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ABSTRACT 

This paper presents an experimental and theoretical inves-
tigation of nonlinear surface-wave propagation over a sloping 
bed.  First, a second-order analytical solution for nonlinear 
surface-wave propagation over a sloping bed is derived using 
a perturbation method for the bottom slope  and the wave 
steepness  in an Eulerian system.  Then, by transforming the 
flow field solution from an Eulerian system into a Lagrangian 
system, more accurate wave profiles are determined.  New 
theoretical breaker characteristics and breaker impulses are 
derived using the kinematic stability parameter.  Subsequently, 
a series of experiments to measure breaker characteristics and 
the breaker impulse are conducted in a wave tank.  The theo-
retical solutions are compared with both the present experi-
mental data and previously published experimental results.  
The results reveal that the analytical solution can reasonably 
describe the wave breaking phenomenon.  In this paper, a 
new theoretical solution for the breaker characteristics and 
impulses is provided, which is proven to be a useful approach 
for follow-up studies to predict breaker characteristics and 
impulses. 

I. INTRODUCTION 

Because of changes in water depth, waves are affected  
by the bottom when the depth is shorter than half of a wave  
length; waves shoal in the propagation process from deep 
water to shallow water.  Moreover, wave heights increase 
and the wave profile becomes more skewed and asymmetric 
(Elgar and Guza, 1985) due to nonlinear effects.  The celerity 
is reduced; hence, the particle velocity of the wave crest is 
faster than the celerity, and the wave subsequently breaks. 
Breaking waves release substantial energy and supply a large 
impact force that damages coastal structures, such as break-

waters, and drives sediment transport along/across the near- 
shore region.  Therefore, breaker characteristics must be quan-
tified to reliably predict sediment transport and structural 
design in coastal regions.  Most investigators have discussed 
and utilized formulas from experimental studies.  For example, 
Street and Camfield (1966), Tang (1966), Lé Méhauté and 
Koh (1967), Galvin (1968), Saeki et al. (1971), Goda (1970, 
2004), Sunamura and Horikawa (1974), Sunamura (1980, 
1983), Ogawa and Shuto (1984), Seyama and Kimura (1988), 
Hansen (1990), and Rattanapitikon and Shibayama (2000) 
have proposed empirical formulas or semi-empirical formulas 
for the breaker height and breaker depth as a function of the 
deep wave height, wave steepness, and bottom slope in accor-
dance with experiments or reliable field data.  Chang (1999), 
Gotoh and Sakai (1999), Hsieh et al. (2007) and Hsieh et al. 
(2008) studied breaker characteristics using numerical simu-
lations; Deo et al. (2003) studied the same topic using neural 
networks and experimental results.  Furthermore, Iwagaki et al. 
(1974), Hubert et al. (1997), Ting et al. (2002), Tsai et al. 
(2005), and Hsiao et al. (2008) utilized experimental data to 
examine several empirical formulas or characteristics of 
breaking waves.  The major drawbacks of the above studies 
are that they can only derive the breaker height or breaker 
depth and provide the location of the breaking wave at the time 
in which it breaks; however, they cannot completely describe 
the wave deformation process and the related flow field.  
Moreover, breaking waves induce large impact forces and 
substantial breaker impulses in a relatively short period of 
time, which may result in the subsequent displacement and 
damage on a caisson breakwater.  Therefore, breaker charac-
teristics and impulses must be quantified to improve the de-
sign of coastal protection structures. 

Biesel (1952) suggested a plausible approximation method 
to account for normal incident waves propagating on a sloping 
plane where the bottom slope was first considered as a per-
turbation parameter in the velocity potential; however, wave 
breaking and nonlinear effects were not treated in his study.  
Furthermore, details on the derivation of the formula are not 
provided.  Chen and Tang (1992), Hsu et al. (2001) and Chen 
et al. (2005, 2006) have extended Biesel’s theory.  However, 
wave impulses remains missing in an explicit analytical solu-
tion for breaking waves on a gently sloping bottom. 

In this paper, a nonlinear analysis is given by perturbing  

Paper submitted 11/14/13; revised 12/31/13; accepted 04/16/14.  Author for 
correspondence: Wen-Jer Tseng (e-mail: jwj@gcloud.csu.edu.tw). 
Department of Civil Engineering and Geomatics, Cheng Shiu University, 
Kaohsiung City, Taiwan, R.O.C. 



 W.-J. Tseng: Nonlinear Breaker Characteristics and Impulse on a Sloping Bottom 173 

 

(x,t)η C

h(x)
= tanα β

hb

Hb

y

x
0

β  
Fig. l. Schematic of a surface wave propagating on a gently sloped bot-

tom. 
 
 

the second order solution for a bottom slope  and/or wave 
steepness  in an Eulerian system.  Then, the wave breaking 
profile is determined by transforming the Eulerian system into 
a Lagrangian system.  Next, the breaker height, the breaker 
depth and the breaker impulse are calculated using kinematic 
stability parameter.  Subsequently, a laboratory experiment is 
conducted to validate the theoretical results on a sloping bot-
tom.  Finally, the theoretical solutions are compared with both 
the present experiment and previously published experimental 
results (Fig. 6 to Fig. 9). 

II. MATHEMATICAL FORMULATION 

A two-dimensional Cartesian x-y coordinate system is 
used to describe a surface wave propagating toward a gentle 
uniformly sloped bottom (Fig. l).  The negative x-axis is 
directed seaward, while the positive y-axis is positioned 
vertically from the still water level; the sea bottom is at  
y = h = x, in which  denotes the bottom slope (Chen et al., 
2005; Li et al., 2013). 

Here,  is the bottom inclination angle,  (= tan ) is the 
bottom slope, (x, t) is the water surface elevation, C is the 
celerity, h(x) is the water depth, Hb is the breaker height and 
hb is the breaker depth. 

By assuming that the flow motion is irrotational, incom-
pressible and inviscid, the second-order governing equations 
and boundary conditions can be derived for the bottom slope 
  and/or the wave steepness  (Ho/Lo), where Ho is the wave 
height and Lo is the deep water wave or incident wave length.  
To describe the irrotational motion of an inviscid and incom-
pressible fluid, a velocity potential  (x, y, t) is introduced and 
the horizontal and vertical velocities are given by 

 , , .u v V ui vj
x y

  
   
 

  
 (1) 

The velocity potential  (x, y, t) is harmonic with respect to 
x and y and satisfies the continuity equation, which leads to 
the following Laplace equation: 

 
2 2

2
2 2

0
x y

   
   

 
. (2) 

The wave motion that is described above must respectively 

satisfy the following boundary conditions at the bottom and 
the free surface: 

 
(1) On an immovable and impermeable sloping plane with 

an inclination  relative to the horizon, represented by  
f (x, y) = y + h = y  x = 0, the no-flux bottom boundary 
condition gives 

2
0

1

x yf
n

f

 
 



 
      

 


, ,y h   and 0,x   

 or simply 

 0, .y h
y x

  
   

 
 (3) 

(2) The dynamic and kinematic free surface boundary condi-
tions are  

 2( ) 2 0, ,t g y         (4) 

 , .y d dt y     (5) 

 The total differential, i.e., D/Dt, of Eq. (4) and using Eq. 
(5) gives 

 2 2[( ) ] ( ) / 2 0, .tt y tg y              (6) 

For a gentle sloping bottom with slope , Eqs. (2) to (6) can 
be solved in order; the solution is provided in the following 
section. 

III. ASYMPTOTIC SOLUTION ANALYSIS 

In this section, an explicit expression for the velocity po-
tential of the wave field is first derived as a function of the 
bottom slope  and the wave steepness  to the second order  
in an Eulerian coordinate system.  Then, the wave profile and 
the velocity components are transformed into a Lagrangian 
system.  Finally, in the subsequent section, the kinematic  
stability parameter is introduced; theoretical breaker charac-
teristics and the breaker impulse are derived.  The detailed 
computation is given below. 

To solve the boundary value problem described in Eqs. (2) 
to (6), it is assumed that the relevant physical quantities can be 
expanded using a double power series of the wave steepness 
  and the bottom slope .  Therefore, the velocity potential  
and the water surface elevation  can be expanded as 

 2
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1 0

( , , ) ( ...)m n
mn

m n

f x y t f f f     
 

 
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2
20 21( ...) ......,f f      (7) 
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Consider a two-dimensional monochromatic wave propa-
gating normal to a gently sloped bottom from deep water to 
shallow water, the lowest order solution for the velocity po-
tential and the surface elevation (Keller, 1958; Chen and Tang 
1992) are assumed to be  

 10

cosh ( )
sin( )

cosh

g k h y
f a t kdx

kh
 




     (9) 

and 

 10 cos( )a t kdx    . (10) 

Here,  is the angular frequency and k is the wave number.  
Because the bottom slope  = d(h(x))/dx = hx is the per-
turbation parameter and both the wave amplitude factor a 
and the wave number k are functions of x, the n-th differen-
tiation of both a and k with respect to x can be determined up 
to the order of  n, or 
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 (11) 

Using Eq. (7) and Eq. (9), we can derive the following: 
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

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2
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coshyy yy
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

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and 

 11

cosh ( )
sin( )

cosht t t t

k h y
ag t kdx f

kh
   

     

2
12 ...... .t tf   (16) 

Then, by substituting Eqs. (12) to (16) into Eq. (6), using 
the Taylor expansion with respect to y = 0 for values calculated 
at y =  and collecting the terms with the same order in m n, 
Eq. (6) becomes (Chen et al., 2005) 

2
11 11 0( tanh )sin( ) ( )y t t y

g
a gk kh t kdx gf f  

        

2 2
12 12 0 20 20 10 10( ) (y t t y y t t y ygf f gf f g f        

10 10 10 10 10 10 02 2 ) ...... 0.y t t x x t y y t yf f f f f      (17) 

Similarly, the bottom boundary condition from Eq. (3) be-
comes  

2
11 20( ) ( ) cos( )

coshy y y h

g ak
f f t kdx

kh
   
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( ) tanh
[ ]sin( ) ...... 0.

cosh
x xa a kh khg

t kdx
kh

 



      (18) 

By applying Eq. (11) and the lowest two orders of the 
combined free surface boundary condition, Eq. (17) gives the 
linear dispersion relation and the constraints for f11 and f12 as 
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 2 tanh ,gk kh   (19) 

 11 11 0( ) 0,y t t yg f f    (20) 

 12 12 0( ) 0.y t t yg f f    (21) 

Similarly, the lowest two orders of the bottom boundary 
condition from Eq. (18) give  

 11[( ) ] ( ) cos( ).
coshy y h

g ak
f t kdx

kh
 

     (22) 

Based on this condition, the lowest order fundamental mode 
is  

 11 1

cos( )
( , , ) ( , )

cosh

t kdx
f x y t A x y

kh

  
 . (23) 

Here,  

 1( ) ( )y y h

gak
A

  , (24) 

and A1 varies with both x and y. 
Using the same assumption for a and k, the differentiation 

of A1 with respect to is of order  n: 

 1 ( ).
n

n
n

A
O

x






 (25) 

Substituting f11 into the O() terms of the Laplace equa-
tion, A1 can be obtained as 

1 1{ [ ( ) tanh ]( ) }sinh ( )x x

g
A a a kh kh h y D k h y


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2
2

1
{ [ ( ) ( )] }cosh ( ),

2 x x

g
ak h y akh h y D k h y


       (26) 

where D1 and D2 depend only on x.  According to Eq. (24) and 
the fact that hx = (), D1 is zero. 

By substituting A1 into Eq. (23), the velocity potential per- 
turbation  f11 can be expressed as 
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sinh ( )
{[ ( ) tanh ][ ]( )

coshx x
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f a a kh kh h y

kh

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cosh ( )
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cosh

k h y
t kdx

kh
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Then, by substituting it into the constraint derived from the 
free surface boundary condition, i.e., Eq. (20), we obtain 

 
2

2

[tanh ( )sech ]
.

2[tanh ( )sech ]
x xa kh kh kh

a kh kh kh


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
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By integrating Eq. (28) with respect to x, the following 
amplitude parameter is obtained:  

 
1

2( tanh )

oa
D kh

a
 . (29) 

where [1 (2 sinh 2 )]D kh kh  and ao is the amplitude of the 
deep water wave. 

Then, using the definition of the bottom slope, i.e., hx = () 
and the condition f11  0 as h  , D2 = 0 and  f11 can be 
written as  

2 2

11 2

( )sinh ( ) ( )
{ [

sinh 2tanh
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Eq. (30) represents the O() term of the velocity potential 
.  To study breaking waves, nonlinear terms of order  2 must 
be considered.  Following the first-order approximation, the 
second-order governing equation and boundary conditions are 
given as  

 2 2
20 20( ) ( ) 0xx yyf f   , (31) 
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A general solution for  2 f20 that satisfies both the Laplace 
equation and the boundary conditions is assumed to follow a 
series form: 
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By substituting Eq. (34) into Eq. (32), we obtain 
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Then, the following is obtained using the orthogonality of 
trigonometric functions: 
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Eq. (34) is then reduced to 
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Other O( 2) terms, such as f21 and f22, are negligible for 
small .  Therefore, these terms are not shown in the following 
discussion.  The complete solution to the second-order equa-
tion in terms of the wave steepness with a small bottom slope 
can be written as 
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This Eulerian solution is transformed into a Lagrangian 
system to derive the deformation of the wave profile, the 
breaker criteria, and the breaker impulse; the details are dis-
cussed in the following section. 

IV. BREAKING WAVE AND BREAKER 
IMPULSE 

1. Wave Impulse for a Uniform Depth 

Because the bottom is uniform before waves enter a gently 
sloped bottom, Eq. (36) can be reduced to  
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The pressure can be calculated from Brenoulli's equation:  
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The dynamic pressure at a fixed position can then be ob-
tained as follows by assuming linearity: 

Eulerian system
Lagrangian system

 
Fig. 2. Comparison of wave profiles between Lagrangian and Eulerian 

coordinates. 

 

 
cosh ( )

( , ) cos( )
coshd i

k h y
P y t ga t

kh
 

 . (39) 

Then, the positive wave impulse per unit width It can be 
obtained as follows:  
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Here Ci is the wave celerity, i.e., ( 2 ) tanh ,i iC gT k h  ai 

is the wave amplitude, Ti is the wave period,  is the density  
of water and the subscript i denotes the incident wave or the 
deep water wave. 

2. Wave Deformation 

As a wave reaches its limit, the crest is fully developed as a 
summit and becomes highly asymmetric, which can be de-
scribed using a Lagrangian coordinate system; the Lagrangian 
system captures details that cannot be captured in an Eulerian 
system.  Hence, the motion described in the Lagrangian sys-
tem is close to reality (Chen et al., 2004). 

The Eulerian and Lagrangian wave profiles prior to the 
wave breaking as the wave propagates over a gently sloped 
bottom (0 1/10)   are demonstrated in Fig. 2. 

The horizontal and vertical Eulerian velocity components 
of the fluid particle, i.e., eu x    and ,ev y    can be 

derived according to the velocity potential given in the pre-
vious section.  As a wave shoals, the wave form becomes 
asymmetric and the particle motion can be obtained by the 
transformation between Eulerian and Lagrangian coordinates.  
The Lagrangian velocity may be estimated from the Eulerian 
velocity according to Chen et al. (2006) 

0
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Here the Eulerian (Lagrangian) velocity is [ , ]E e eV u v

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( [ , ]LV u v  


) and a


 is the position of a fluid particle at time  

t = t0.  Then, the Eulerian motions can be transferred into the 
Lagrangian system according to the fluid particle trajectory; 
the corresponding velocity components, namely, u and v, are 
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Furthermore, the displacement components X and Y of the 
fluid particle with an initial average position of (x, y) are ob-
tained via direct integration to obtain 
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By substituting y = 0 into Eq. (43) and Eq. (44), the water 
particle displacement on the free surface, i.e.,  and , can be 
given as 
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where (, ) is the position of the fluid particle on the free 
surface. 

3. Breaker Characteristics and the Breaker Impulse 

The increase in wave height is due to the fact that shoaling 
becomes depth-limited as the wave propagates into shallow 
waters.  Simultaneously, the celerity is reduced.  Moreover, the 
particle velocity of the wave crest is faster than the wave ce-
lerity; therefore, the wave begins breaking.  To describe the 
breaking wave mechanism, the kinematic stability parameter 
( . . .)K S P  is introduced; the breaker criterion is 

 . . . 1obu
K S P

C
  , (47) 

where C is celerity and uob is the horizontal velocity of the 
particle at the wave crest. 

According to Eq. (29), the breaking amplitude parameter ab 
can be written as 
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where [1 (2 sinh 2 )]b b b b bD k h k h   and the subscript b de-

notes the breaking condition. 
Up to the breaking point, the linear dispersion relation is 

still valid; therefore, 

 2 tanhb b bgk k h  , (49) 

where  = kbCb, kb and Cb are the wave number and celerity, 
respectively, of the breaking wave, and hb is the breaker depth. 

The Lagrangian velocities u and v evaluated at y = 0 can  
be simplified to 
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and 
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The breaker condition is defined by taking the extreme 
value of the horizontal velocity, i.e., 
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The phase angle of the breaking wave b = ( t   kdx)b  
can be solved.  Moreover, this condition also implies that the 
water surface elevation  has an extreme value.  Henceforth, 
the phase angle of the breaking wave is denoted as b for 
brevity.  The resulting Lagrangian horizontal velocity of the 
breaking wave on the free surface is denoted as (u)ob and is 
based on Eq. (50): 
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Here (u1)ob, (u2)ob and (u3)ob are exact the same as (u1)o, 
(u2)o and (u3)o given in Eqs. (52) to (54) except with the 
following substitutions: a = ab, D = Db, k = kb and h = hb, where 
the subscript o represents the free surface. 

Therefore, the breaker criterion can be rewritten in the fol-
lowing more specific form: 
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u
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C
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This criterion, after substituting the previous Lagrangian 
velocity, becomes 
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Fig. 3.  Experimental framework and instrumental setup. 
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According to Eqs. (49), (58) and (61), we can solve for hb, 
kb and b.  The maximum surface elevation max, which occurs 
when a wave breaks, is given by 
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Likewise, we can solve for the minimum breaker depth  
min.  Then, the breaker height Hb is derived to be 

 max min( )bH    . (63) 

Furthermore, the breaker impulse per unit width Itb can be 
obtained using Eq. (40) and the breaker characteristics: 
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Here, maxb  . 

V. EXPERIMENTAL SETUP AND DATA 
ANALYSIS 

The experimental measurements were conducted in a glass- 
walled wave tank in the Department of Marine Environment 
and Engineering at the National Sun Yat-sen University.  This 
apparatus that is used for the experiment contains to following 
components: 

 
(1) Wave flume: length 35 m, width 1 m, height 1.2 m.  A 

piston-type wave generator is at one end and a wave ab-
sorber is located at the other end.  Moreover, a data ac-
quisition system, capacitance-type wave probe, strain 
gauge and digital camera are used. 

(2) Data acquisition system: for data analysis and storage. 
(3) Wave gauge: capacitance-type wave probe.  (The type is 

MK5-3X-L100-D3.  Its response time is 2 ms, and its 
measurement range is 0.005 m~0.45 m.) 

(4) Strain gauge: transforms the wave pressure change into an 
electric resistance change.  (The type is KFW-5-120-C1- 
11L3M2R.  Its gage resistance is 120.4  0.4 ; its gage 
factor is 2.09  1.0%.) 

(5) Digital camera: for imaging the wave profile during the 
experiments.  (The type is a Casio EX-Z750, which col-
lects images at 25 frames per second (fps).) 

1. Experimental Setup 

The experiments were conducted on a 1:10 slope.  Seven 
wave gauges were used.  The gauges were used to measure the 
incident wave heights and breaker heights.  A strain gauge was 
attached to a stainless steel plate to estimate the breaking wave 
pressure.  The waves were generated with a period of 0.8~2.0 
seconds (Te), a water depth of 74.3 cm (he) and wave heights of 
6.0~16.0 cm (He).  The experimental setup is shown in Fig. 3.  
The measured breaker heights (Hb) and breaker depths (hb), 
and breaker impact forces (Feb) were collected.  The experi-
mental wave progressed over a sloping bottom and ap-
proached and ultimately passed the breaking point (Fig. 4). 

2. Experimental Breaker Impulse and Theory 

(1) Theoretical estimation: The present theoretical breaker 
impulse per unit width (Itb)was calculated using Eq. (64). 
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(a) (b)

(c) (d)  
Fig. 4. a-d Images of the experimental breaking process ( = 1/10) (Te = 

1.4 sec, He = 8.35 cm). 
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Fig. 5.  Typical breaker force at the strain gauges. 

 
 

(2) Experimental measurement: The present experimental 
breaker impact force was captured while the wave passed 
the strain gauges in the direction of wave propagation 
(Fig. 5).  The experimental measurements included a time 
series of the breaker impact force that was caused by the 
breakers.  Then, the experimental breaker impulse per unit 
width (Ieb) could be determined using the positive breaker 
force accumulation with time, e.g., from t1 to t2 in Fig. 5 
(the oblique line area). 

3. Theory Validation and Discussion 

Many factors affect wave breaking, including the wave steep- 
ness, wave height, and bottom slope.  The breaking phenome-
non is extremely complicated; therefore, most previous studies 
provided breaker characteristics only based on experimental 
studies and empirical or semi-empirical formulas calibrated 
from laboratory data.  However, the present study combined 
both theoretical and experimental characteristics of breaking 
waves.  The theoretical and experimental results were com-
pared with previously published results (Fig. 6 to Fig. 8).  Fig. 
7 and Fig. 8 contain the experimental results of Iwagaki et  
al. (1974), Deo et al. (2003), Tsai et al. (2005) and the current 
study.  Furthermore, Fig. 9 shows the relationship between the 
relative breaker impulse I * and the incident wave steepness 
H0 /L0. 

Note that I * (= Itb/Ieb) is the impulse ratio of the current 
theoretical solutions and experimental results. 
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Fig. 6. Relationship between the relative breaker height Hb /H0 and the 

bottom slope α. 
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Fig. 7. Relationship between the relative breaker height Hb /H0 and the 

incident wave steepness H0 /L0 for α = 1/10. 
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Fig. 8. Relationship between the relative height Hb /L0 and the relative 

depth hb /L0 for α = 1/10. 
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Fig. 9. Relationship between the relative breaker impulse I * and the 

incident wave steepness H0 /L0 for α = 1/10. 

 
 
Fig. 6 and Fig. 7 show that Hb /H0 increases as the bottom 

slope increases and that Hb /H0 increases as H0 /L0 decreases.  
Moreover, Hb /L0 is proportional to hb /L0, as shown in Fig. 8.  
Fig. 9 shows that the theoretical modeling results are consis-
tent with the experimental data obtained in this study.  Fur-
thermore, the analytical solutions have the same trend as the 
previously published results and the experiment data obtained 
in this study (Fig. 6 to Fig. 9).  The theoretical relative breaker 
height Hb /H0, relative height Hb /L0 and breaker impulse Itb 
are smaller than experimental values.  This finding can be 
partially explained because the analysis is extended only to the 
second order solution in the theoretical component of this 
work.  Accordingly, to improve the accuracy of the mathe-
matical derivation and the present results, the analysis should 
be extended to a higher-order solution. 

VI. CONCLUSION 

This paper provides an analytical solution for breaker 
characteristics and the breaker impulse because previous 
studies did not appropriately treat the breaker impulse.  In this 
study, a series of experiments to measure the properties of 
nonlinear breaking water waves propagating over a sloping 
bottom were conducted in a wave tank.  Then, the theoretical 
solutions were compared with the current experimental find-
ings and previously published results (Fig. 6 to Fig. 9).  The 
analytical solution was shown to exhibit the same trend as the 
experimental data and the previously published results.  The 
main findings of this study are as follows: 

 
(1) This paper provides a theoretical solution for a wave 

propagating over a uniformly sloped bottom from deep 
water to shallow water until the wave breaks.  The results 
of this study demonstrate the characteristics and impulse 
of a breaking wave, which were not readily available in 
previously published works. 

(2) A series of experiments to measure the breaker impulse 
were conducted in a wave tank.  Good consistency was 
obtained by comparing the measured impulse with the 
theoretical value predicted using Eq. (64). 

(3) The theoretical model requires only the incident wave 
conditions and bottom slope to determine the breaker 
characteristics and the breaker impulse. 
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