
Although the 360-degree camera can generate an

infinite number of docking images with varying at-
titudes, to manage a perspective shift due to the
positional change of the USV, a single source image
is not sufficient. Therefore, we sampled a number of
360-degree source images in the docking region,
which was defined in a 20 m � 20 m area. A total of
121 source images were recorded uniformly over the
docking region, with 2 m intervals. Fig. 16 shows a
schematic description of the sampling process of the
source image. To collect the source image, we
recorded a video using the 360-degree camera while

the USV sequentially tracked the assigned path (a
total of 11 paths). Since the vehicle has navigational
sensors, we can reversely calculate the frame num-
ber of the video when the vehicle is located at spe-
cific sampling points. By extracting the image that
corresponds to the designated sampling point, we
can build a database of 360-degree source images.
During the USV's approach to the docking station,

the perspective shift due to its positional change can
be accounted for by switching the source image. The
current source image is selected as long as the
vehicle is located within the boundary of the sam-
pling point region (2 m by 2 m area). When the
vehicle moves to another sampling point region,
another source image is used. However, since the
source image dataset is sampled at 2 m intervals, the
unnatural and sudden image changes occur when
the vehicle crosses the boundary of the sampling
region. To deal with this tendency, we adopted an
image warping technique [12]. Image warping is a
digital image processing method that can distort or
transform image shape. For example, image warp-
ing can distort a partial image by assigning a new
location to any detected feature points. A new
homography matrix that relates the location of two
sets of feature points can be calculated, and image
warping can be processed by using the calculated
homography matrix.
In our application, the image warping technique is

used to generate middle perspectives within the
sampling point region. Fig. 17 shows an example of
image warping to match the perspectives at the
boundary of the sampling region, which can be
achieved by the following procedures. Firstly, we
extract feature points from two neighboring source
images using Speed-Up Robust Features (SURF)
extraction [13]. Then, we match the feature sets
using the KanadeeLucaseTomasi feature-tracking
algorithm [14]. When a matched feature set is found,
we can calculate the pixel difference of each feature

Fig. 14. Flowchart of docking image generation module.

Fig. 15. Example of the use of the 360-degree image in the docking image generation module.
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set. The homography matrix can be calculated, and
image warping can be processed using the matrix
using this information. By applying the interpola-
tion method to the pixel difference matrix, we can
generate a homography matrix of any virtual point
within the sampling region, and a virtual image at

that specific position can be obtained. Subsequently,
the virtual docking image generation module can
provide a smooth source image transition when
crossing the boundary of the sample region and a
finer perspective change inside a specific sample
region.

Fig. 16. Schematic description of the sampling process of the source image.

Fig. 17. Image warping usage to match perspectives at the boundary of the sampling region.
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3.4. Control algorithms

In this study, we developed a number of control
algorithms to accomplish the missions successfully.
For validation purposes, the control algorithm is
currently connected to the virtual prototype mod-
ules through the ROS. However, when the valida-
tion process is over, the developed control algorithm
can be directly connected to actual USV sensors and
actuators.

3.4.1. Path following and entry control
The control module controls the USV actuators

(engine rpm (revolutions per minute), rudder
angle). This module receives the three-DOF position
and velocity variables from the motion analysis
module. The control module generates the desired
actuator command to achieve the goal of the current
mission scenario. Because each mission has a
different purpose, the control strategy varies as well.
Fig. 18 shows a block diagram of the USV control
process. In the port entry scenario, the purpose of
the control is to approach the docking station safely
without collisions. For that purpose, the desired
speed of the vehicle is limited to 2 knots, and the
desired rpm is applied according to the stage of
docking. For the path following and mine detection
scenarios, the primary goal is to follow a pre-
determined path, with a few tracking errors as
possible.
As illustrated in Fig. 18, the control module is

composed of a guidance part and a controller part.
According to the mission scenario, two different
controllers are designed. However, for the guidance
part, the same guidance law is used for all three
scenarios. The vector field guidance method for a
linear path, suggested by Jantapremjit and Wilson
[15]; was used for the guidance. This method cal-
culates the desired course angle for the USV based
on the direction of the path and the lateral distance
of the USV from the path (see Fig. 19). If the lateral

distance is large, then the desired course angle c is
defined as c∞; as the vehicle approaches the path,
the cross-track error y is decreased, as is cVFG, which
is the additional course angle deviation needed to
make the USV approach the path. The course angle
of the vehicle is defined by Eq. (1).

cdðyÞ¼cVFG þ cpath

¼ c∞2
p
tan�1ðkyÞ þ cpath ð1Þ

For the port entry scenario, a target path is
defined as a virtual linear path parallel to the lon-
gitudinal direction of the docking station. For path
following and mine detection missions, a piecewise
linear path made by the current- and next-waypoint
set is used as the target path.
After the desired course angle is calculated from

the guidance part, the controllers create the desired
command for each actuator. For speed dynamics,
the engine rpm is controlled using a PID (Propor-
tional Integral Derivation Control) controller that
adjusts the vehicle's speed to the desired speed. For
steering dynamics, to manage unpredictable
external environmental loads, we adopted a rein-
forcement-learning-based controller.
The reinforcement-learning-based controller can

adaptively learn about the environmental load and
its effect on the vehicle's maneuvering motion.
Among various reinforcement-learning algorithms,
we chose the deep deterministic policy gradient
(DDPG)) algorithm to calculate the optimal rudder
command of the vehicle because it is a policy-based
method and can therefore handle a continuous ac-
tion space. If the action space is discrete, like the one
addressed with the value-based reinforcement-
learning method (e.g., Q-learning), only some
rudder angle candidates can be selected, which will
result in a chattering phenomenon. To handle the
USV control problem using the DDPG algorithm,
we defined a Markov decision process (MDP), a

Fig. 18. Flow chart of the USV motion control system.
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decision-making model for the reinforcement-
learning problem. The state variables of the MDP
are composed of the course angle error and its de-
rivative, the cross-track error and its derivative, the
environmental load information, and the rudder
angle and its derivative. For the action variables of
the MDP, the rudder command in a continuous
action space is used. For the reward function, we
defined an exponential-based reward function that
has its maximum value when the course angle and
cross-track error are equal to zero. A number of
path following simulations were conducted to train
the reinforcement-learning-based controller. Dur-
ing the training, the USV learned the relationship
between a conducted action and its effect on the
performance of path following. By repeatedly eval-
uating and reinforcing the controller, the reinforce-
ment-learning-based controller for steering
dynamics can be trained. A detailed explanation
about the proposed reinforcement-learning based
control algorithm is described in the study of Woo
et al. [16].

3.4.2. Mine detection
The mine detection module was designed to

identify mine-like objects (MLOs) in the mine
detection scenario. This module analyzes the un-
derwater image produced by the subsea image
composition module (3.1.2X). To detect MLOs in the
subsea image, an object-detection algorithm Ada-
Boost, proposed by Viola and Jones [17]; is used.
Although this algorithm was developed to detect a
human face in an image, it can be applied to detect
any object of interest with distinctively shaped fea-
tures. One of the advantages of the AdaBoost

algorithm is that it can significantly reduce the
calculation time by selecting an important feature
among a large feature set; thus, it can be applied to a
real-time image.
Additionally, Sawas [18] applied this algorithm to

detect underwater mines, so its applicability and
effectiveness in underwater mine detection have
already been verified. To detect MLOs using the
AdaBoost algorithm, we divided the process into
two stages. In the first stage, we extracted the image
patterns of MLOs and non-mine-like objects
(NMLOs) using the supervised learning method and
used it to design the MLO classifier. This stage
should be conducted in advance of the mine
detection simulation (offline). When the classifier is
constructed, we can detect any MLO included in the
image in real-time (online) by applying the classifier
to the subsea image.
To construct a classifier that can detect MLOs in a

subsea image, we followed four sub-stages, as
illustrated in Fig. 20. The first step to construct the
classifier is collecting image data of MLOs and
NMLOs. In a real-world problem, the underwater
image collected from an SSS or a synthetic-aperture
sonar can be used to construct an image database. In
our case, an underwater image produced by the
subsea image composition module is used to
construct the subsea image database. Fig. 21 shows
some examples of the subsea and template images
used to build the classifier. A total of 5000 under-
water images were used in the subsea image data-
base, and 10,000 MLO and 20,000 NMLO templates
were extracted to train the MLO classifier.
When the image template database (MLO and

NMLO template images) is collected, the Haar-like
features of all of the images must be extracted. The
Haar-like features are defined by using a mask
composed of black and white regions. When
applying the mask to an image, its scale may vary,

Fig. 19. Vector field guidance for linear path following.

Fig. 20. Flowchart of mine detection module process.
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and its position is random, as shown in Fig. 22. The
Haar-like feature can be calculated by using the
intensity sum of the white and black regions. When
applying four different types of Haar-like-feature
masks on a template image (with a size of 24 pixels
by 24 pixels), over 160,000 Haar-like features are
defined.
After the calculation of the Haar-like features, a

weak classifier is designed using these features to
classify the MLOs and NMLOs based on a single
Haar-like feature. As it uses only one Haar-like
feature, the classifier has relatively poor classifica-
tion performance but a simple structure. As
mentioned, over 160,000 Haar-like features can be
calculated on the images; over 160,000 weak classi-
fiers can be designed. The weak classifier uses a
threshold value to classify the object. The threshold
value for each Haar-like feature can be obtained
from the probability distribution of the MLO and

NMLO images. By constructing a normal-distribu-
tion model for each Haar-like feature value of the
image set, the optimal threshold that can classify
two probability distributions can be calculated.
Since the number of weak classifiers is over

160,000, using them to detect MLOs is neither effi-
cient nor effective. Although some of the weak
classifiers have a high-level performance, the weak
classification is constructed based on a randomly
placed and scaled mask on the image template,
making most of them have poor classification abil-
ity. Therefore, weak classifiers with high perfor-
mance must be selected and combined to build a
new classifier. For this purpose, the adaptive
boosting (AdaBoost) algorithm is used. Boosting
employs a series of processes that combine less-
effective classifiers to construct a more effective
classifier. In the AdaBoost algorithm, a strong clas-
sifier is constructed by calculating a weighted sum

Fig. 21. Process of extracting MLO and NMLO templates from the subsea image.

Fig. 22. MLO detection using Haar-like features.
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of weak classifiers. To build strong classifiers, the
relevant features that are effective in distinguishing
MLOs from NMLOs should be obtained. In addi-
tion, the weight for each weak classifier must be
determined. As the training stage proceeds, the
AdaBoost algorithm iteratively evaluates and re-
inforces the strong classifier. In this work, we
selected 100 weak classifiers from 160,000 classifiers
to build a final strong classifier.
After the final strong classifier is trained (offline),

it can be applied to detect mines in the real-time
mine detection simulation. Because the constructed
classifier is defined in the template image, which
has a size of 24 pixels by 24 pixels, a moving window
with an identical size can be defined to apply the
classifier. As shown in Fig. 23, if the value of the
strong classifier on the moving window is higher
than the pre-defined threshold, we determine that
there is a mine at the location of the moving win-
dow. The bottom row of Fig. 23 shows some of the
mine detection results obtained during the
simulation.

3.4.3. Docking pose estimation
The docking pose estimation module predicts the

position and attitude (pose) of the USV based on the
docking image that is produced by the docking
image generation module. In this module, we
adopted a method called PoseNet, proposed by
Kendall et al. [19]; to estimate the USV pose (see
Fig. 24). PoseNet is a machine-learning-based

localization method that can estimate a six-DOF
pose in real-time. The method uses supervised
learning to train a convolutional neural network
(CNN), which can estimate a pose corresponding to
the image input to the network. Recently, a number
of deep-neural-network-based models have been
designed for the classification problem, such as Alex
Net [20], Res Net [21], or GoogLeNet [22]. In Pos-
eNet, the structure of GoogLeNet is slightly modi-
fied. Because GoogLeNet is designed for the
classification problem, instead of using a softmax
layer, the output layer is directly connected to the
fully connected layer. Thus, PoseNet can deal with
the regression problem instead of the classification
problem.
To use PoseNet to estimate the USV pose, we

must collect a dataset of docking images and the
corresponding pose information. A number of
docking simulations with varying initial pose con-
ditions were conducted while recording the docking
image and pose. A total of 230,000 labeled images
were used to train the CNN. After the supervised
learning process, we conducted a docking simula-
tion for validation. According to the result, the
estimation error tends to be bounded, with root-
mean-square errors of 0.24 m for the lateral posi-
tion, 0.19 m for the longitudinal position, and 0.64�

for the heading angle. Fig. 25 shows snapshots of
virtual docking images, as well as the top view of the
actual USV position and the corresponding esti-
mated position at the same time.

Fig. 23. Mine detection result obtained using the trained strong classifier.
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4. Integrated simulation environment

To construct the simulation environment of the
USV, the integration of the modules introduced
above is necessary; this was achieved by imple-
menting the ROS. Generally, communication
methods such as high-level architecture and TCP/IP
(Transmission Control Protocol/Internet Protocol)
are used for data communication between multiple
modules. However, in such cases, program conver-
sion or additional interfaces are necessary to
communicate with the hardware. On the other hand,
the ROS includes a hardware platform, and various
hardware units, such as motors and sensors, are
supported by the ROS. Therefore, it is possible to
achieve integration not only between the modules

but also between the modules and other hardware,
without program conversion or additional interfaces.
The ROS is a communication-based program con-

taining the core of the message communication be-
tween nodes. In the ROS, the minimum execution
unit is the node, which is a program that controls one
function. The master acts as a namespace that man-
ages multiple nodes. In the past, programs in the ro-
botics field were created with a single frame from the
drivers of the sensors and the actuators to provide
sensing, recognition, and operation. However, to
reuse robot software, it is necessary to divide the
program into small parts according to the purpose of
eachprocessor. In theROS, this process is called node
packaging, and the nodes, which are divided as the

Fig. 24. Concept of PoseNet for USV localization.

Fig. 25. Docking simulation result of PoseNet-based USV localization.

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2021;29:453e475 469



minimum execution units, transmit and receive data
by TCP/IP message communication.
The modules of the virtual prototype and the

control algorithm were developed as the ROS node.
Therefore, each module is an independently
executable program that sends and receives the
necessary data via the ROS interface. Table 2 shows
the information of the transmitted data. The oper-
ating system that the ROS officially supports is
Ubuntu. However, in many cases, some nodes were
developed in other operating systems, although the
master of the ROS is operating in Ubuntu. The
modules used for scenario management, the virtual
prototype, and the control algorithm were devel-
oped in Windows and written in C# or MATLAB.
The ROS master and each node developed in other
operating systems can communicate using the ROS
interface by using Rosbridge, which is a ROS
package that helps non-ROS programs use ROS
functions.

5. Application

Based on the developed modules of the virtual
prototypes and the control algorithms, USV simu-
lations for three scenarios e path following, mine
detection, and port entry e were performed. The

physical properties of the USV are assumed to be as
in Table 3.

5.1. Path following

In the path following scenario, the USV follows
the target path under the influence of environ-
mental loads by learning. The path following control
algorithm calculates the target rudder angle
required to follow the given path as a result of
learning. Fig. 26 shows the modules and the trans-
mitted data in this scenario.
The target path and environmental conditions are

set as follows. The target path is created by linearly
connecting the waypoints in the order input in the
scenario management module (see Fig. 27). When
the USV arrives at the boundary at each waypoint, it
is assumed to have reached the waypoint and fol-
lows the path to the next waypoint. The current is
considered as an environmental load.
The results were compared with that obtained

without environmental loads. The actual path of the
USV is shown as a blue line in the displaymodule. As
shown in Fig. 28, the control algorithm is successfully
verified in the given path and environment. In the
case with current, the USV controls the rudder angle
to the opposite direction to follow the target path.

Table 2. Transmitted data between modules.

Scenario From To Data

Initialize Scenario management Motion analysis Number of USV
Physical properties of USV
Simulation time step
External forces

Path following control Number of USV
Physical properties of USV
Target path

Subsea image composition Mine properties
Entry control Physical properties of USV

Simulation time step
Port location

Path following Scenario management Motion analysis Simulation time
Motion analysis Path following control USV position
Path following control Motion analysis Control command
Motion analysis Display USV position (controlled)

Mine detection Scenario management Motion analysis Simulation time
Motion analysis Subsea image composition USV position
Subsea image composition Mine detection Subsea image
Mine detection Display Detected mines

Detected subsea image
Port entry Scenario management Motion analysis Simulation time

Motion analysis Docking image generation USV position (actual)
Docking image generation Docking pose estimation Docking image
Docking pose estimation Entry control USV position (estimated)
Entry control Motion analysis Control command
Motion analysis Display USV position (controlled)
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5.2. Mine detection

In the mine detection scenario, the SSS towed by
the USV generates the subsea image, and the con-
trol algorithm in the autonomous software detects
mines in the image. The information of the detected
mines is then transmitted to the display module.
The modules used for the scenario are presented in
Fig. 29. Similarly, the path following module con-
trols the USV during the mine detection scenario.
Fig. 30 shows the input data for the search area,

including mines and the target path of the USV. The
mines can be arranged randomly in the given area
according to their number. As shown in Fig. 30, 10
mines are assumed to exist in the search area.
During mine detection, the USV moves on a straight
line to generate the subsea image correctly. There-
fore, in the mine detection scenario, the target path
of the USV is generated automatically based on the
search area, the initial heading angle of the USV,
and the search radius of the SSS. In this scenario, we
assumed two USVs operating together in two di-
rections and crossing at right angles to detect the
mines accurately.
The result is shown in Fig. 31. As the USV moves

along the target path, the virtual prototype of the
SSS generates the subsea image, including the vir-
tual mines. Subsequently, the display module shows
the mines detected by the control algorithm,
together with the actual mines arranged by the user.
As shown in Fig. 31, the USV detects every mine
correctly. The average distance error between the
actual and the detected mines is 2.36 m, with a
maximum value under 5 m. In the figure, some

mines are overlapped because they are detected by
the two USVs simultaneously. In some cases, if the
mine is located close to the path, or the angle of the
mine is perpendicular to the path direction, the
mine cannot be detected. In those cases, the other
USV that crosses at right angles can detect the mine.

5.3. Port entry

After the whole mission, the USV controls itself to
return to the port. For detailed control, the camera
mounted on the USV sends the image of the port
seen by the USV. Then, the autonomous software in
the USV estimates its position and sends the control
command to enter the port to the propeller and the
rudder. The modules required for the port entry
scenario are shown in Fig. 32. Unlike the path
following scenario, both the propeller and the
rudder of the USV are controlled.
As shown in Fig. 33, the docking area is defined as

a square of 20 m in length near the port. When the
USV arrives at the docking area during the mission,
the port entry scenario begins, and the USV is
controlled to enter the port. The location and the
heading angle of the port are defined in the scenario
management module at the initial stage.
The generated docking image and the actual path

of the USV are shown in Fig. 34. The docking image
generation module synthesizes the docking image
seen by the virtual camera with the given position
and heading angle of the USV. Then, the docking
pose estimation module estimates the position of
the USV by analyzing the image. The port entry
control module sends the control command to the

Fig. 26. The modules and the transmitted data for the path following scenario.

Table 3. Physical properties of the USV.

Mass [ton] 1.1971 Speed [m/s] 8
Inertia (Izz) [ton*m2] 31,583 Search radius [m] 40
Length [m] 7 Rudder angle limit [�] 45
COG (X) [m] 3.5 Rudder angular velocity limit [�/s] 20
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propeller and the rudder of the USV based on the
estimated position. As shown in Fig. 34, the USV
successfully enters the port using the virtual camera.

6. Conclusions and future work

In this study, a simulation environment was con-
structed to verify and validate the autonomous

software of the USV. For this purpose, virtual pro-
totypes representing the sensors and actuators of
the USV and the ocean environment are proposed.
Specifically, the subsea image generated by the SSS
was composed using the virtual prototypes. The
control algorithms in the autonomous software were
developed according to the mission scenario of the
USV. For the path following control, a reinforce-
ment-learning controller was adopted. In the mine
detection algorithm, the subsea image composed of
the virtual prototypes was analyzed using the Ada-
Boost algorithm. Lastly, for the port entry scenario,
the position of the USV was estimated from the
virtual docking image.
For the communication between the virtual pro-

totype and the autonomous software, an integrated
simulation environment was constructed using the
data communication interface of the ROS. With this
simulation environment, the virtual prototype can
be easily replaced by actual hardware, which is
supported by the ROS. With actual hardware, a
hardware-in-the-loop simulation can be performed
with the scenario management module and the
control algorithms.
Three mission scenarios were considered for the

USV: the path following, mine detection, and port
entry scenarios. The suggested simulation

Fig. 27. The target path and the environmental conditions in the path following scenario.

Fig. 28. The result of the path following scenario.

Fig. 29. The modules and the transmitted data for the mine detection scenario.
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environment was applied to the three scenarios to
check its applicability. In the path following sce-
nario, the USV follows the target path under unex-
pected environmental loads as a result of
reinforcement learning. In this case, it is not
necessary to adjust the control coefficients as in the

PID controller. In the mine detection scenario, the
virtual subsea image is transmitted to the mine
detection algorithm, which detects mines in the
image. As a result, ten actual mines located
randomly in the search area were all detected by
two USVs crossing right angles. Lastly, in the port

Fig. 30. The search area and the target path in the mine detection scenario.

Fig. 31. The result of the mine detection scenario.

Fig. 32. The modules and the transmitted data for the port entry scenario.
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entry scenario, the position of the USV is estimated
correctly, and the USV is controlled to enter the port
automatically. Here, the docking image is generated
using the actual port image from a 360-degree
camera. The result shows that the proposed method
can be effectively used to test and develop the
control algorithms of the autonomous software of
the USV. In future work, the modules of the control
algorithms and scenario management can be inte-
grated with the actual hardware, which is supported
by the ROS. Then, an experiment using actual USVs
can be conducted in the ocean environment to
validate the control algorithms.
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