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ABSTRACT 

A new discrete-time integral sliding mode control scheme is 
proposed for a class of linear multi-input systems with state 
delays.  Based on the Lyapunov stability theory and one-step 
delayed disturbance approximation, a sliding mode controller 
not only drives the sliding mode into the O(T 2) boundary, but 
also achieves the O(T 2) boundary for state regulation.  A novel 
integral sliding surface is introduced so that reaching phase is 
eliminated.  Chattering phenomenon is eliminated and the 
knowledge of upper bound of external disturbances is not 
required.  The validity of the proposed control methodology is 
demonstrated by simulation results. 

I. INTRODUCTION 

Sliding mode control (SMC) has attractive features such as 
fast response, good transient performance, insensitiveness to 
the matching parameter uncertainties and external distur-
bances (Draženović, 1969; Hung et al., 1993; Young, 1999) so 
that SMC is an effective robust control approach for uncertain 
systems.  In practice, using computers or digital signal proc-
essing (DSP) chips to implement the controller becomes more 
and more important nowadays, and discrete-time SMC has 
gained more and more attractive attention recently. 

Several design methods for discrete-time SMC have been 
proposed in the literature.  Sarpturk et al. (1987) proposed a 
new sufficient reaching condition for controlling discrete-time 
systems.  Furuta (1990) used “sliding sector” concept to de-
sign sliding mode controllers for linear single-input discrete- 
time systems.  Gao et al. (1995) strictly defined the quasi- 
sliding mode and quasi-sliding mode band, and established a 
new reaching condition for single-input discrete-time systems 
based on a reaching law approach.  Young et al. (1999) and Su 
et al. (2000) developed discrete-time SMC schemes by using 

one-step delayed disturbance approximation.  Park (2000) 
developed a discrete-time sliding mode controller for linear 
time-varying systems with disturbances.  Abidi et al. (2007) 
proposed a discrete-time integral SMC for sampled-data sys-
tems.  Pai (2008) developed a discrete-time output feedback 
sliding mode control to stabilize a class of linear uncertain 
systems.  Pai (2009) developed a discrete-time sliding mode 
controller for a class of uncertain linear systems to track dy-
namic outputs of a non-delay reference model.  Pai (2012) 
developed a robust input shaping control for multi-mode 
flexible structures by using discrete-time neuro-sliding mode 
output feedback control.  However, all these papers mostly 
focused on systems without time delays. 

Yet, time delays are common in practical applications, and 
the existence of time delays is frequently a source of poor 
performance and instability.  In this paper, we extend the idea 
of Young et al. (1999) and Su et al. (2000) from discrete-time 
systems to discrete time-delay systems.  Based on Lyapunov 
stability theory and one-step delayed disturbance approxi-
mation (Young et al., 1999; Su et al., 2000), a discrete-time 
SMC scheme is developed for stabilizing a class of linear 
multi-input systems with state delays.  The proposed method 
has the following attractive features: (1) the control design  
is rather straightforward and the stability of overall closed- 
loop time-delay systems is guaranteed without any state 
predictor.  (2) the order of the motion equation in the quasi- 
sliding mode is equal to the order of the original system, 
rather than reduced by the number of dimension of the con-
trol input.  The robustness of the system can be guaranteed 
throughout the entire response of the system starting from 
the initial time instance.  (3) Chattering phenomenon will 
not occur.  The switching control and the knowledge of upper 
bound of external disturbances are not required.  (4) the 
proposed method can be easily extended to the case of mul-
tiple state delays. 

The remainder of this paper is organized as follows.  Sec-
tion II briefly states problem formulation and assumptions.  
Section III provides the proposed discrete-time SMC scheme.  
The selection of sliding surface, the design of sliding mode 
controller, and the stability of the overall closed-loop system 
have been addressed.  Section IV presents results from nu-
merical simulations.  Finally, a conclusion is provided in Sec-
tion V. 
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II. PROBLEM FORMULATION AND 
ASSUMPTIONS 

Consider a class of linear continuous time-delay systems 
discretised at a small sampling time T > 0, and the resultant 
discrete-time systems are described by: 

 ( 1) ( ) ( ) ( ) ( )hx k x k x k h u k d k          

 ( ) ( )ox k x k  for  0k h   (1) 

where ( ) nx k R  is the state, ( ) mu k R  is the control input, 

( ) nd k R  is the bounded external disturbance.  , h and  

are constant matrices of appropriate dimensions, and h is a 
known positive integer for time delay.  In this paper, the 
bounded external disturbance d(k) is assumed to satisfy the 

matched condition, i.e. there exists 1( ) mH k R   such that 

( ) ( )d k H k   with ( ) .HH k    To facilitate further de-

velopment, the following definition and assumptions are made 
throughout this paper. 
 
Definition 1 The magnitude of a scalar v or a vector v is said  

to be ( )rO T  if and only if 
0

lim 0
rT

v

T
  and 

10
lim 0

rT

v

T 
  for a 

scalar v or 
0

lim
rT T


v
0  and 

10
lim

rT T 


v
0  for a vector v, where 

r is an integer.  Denote 0( ) (1)O T O . 

 
Assumption 1 The pair (, ) is controllable. 

 
Assumption 2 The sampling interval T is assumed to be suf-
ficiently small such that the generalized disturbance d(k) does 
not vary too much between consecutive sampling instances.  If 
the above assumption holds, one can obtain (Su et al., 2000): 

 2( ) ( 1) ( )d k d k O T    (2) 

Assumption 3 The sampling interval T is assumed to be suf-

ficiently small such that 1 1, ( )rv O Tv  and 1
2 2, ( )rv O T v  

gives 1 2v v  or 1 2v v .  If the above assumption holds, 

the following relation exists about the effective approxima-
tion. 

 ( ) (1) ( )r rO T O O T   r Z   

where  stands for the effective approximation and Z is the set 
of integers. 

The main objective of this paper is to design a discrete-time 
sliding mode controller such that discrete time-delay system (1) 
is stable.  Also, it will be shown that the proposed scheme 
achieves a magnitude of the order O(T 2) for both the sliding 

mode and state regulation. 
 

Remark 1 The sliding mode characteristics of discrete-time 
SMC systems are different from those of continuous-time 
SMC systems.  It is noted that the motion of a discrete-time 
SMC system can approach the sliding surface but cannot stay 
on it in practice.  Thus, only the quasi-sliding mode is ensured 
(Milosavljevic, 1985; Sarpturk et al., 1987; Gao et al., 1995). 

III. MAIN RESULTS  

1. Sliding Surface Design 

In this paper, we extend the concept of integral sliding 
functions for continuous-time SMC to discrete-time SMC.  
The integral sliding function is defined as 

 ( ) ( ) exp( ) (0) ( )s k Gx k G k x k     , 0   (3.a) 

 ( ) ( 1) ( ) ( 1) ( 1)hk k G K x k G x k h           , 

 (0) 0   (3.b) 

where m nG R   is chosen such that G is invertible and 
m nK R   is synthesized later such that discrete time-delay 

system (1) in the quasi-sliding mode is stable.  The exponen-
tial term G exp(k)x(0) is used to eliminate the reaching 
phase, i.e. s(0) = 0 means that the system is placed on the 
sliding surface initially no matter where x(0) is.  In the fol-
lowing, the conditions are derived to evaluate the stability and 
robustness of discrete time-delay system (1) in the quasi- 
sliding mode. 
 
Theorem 1 

The discrete time-delay system (1) with the sliding function 
(3) is stable in the quasi-sliding mode if there exist positive- 
definite symmetric matrices n nR R   and n nP R   such that 
the following inequality is satisfied 

 0
T T
c c c h

T T
h c h h

P P R P

P P R

      
   
      

 (4) 

where 1( )c G G K       . 

 
Proof: 

Consider a forward expression of (3) 

 ( 1) ( 1) exp( ( 1)) (0) ( 1)s k Gx k G k x k          (5.a) 

 ( 1) ( ) ( ) ( ) ( )hk k G K x k G x k h          (5.b) 

Substituting (5.b) and (1) into (5.a), the equivalent control 
ueq(k) can be found by solving for s(k + 1) = 0 



 M.-C. Pai: An O(T2) Boundary Layer in Sliding Mode for Time-Delay Systems 227 

 

 1( ) ( ) ( ) exp( ( 1)) (0)equ k Kx k G G k x      

1 1( ) ( ) ( ) ( )G k G Gd k      (6) 

where G is chosen such that G is invertible. 
From (3.a) and s(k) = 0, we have 

 ( ) ( ) exp( ) (0)k Gx k G k x     (7) 

Substituting (7) into (6), the equivalent control in (6) can be 
rewritten as 

 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )equ k Kx k G Gx k G Gd k L k        (8) 

where 1( ) ( ) [exp( ( 1)) exp( )] (0)L k G G k k x        
Substituting (8) into (1), the dynamic equation of system (1) 

in the quasi-sliding mode can be obtained as 

 ( 1) ( ) ( ) ( )c hx k x k x k h L k        (9) 

where c and L(k) are defined in (4) and (8), respectively. 
It is noted that the exponential term L(k) in (9) will decay 

to zero as k  .  Hence, it will not affect the stability of the 
quasi-sliding mode dynamics (9).  In order to examine the 
stability of the quasi-sliding mode dynamics (9) without the 
exponential term L(k), we choose the Lyapunov function 
candidate as 

 
1

( ) ( ) ( ) ( ) ( )
k

T T

i k h

V k x k Px k x i Rx i


 

    (10) 

which is positive definite.  The corresponding Lyapunov dif-
ference along the trajectories of quasi-sliding mode dynamics 
(9) without the exponential term L(k) is given by 

( ) ( 1) ( )V k V k V k     

( 1) ( 1) ( ) ( ) ( ) ( )T T Tx k Px k x k Px k x k Rx k      

( ) ( )Tx k h Rx k h    

( ) ( )

( ) ( )

T
x k x k

x k h x k h

   
        

 

where  is defined in (4).  The requirement of negative- 
definiteness of V(k) for stability entails that  < 0 as required 
by (4).  Therefore, the quasi-sliding mode dynamics of dis-
crete time-delay system (1) is stable in the sense of Lyapunov 
stability.  The proof is completed. 

In the following, Theorem 1 will be formulated by LMI 
approach and the feedback controller gain K will be designed. 

 
Theorem 2  

Consider the discrete time-delay system (1) with the sliding 
function (3).  For a given matrix G such that G is invertible, 
there exists a gain matrix K such that, under the integral sliding 
function (3), the discrete time-delay system (1) in the quasi- 
sliding mode is stable, if there exist a matrix m nW R   and 
symmetric positive-definite matrices X, n nM R   such that 
the following LMI is satisfied 

 

0

0
0

0 0

0 0

h

T T T

T
h

X X W M

X W X X

M M

X M

    
 

        
  




 (11) 

where 1( )G G     .  Furthermore, the gain matrix K is 
given by 

 1K WX   (12) 

Proof:  
Matrix inequality (4) can be written as 

 
0

0
0

T
c

c hT
h

P R
P

R

     
             

 

Using the Schur complement (Boyd et al., 1994), the above 
inequality is equivalent to 

 

1

0 0

0

c h

T
c

T
h

P

P R

R

   
 
    

 
   

 (13) 

Pre- and post-multiplying both sides of (13) by diag(I, P1, 
R1), and letting X = P1, W = KP1, M = R1, it yields 

 1 0 0

0

h

T T T

T
h

X X W M

X W X XM X

M M



    
 

      
 

   



  (14) 

Again, using the Schur complement, it yields matrix ine-
quality (11).  Therefore, by Theorem 1, the existence of W, X 
and M satisfying (11) guarantees the quasi-sliding mode dy-
namics of discrete time-delay system (1) is stable.  This proof 
is completed. 

 
Remark 2 Since equation (11) is a linear matrix inequality in 
matrices W, X and M, equation (11) defines a convex solution 
set of (W, X, M), and therefore various efficient convex opti-
mization algorithms can be used to test whether the LMI is 
solvable and to generate particular solution. 



228 Journal of Marine Science and Technology, Vol. 23, No. 2 (2015 ) 

 

2. Design of Discrete-Time Sliding Mode Controller 

After designing the sliding surface, the next phase is to 
design the control law such that quasi-sliding mode is reached 
and stayed thereafter.  Ideally, the equivalent control (8) is a 
solution to the discrete-time SMC.  However, under practical 
considerations, the equivalent control (8) can not be imple-
mented because of the lack of prior knowledge regarding the 
generalized disturbance d(k).  To overcome this problem, one 
step delayed disturbance approximation (Young et al, 1999; Su 
et al., 2000) is applied under the Assumption 2, which implies 
d(k) can be estimated by its previous value d(k  1).  Let 

 ˆ( ) ( 1) ( ) ( 1) ( 1)hd k d k x k x k x k h         

( 1)u k     (15) 

where ˆ( )d k  is the estimate of d(k). 

The control law for the discrete time-delay system (1) is 
proposed as follows: 

 1( ) ( ) ( ) exp( ( 1)) (0)u k Kx k G G k x      

1 1 ˆ( ) ( ) ( ) ( )G k G Gd k      (16) 

where the gain matrix K is given by (12). 
 
Theorem 3  

Consider the discrete time-delay system (1) with Assump-
tions 1-3.  If the sliding function (3) and the proposed control 

law (16) are used, and there exist a matrix m nW R   and sym- 

metric positive-definite matrices X, n nM R   such that LMI 
condition (11) is satisfied, then the control law (16) will drive 
the state to travel in the vicinity of the sliding surface at each 
sampling instant and guarantee the stability of overall closed- 

loop system.  Furthermore, 2lim ( ) ( )
k

x k O T


 . 

 
Proof:  

Using (5), (1), (15), (16) and Assumption 2, we have 

2ˆ( 1) [ ( ) ( )] [ ( ) ( 1)] ( )s k G d k d k G d k d k O T        (17) 

Hence, the control law (16) will drive the state to travel in 
the vicinity of the sliding surface at each sampling instant.  
Next, solving (k) in (3.a) in terms of x(k) and s(k) 

 ( ) ( ) exp( ) (0) ( )k Gx k G k x s k      (18) 

Substituting (16) and (18) into (1), the closed-loop dy-
namics becomes 

 1( 1) ( ) ( ) ( ) ( )c hx k x k x k h G s k        

( ) ( ) ( 1)L k d k d k      (19) 

where c and L(k) are defined in (4) and (8), respectively. 
Using (17) and Assumption 2, the closed-loop dynamics 

can be expressed 

 ( 1) ( ) ( ) ( ) ( )c hx k x k x k h k L k         (20) 

where 2( ) [ ( ) ( 1)] [ ( 1) ( 2)] ( )k d k d k d k d k O T         . 
By introducing new state vectors, X(k)  Rn(h+1) as X(k) = 

( ) ( 1) ( )
TT T Tx k x k x k h     the closed-loop dynamics 

(20) without the exponential term L(k) can be taken as the 
form 

 ( 1) ( ) ( )eqX k X k k     (21) 

where 

0 0

0 0 0

0 0

0 0 0

c h

n
eq

n

I

I

  
 
  
  
 
 






, 
0

0

nI



 
 
  
 
 
 


 and In is the 

identify matrix of appropriate dimensions. 
From Theorem 2, the existence of W, X and M satisfying 

(11) guarantees that the linear discrete time-delay system  
(c, h) is stable.  Thus, all eigenvalues of the matrix eq  

lie inside the unit circle of the z-plane, i.e. 1j   j = 1, ..., 

n(h + 1).  Using a similarity transformation matrix N, the 
matrix eq can be expressed as eq = NJN 1, where the  

matrix ( ( 1)) ( ( 1))n h n hJ     is the Jordan matrix of the eigenvalues 

of the matrix eq and can be expressed as 1

2

J
J

J

 
  
 

0

0
 with 

1
m mJ R   being the Jordan matrix of m repeated eigenvalues 

and ( ( 1) ) ( ( 1) )
2

n h m n h mJ       being a diagonal matrix of the distinct 

eigenvalues, i.e. 2 1 2 ( 1)( , , , )m m n hJ diag       .  Then, the 

solution of (21) can be obtained as 

 
1

1 1

0

( ) (0) [ ( 1)]
k

k i

i

X k NJ N X N J N k i


 



      (22) 

or 

 
1

1 11

0

0
( ) (0) [ ( 1)]

0 0

ik
k

i

J
X k NJ N X N N k i


 



 
     

 
  

1
1

0 2

0 0
[ ( 1)]

0

k

i
i

N N k i
J 






 
    

 
  (23) 

Let m be the maximum norm of all distinct eigenvalues, i.e. 

1 2 ( 1)max{ , , , }m m m n h        (   indicates 
2
 ) and 

max ( )m i   i = 0, ..., (k  1), respectively.  Then, from 

(23) 



 M.-C. Pai: An O(T2) Boundary Layer in Sliding Mode for Time-Delay Systems 229 

 

1
1

1
0

lim ( ) lim [ ( ( 1) )
k

i

k k
i

X k N J N k i 




 


     

1
1

2
0

( ( 1) ) ]
k

i

i

N J N k i 






     

1
1

1
0

lim [ ( )
k

i
m

k
i

N J N 







   

1
1

0

( ) ]
k

i
m m

i

N N 






   (24) 

Since 1j   1, , ( 1)j n h   for a stable system, it is 

easy to verify that 

 1 1 2
0 0

1

1
i i

m
i i m

J   


 

 

  
   (25) 

where 1 and 2 are constants. 
Substituting (25) into (24) 

 lim ( ) m
k

X k  


  (26) 

where 1
1 2( )N N      is a constant. 

Since lim ( ) lim ( )
k k

x k X k
 

  and 2( ),m O T   it can be 

derived from (26) and Assumption 3 that 

 2 2lim ( ) (1) ( ) ( )
k

x k O O T O T


    (27) 

From (17), (27) and Theorem 2, we concluded that the 
control law (16) will drive the state to travel in the vicinity of 
the sliding surface at each sampling instant and guarantee the 
stability of overall closed-loop system.  Also, it achieves a 
magnitude of the order O(T 2) for state regulation.  The proof  
is completed. 

 
Remark 3 Based on one-step delayed disturbance approxi-
mation, the proposed SMC method does not only drive the 
sliding mode into O(T 2) boundary, but also achieve a magni-
tude of the order O(T 2) for state regulation without the switch- 
ing control and the chattering.  Hence, the proposed SMC 
method is better than the conventional one in the implemen-
tation and satisfactory performance. 
 

The design procedures of the proposed discrete-time SMC 
for systems with state delays are summarized as follows: 

 
Step 1 Choose the sliding surface matrix G such that G is 

invertible. 
Step 2 Calculate the gain matrix K in (12) by solving LMI 

(11) in Theorem 2. 

Step 3 Estimate the generalized disturbance ˆ( )d k  by using 

(15). 
Step 4 Construct the sliding mode controller (16) with (3.b). 

IV. ILLUSTRATIVE EXAMPLE 

Consider an uncertain time-delay system given by 

 

0 1 0 0.2 1 0.1

( ) 0 1 2 ( ) 0 1 1 ( 0.1)

1 2 0 1 0 0.1

x t x t x t
   
         
        

  

0

0.1 ( ( ) 0.2sin( ))

1

u t t
 
   
  

 (28) 

The initial conditions for system states are set as x(t) = 

 0.1 0.1 0.1
T

  for  0.1 0 .t   The open-loop system (28) 

is unstable since the eigenvalues of system (28) are -0.4329, 
0.7164 + 2.0266i, and 0.7164 - 2.0266i, respectively.  To il-
lustrate the utilization of this approach, the system (28) are 
sampled with a sampling time T = 0.01 second.  Then, the 
discrete-time system of (28) for each sampling time can be 
obtained in (29) using the Matlab program function c2d 
(Grace, 1993). 

 
1 0.01 0.0001

( 1) 0.0001 1.0098 0.0201 ( )

0.01 0.0201 0.9998

x k x k
 
    
   

 

0.2 1 0.1

0 1 1 ( 10)

1 0 0.1

x k
 
    
  

 

0

0.001 ( ( ) 0.2sin( ))

0.01

u k k
 
   
  

 (29) 

where ( ) 0.2sin( )H k k . 
Following the design procedures in the above section, the 

sliding mode controller is given by the following steps.  Step 1: 
the sliding surface matrix is chosen as G = [1  1  1] such that 
G = 0.011 is invertible.  Step 2: Solve LMI (11) using the 
LMI toolbox in Matlab (Gahinet et al., 1995).  All solutions 
are obtained at a time as follows: 

2.3593 1.7425 0.6369

1.7425 5.4908 13.4426

0.6369 13.4426 300.006

X

 
   
  

,  

 104 4040 54936W     , 
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Fig. 1.  (a) System states (b) sliding function (c) control input.  

 

508.5606 161.4357 79.8602

161.4357 215.3507 112.6309

79.8602 112.6309 772.6903

M

 
    
  

 (30) 

Then, the state feedback gain matrix from (12) can be ob-
tained as  347.0055 469.0987 161.3603 .K      Steps 

3-4: Using (15) and (16), the controller is designed as 

 ( ) 347.0055 469.0987 161.3603 ( )u k x k     

 90.9091 90.9091 90.9091 exp( 2( 1)) (0)k x    

  ˆ90.9091 ( ) 90.9091 90.9091 90.9091 ( )k d k   

  (31) 

where  = 2. 
With the designed parameter setting and initial condition 

 ( ) 0.1 0.1 0.1
T

x k    for  10 0 ,k    the closed-loop 

dynamic responses of simulation are shown in Fig. 1.  Fig. 1(a) 
shows the trajectories of system states.  It is clearly shown that 
the system states approach to zero.  Fig. 1(b) shows the sliding 
function.  It clearly shows that the reaching phase is eliminated 
due to the novel integral sliding surface (3) being introduced.  
Fig. 1(c) shows the control input.  Since the proposed method 
needs not a switching type of control law, it can be seen that no 
chattering phenomenon would occur.  Note that the controllers 
proposed in the literature (Sarpturk et al., 1987; Furuta, 1990; 
Gao et al., 1995; Young et al., 1999; Park, 2000; Su et al., 2000; 
Abidi et al., 2007; Pai, 2008, 2009, 2012) can be used for the 
plant without time-delays.  Therefore, the controllers proposed 
in these papers cannot be used directly for this case either. 

V. CONCLUSION 

In this paper, a discrete-time sliding mode controller has 
been successfully proposed for a class of multi-input systems 
with state delays.  The advantage of the proposed method is 
that the design technique is simple and computationally effi-
cient, and stability of closed-loop system is guaranteed with-
out any state predictor.  Furthermore, the proposed method 
achieves accurate control performance for both sliding mode 
and state regulation, meanwhile eliminates the reaching phase 
and avoids occurring chattering phenomenon.  The simulation 
results verify the theoretical analysis and show that the pro-
posed method effectively controls linear multi-input systems 
with state delays. 
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