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RESEARCH ARTICLE

Differential Evolution Algorithm for Ship Path
Planning in Open Waters

Yu-Tao Kang*, Wei-Jiong Chen, Jin-Hui Wang

College of Ocean Science and Engineering, Shanghai Maritime University, No.1550, Hai-Gang Rd., Pudong New Area, Shanghai, China

Abstract

A basic problem in the design of a decision support system for ship collision avoidance is path optimization in a
complex and dynamic navigational environment. This paper introduces a new path planning method based on the
differential evolution (DE) algorithm to calculate a safe, optimal path for a ship. The algorithm was tested on a set of
traffic scenarios typically encountered in open waters. The simulation test results prove the method's ability to solve a
path planning problem for ships. We also discuss the optimality, consistency, and performance of the algorithm and
provide a comparison of this algorithm with the particle swarm optimization (PSO) algorithm. The comparison results
clearly show a significant advantage of the DE algorithm over the PSO algorithm in the areas of output optimality,
algorithm consistency, and execution efficiency.

Keywords: Collision avoidance, Path planning, Differential evolution algorithm

1. Introduction

S hip collision avoidance remains a key consid-
eration in maritime navigation. Ships must

contend with path planning problems still present
in some applications, posing problems for decision
support systems and unmanned vehicles. Path
planning is a growing research area in ship collision
avoidance. However, ship path planning for colli-
sion avoidance is a multiobjective nonlinear opti-
mization problem in a complex and dynamic marine
environment, and it must balance navigational
safety and economic performance under some
constraints, such as human factors, ship maneu-
verability, environmental conditions, and COL-
REGS (the Convention on International Regulations
for Preventing Collisions at Sea) compliance. To
solve this problem, experts and scholars have pro-
posed and developed many methods over the past
few decades. These methods can be approximately
divided into deterministic and the heuristic ap-
proaches [13].

The deterministic approach determines solutions
by following a set of rigorously defined steps; these
approaches include fuzzy set theory [3,4], the maze-
routing algorithm [1,10], the dynamic programming
method [8], and the trajectory base algorithm [7].
The deterministic approaches determine collision
avoidance maneuvers or calculate optimal paths by
treating each target ship (TS) in stages, resulting in a
suboptimal final output. Furthermore, most studies
have focused solely on determining the shortest
collision-free path within the solution space without
considering COLREGS compliance and environ-
mental conditions.
The heuristic approach does not involve searching

for the optimal solution in the search space; instead,
it involves developing an acceptable solution that
satisfies design requirements. Hence, the execution
efficiency of a heuristic algorithm is generally much
higher than that of a deterministic algorithm. More
representative studies use the evolutionary algo-
rithm [11,12,14] or the genetic algorithm [2,16,17] to
compute the collision avoidance navigation path.
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Other researchers have adopted the ant colony al-
gorithm [6,15] to plan a safe and economical colli-
sion avoidance path in dynamic environments.
Recently, the current authors presented a modified
particle swarm optimization (PSO) algorithm [5] to
solve the path planning problem in real-time navi-
gation environments. In this 2018 study, an
improved dynamic ship domain model was used to
assess collision risks in close-range encounters.
However, some limitations must be remedied in
these algorithms, such as coding, parameter setting,
high dimension problem, and premature conver-
gence problems. In the majority of the reviewed
studies, researchers have determined a navigation
path without explicit consideration of the path
compatibility with other ships as well as the algo-
rithm's consistency and completeness.
This paper presents a new path planning

approach based on the differential evolution (DE)
algorithm as an attempt to produce a collision-free
and optimal path in open waters. In this new
approach, ship domain is regarded as an assessment
criterion for collision risk. In this paper, we discuss
the optimality of the algorithm output and the
consistency and efficiency of the algorithm; we also
compare the performance of the algorithm with that
of the PSO algorithm. The rest of this paper is
organized as follows. Section II describes a new path
planning method based on the DE algorithm. Sec-
tion III presents the results of simulation studies for
verifying the proposed algorithm. Section IV pro-
vides a discussion of the performance of the pro-
posed algorithm and a comparison with the PSO
algorithm. Section V conclude the paper.

2. Path planning method

To simplify the path planning problem, several
assumptions are made as follows:

1) All ships can be regarded as moving points in
open waters because the distance between ships
is much greater than the size of ships. The ship
under direct control is denoted as the OS,
whereas any ship other than the OS is denoted
as a TS.

2) All ship operators can obtain real-time collision
avoidance information about their surroundings.
Static and dynamic information about ships in
real-life navigation can be provided by
numerous navigational aids (e.g., Automatic
Identification System and Automatic Radar
Plotting Aid).

3) A two-dimensional space was adopted in this
study, where the real-time data for the OS and
TS were defined.

Generally, path planning for a ship at a certain
time in navigation involves searching for an optimal
path from the initial position to the target position
while simultaneously avoiding other ships and their
ship domains.

2.1. Environmental map

The domain of interest in this paper is limited to
the 6 nautical mile (nm) radius of the OS. Con-
struction of the environment map for path planning
is shown in Fig. 1. The environment map is built
with the initial position of the OS as the origin and
the bow orientation of the OS as the Y-axis of the
coordinate system, where the area within the red
solid line is the domain of the TS, S is the initial
point of the OS, and F is the target point.
The navigation path can be discretized into

several linear segments divided equally from the
start to the destination. A safety domain defined by
the ship domain model around the TS must be
provided at each segment. It is assumed that the
velocity vector of the TS is constant due to the
instantaneous navigation path in this study. Path
planning involves searching for a set of waypoints in
the environmental map to obtain the shortest path,
and this enables the adjacent points and their con-
necting lines to avoid the TS and its safety domain.
Because of the equidistant selection of the longitu-
dinal axis, the vector X composed of the abscissa

Fig. 1. Environment map.
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coordinates of the path points can determine a
unique path, which is defined as follows:
n
x
���xLj �xj�xUj ; j¼1;2;/;D

o
ð1Þ

where xj is the component of X, and D is the
dimension of the solution space. xLj and xUj are the
upper and lower bounds of the value range of xj,
respectively. Ship path planning is transformed into
a process of searching for a set of path points in the
environmental map. This helps the adjacent path
points and their links avoid other ships and their
ship domains, and it makes the total path length the
shortest possible.

2.2. DE algorithm

The DE algorithm is a stochastic optimization al-
gorithm based on the genetic evolution of the pop-
ulation. Similar to other evolutionary algorithms, it
includes mutation, crossover, and selection. The
algorithm mutates individuals using differential in-
formation among individuals in a population. It

then performs crossover operations based on a
probability mechanism and finally updates the
population through a greedy selection mechanism.
At the beginning of the evolution, due to the larger
disturbing quantity from larger individual varia-
tions in the population, the algorithm has a stronger
exploration capability than at other time points,
allowing it to search in a larger range. However,
when the algorithm tends to converge in the later
stages, it searches near the individual with a stron-
ger local search ability because of the smaller indi-
vidual variation of the population. Thus, the DE
algorithm has superior performance to other
evolutionary algorithms as a result of its ability to
learn from individual populations [9].
The population of the DE algorithm is driven by

mutation and selection processes. Mutation pro-
cesses, including mutation and crossover opera-
tions, are designed to exploit or explore the search
space, and selection processes are used to ensure
that information about promising individuals can be
further used. As shown in Fig. 2, the algorithm is
composed of the following steps:

Fig. 2. DE algorithm calculation process.
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1) Initialization: The DE algorithm contains a
population of many individuals, each of which
can be regarded as a solution in the search
space. Assuming that the dimension of the cur-
rent population is NP, the initial population is
generated randomly.
n
xið0Þ

���xLj;i�xj;ið0Þ�xUj;i; i¼1;2;/;NP; j¼1;2;/;D
o

ð2Þ

xj;ið0Þ¼xLj;i þ randð0;1Þ$
�
xUj;i�xLj;i

�
ð3Þ

where xið0Þ is the chromosome of the 0th generation
of the population, xj;ið0Þ is the gene of the chromo-
some, and xLj;i and xUj;i are the upper and lower
bounds of the value range of xj, respectively.

2) Mutation: In biology, this refers to change in
genes at a certain location on a chromosome. In
evolutionary computation, it refers to changes in
values at a certain location through random
destabilization. The DE algorithm achieves in-
dividual mutation through a differential strat-
egy, an important difference between this
algorithm and genetic algorithms. In the DE al-
gorithm, the usual differential strategy is to
randomly select two different individuals in a
population, whose vector differences are scaled,
and synthesize the vectors with the individuals
to be mutated. The mutation process is defined
as follows:

viðgþ1Þ¼xr1ðgÞþF$ðxr2ðgÞ�xr3ðgÞÞ ð4Þ

is r1sr2sr3 ð5Þ
where xiðgÞ is the individual of the population and F
is the scaling factor. To ensure the validity of the
solution, it is necessary to judge whether the genes
in the chromosome satisfy the boundary conditions
in the evolutionary process. If the boundary condi-
tions are not satisfied, the “genes” are regenerated
randomly (the same as the generation method of the
initial population). The g-generation population
xiðgÞ produces an intermediate viðgþ1Þ after
mutation.

3) Crossover: The crossover between individuals of
xiðgÞ and viðgþ1Þ is defined as follows:

uj;iðgþ1Þ¼
�

vj;iðgþ 1Þ; randð0;1Þ � CRorj¼ jrand
xj;iðgÞ; randð0;1Þ>CRandjsjrand

ð6Þ

where CR is the crossover probability and jrand is the
random integer in ½1; 2; /; D�. Introducing the
crossover operation provides more potential solu-
tions for the algorithm, which promotes information
sharing within the population and improves the
diversity of the population.

4) Selection: To maintain the current population
dimension during population iteration, the DE
algorithm uses a greedy algorithm to select the
g-generation population xiðgÞ and the interme-
diate population uiðgþ1Þ generated by mutation
and crossover operations, and individuals that
exhibit better fitness are selected for the next
generation. The greedy algorithm is defined as
follows:

xiðgþ1Þ¼
�

uiðgþ 1Þ; f ðuiðgþ 1ÞÞ � f ðxiðgÞÞ
xiðgÞ; f ðuiðgþ 1ÞÞ> f ðxiðgÞÞ ð7Þ

where f ðuiðgþ1ÞÞ and f ðxiðgÞÞ are the fitness of xiðgÞ
and uiðg þ 1Þ, respectively.

2.3. Fitness function

Because the TS is always moving, it is necessary to
determine the possibility of collision at every
segment of the path. It is assumed, for calculation
simplicity, that no collision risk arises in this
segment as long as the waypoint is not in the ship
domain. Thus, the calculation process for the fitness
of each “chromosome” is shown in Fig. 3. To shorten
the length of the path and avoid any potential col-
lisions with other ships, the fitness function of each
“chromosome” is defined as follows:

null nullD D

Fig. 3. Calculation process for the fitness of each “chromosome”.
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l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � xSÞ2 þ

�yF � yS
Dþ 1

�2
r

þ
XD�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ

�yF � yS
Dþ 1

�2
r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxF � xDÞ2 þ

�yF � yS
Dþ 1

�2
r

ð8Þ

f ¼ lþGD$Dnull ð9Þ

where l is the length of the path, and ðxS; ySÞ and
ðxF; yFÞ are the coordinates of the start point and the
goal point, respectively. GD is the range of the
environment map, which was set to 6 nm in this
study. Dnull is the number of invalid path segments
(i.e., where the OS collides with or is in the safety
domain of the TS). f is the fitness of the “chromo-
some.” The smaller the fitness value is (i.e., a shorter
path length and fewer intersections with other ships
or their ship domains), the better the solution is.

3. Simulation

The path planning algorithm was tested using
several traffic scenarios based on different ship en-
counters. These scenarios were established to
examine the practicality of the algorithm output as
well as evaluate the algorithm performance. In
addition, the algorithm was simulated in MATLAB
and run on an Intel core i7 processor (3.40 GHz [8
cores] with 8 GB of RAM) and Windows 7 operating
system; the parameters were set as follows:

NP ¼ 20; D¼ 19; F ¼ 0:5; CR¼ 0:3; G¼ 5000

3.1. Traffic scenarios

A series of traffic scenarios were constructed for
almost all encounters between two ships in the real-
time marine traffic environment, as shown in Table
1. The position and velocity of the TS were
measured relative to the initial position of the OS,
which was set to be at point (0,0) in the coordinate

system. To verify the applicability of collision
avoidance, some traffic scenarios (i.e., 1, 4e8) were
set up with convergent bearing such that the OS
would collide with the TS if the OS did not change
its course. Different from other scenarios (i.e., 2e3)
with nonconvergent bearing, a collision risk would
occur between an OS and TS if their courses are
maintained.
Scenarios 1e3 were based on the head-on en-

counters, where two ships meet on reciprocal or
nearly reciprocal courses so as to involve a risk of
collision. The aim of using scenario 4 was to explain
overtaking encounters between the OS and TS on
the same course but at different speeds. Scenarios
5e7 were set up to test crossing encounters,
including square crossing, small-angle crossing, and
large-angle crossing. Finally, for scenario 8, a sta-
tionary TS was introduced to examine the OS's
avoidance of a static obstacle. Figure 4 illustrates the
initial states of the OS and TS for all traffic
scenarios.

3.2. Simulation results

The previously mentioned path planning algo-
rithm was used to simulate all traffic scenarios, and
the results are illustrated in Fig. 5. To verify the
compatibility of the output, the simulation results
present the optimal paths of the OS and the path
selection of the TS simultaneously.
In scenarios 1 and 2, each ship altered its course to

starboard so that each would pass on the port side of
the other, complying with COLREGS rule 14.
However, each altered its course to port to obtain
the shortest path in scenario 3. The path of each TS
was obtained by rotating the path of the OS under
the TS scenario because the OS and TS had reverse
roles under the same traffic scenario. In scenario 4,
the OS stayed out of the path of the TS according to
COLREGS rule 13, whereas the TS always main-
tained its course to avoid confusion with the over-
taking party. In scenarios 5e7, the OS also stayed
out of the path of the TS and avoided passing ahead

Table 1. Traffic scenarios.

Scenario OS TS Encounter type

Initial position(nm) velocity (nm/min) Initial position(nm) velocity (nm/min)

1 [0,0] [0,0.5] [0,6] [0,-0.5] Head-on
2 [0.25,0] [0,0.5] [-0.25,6] [0,-0.5] Port to Port
3 [-0.25,0] [0,0.5] [0.25,6] [0,-0.5] Starboard to Starboard
4 [0,0] [0,0.6] [0,2] [0,0.2] Overtaking
5 [0,0] [0,0.5] [3,3] [-0.5,0] Crossing
6 [0,0] [0,0.5] [3,4] [-0.5,-0.25] Small-angle Crossing
7 [0,0] [0,0.5] [3,1] [-0.75,0.25] Large-angle Crossing
8 [0,0] [0,0.5] [0,3] [0,0] Static
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Fig. 4. Traffic scenarios.
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of the TS; these actions conformed to COLREGS
rule 15. The OS avoided the TS as a static obstacle in
scenario 8.
The convergence process of the DE algorithm for

all scenarios are shown in Fig. 6. Generally, the al-
gorithm can converge rapidly within approximately
1000 generations to determine the optimal solution,
where the fitness value fluctuated greatly before 500
generations and gradually stabilized after 1000. The
earliest convergence of the fitness value occurred in
scenario 8 (static obstacle), whereas the latest
convergence of fitness occurred in scenario 6 (small-
angle crossing) because of the increased complexity
of the solution space.
Numerical results for the simulation of all sce-

narios are listed in Table 2. Different from the
fitness convergence process, the algorithm simu-
lated the fewest generations (1,787) in scenario 4
(overtaking) and the most (3,136) in scenario 5
(crossing). This is because alteration of the fitness
value in the next generation is affected by uncer-
tainty and randomness.
The relative distance between ships in all sce-

narios are shown in Fig. 7. The shortest relative
distance (0.25 nm) was observed in scenarios 4 and
8; this was the minimum safe distance set in
advance. All other scenarios had higher minimum
values. Because ship domain is used to assess
collision risk, the dimensions are calculated on the
basis of the minimum safe distance between ships.
In general, the algorithm can generate an accurate

optimal path that maintains a safe distance from
obstacles.

4. Discussion

As demonstrated in the previous section, the path
planning algorithm can produce a satisfactory
output for different encounters involving dynamic
and static ships. Of the eight scenarios, seven com-
plied with COLREGS; the exception was scenario 3.
The algorithm could generate navigation paths with
immediate maneuvers that avoid collision with
other ships in certain scenarios. In addition, the al-
gorithm generated the corresponding path of the TS
by reversing the roles of the OS and TS under the
same traffic scenario, proving the usefulness of this
algorithm when employed for multiple ships.
Because the algorithm involved stochastic pro-
cesses, each scenario was set to run 50 times. Then,
the performance of the algorithm was analyzed and
compared with that of the PSO algorithm under the
same scenario. The version of the PSO algorithm
followed the format of a previous study (Kang et al.,
2018). Thus, details of the PSO algorithm are not
discussed further.

4.1. Optimality

To compare the convergence process of the two
algorithms, scenario 1 was respectively calculated
by DE and PSO algorithms, as shown in Fig. 8. The
fitness value of the PSO algorithm fluctuates greatly

Fig. 6. Convergence process of the DE algorithm for all scenarios.

Table 2. Simulation results.

Scenario Encounter type The optimal path length (nm) DCPA(nm) generation

1 Head-on 6.1379 1.2927 2477
2 Port to Port 6.0077 0.8000 2063
3 Starboard to Starboard 6.0077 0.8000 2086
4 Overtaking 6.0209 0.2500 1787
5 Crossing 6.1996 0.6500 3136
6 Small-angle Crossing 6.2910 0.5910 2738
7 Large-angle Crossing 6.1081 0.3594 2472
8 Static 6.0209 0.2500 1895
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before 2500 generations and converges near the
optimal solution at approximately 3000 generations,
whereas the overall fluctuation of the DE algorithm
is small and gradually converges after 1000 gener-
ations. In other words, the DE algorithm can
converge to the optimal solution earlier than the
PSO algorithm can for that particular path optimi-
zation problem.
A comparison of simulation results between DE

and PSO for all scenarios is provided in Table 3.
Little difference exists between the optimization
effect of the DE and PSO algorithms; the navigation
path generated by the DE algorithm was slightly
more optimal in all scenarios. Furthermore, the DE
algorithm can generate the optimal path more
quickly because it has fewer generations than the
PSO algorithm in all scenarios.

4.2. Consistency

The simulation results shown in the previous sec-
tion are the best results selected from repeated
computations of each scenario, and they cannot

confirm the consistency of the algorithm. To focus on
testing consistency, the optimal path length
and distance to the closest point of approach (DCPA)
of all simulations were recorded and their mean and
standard deviation were calculated; the results were
compared with those for the PSO algorithm.
Figure 9 shows the comparison of the optimal path

length calculated by the DE and PSO algorithms for
all scenarios. The mean of the optimal path length
calculated by the DE algorithm was only approxi-
mately 0.0001 nm longer than that calculated by the
PSO algorithm in scenario 1, whereas the average
lengths of the optimal paths returned by both algo-
rithms were the same in scenario 3. As for other
scenarios, the optimal DE algorithm paths were
slightly shorter than those of the PSO algorithm.
However, the standard deviation difference was even
more meaningful than to that of the mean. The
standard deviation of the DE algorithm is smaller
than that of the PSO algorithm in each scenario.
Figure 10 shows a comparison of the DCPA

calculated by the DE and PSO algorithms for all
scenarios. Except for subtle differences in scenario

Fig. 7. Relative distance between ships in all scenarios.

Fig. 8. Convergence process of DE and PSO algorithms for scenario 1.
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2e3 and 7, the DCPA means of both algorithms
were the same. The standard deviations of DCPA
received with the use of both algorithms are almost
negligible in the majority of scenarios. In general,
the DE algorithm slightly outperforms the PSO al-
gorithm in terms of consistency.

4.3. Efficiency

The statistical data on computational time are
presented and compared in Fig. 11. For both algo-
rithms, the simulation of scenario 8 needed the
shortest computational time, while scenario 7
required the longest. Furthermore, the mean
computation time of the DE algorithm was signifi-
cantly shorter than that of the PSO algorithm in
each scenario. Hence, the DE algorithm offers better
performance in terms of execution speed.

Nevertheless, the advantage in terms of the PSO
computational time is its stability for every run of
the calculations because the PSO algorithm had
lower standard deviations of computational time in
all scenarios.

5. Conclusion

A DE-based algorithm for path planning of ships
in open waters is proposed in this paper. The design
of this algorithm had two steps. The first step in-
volves assessing the collision risk for each obstacle
at a fixed space interval based on the relative posi-
tion and heading with respect to OS, which was
previously presented in Kang et al. (2018). The sec-
ond step involves planning an optimal path for a
ship in a complex navigation environment where

Table 3. Comparison of simulation results between DE and PSO
algorithms.

Scenario Encounter type The optimal path
length (nm)

generation

DE PSO DE PSO

1 Head-on 6.1379 6.1380 2477 3516
2 Port to Port 6.0077 6.0078 2063 3588
3 Starboard to

Starboard
6.0077 6.0079 2086 3097

4 Overtaking 6.0209 6.0210 1787 3493
5 Crossing 6.1996 6.1999 3136 3719
6 Small-angle

Crossing
6.2910 6.2915 2738 3391

7 Large-angle
Crossing

6.1081 6.1086 2472 4155

8 Static 6.0209 6.0211 1895 3055

Fig. 9. Comparison of the optimal path length calculated by the DE and
PSO algorithm for all scenarios.

Fig. 10. Comparison of DCPA calculated by the DE and PSO algorithms
for all scenarios.

Fig. 11. Comparison of the DE and PSO algorithm computational time
for all scenarios.
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static and dynamic obstacles occur. Several traffic
scenarios based on typical encounters have been
constructed to verify the practicability of the algo-
rithm. The simulation results illustrate the success-
ful application of the proposed algorithm.
The results of the new algorithm were compared

with the solutions provided by the PSO algorithm.
The DE algorithm achieved better performance with
regard to algorithm output optimality, algorithm
consistency, and computational time. In summary,
the proposed algorithm is capable of consistently
returning a safe, optimal, COLREGs-compliant, and
real-time navigation path for all traffic scenarios
conceived. Future research must focus on path
planning environments involving multiple obstacles
as well as cooperative path planning for multiple
ships within an environment. The main difficulty in
this research is achieving cooperation between
multiple ships for collision avoidance. A possible
solution is to decompose a multi-ship encounter
into several two-ship encounters from the separate
perspectives of ships to evaluate the danger of a
collision between two ships at the same time.
Another direction is the development of the path
planning algorithm based on improvements in or
combinations of existing lgorithms.
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