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ABSTRACT 

In this paper, the inverse Cauchy problem of the Laplace 
equation is considered.  Using the method of fundamental 
solutions, a system of linear algebraic equations can be ob-
tained by satisfying the Cauchy boundary conditions on the 
overprescribe boundary points.  The resulting linear algebraic 
equation is ill-posed and is treated by the exponentially con-
vergent scalar homotopy algorithm (ECSHA).  Four examples 
are adopted to show the validity of the proposed numerical 
scheme and it is concluded that the current approach can 
successfully resolve the ill-posedness of the inverse Cauchy 
problem even when the noise exists. 

I. INTRODUCTION 

The inverse Cauchy problem is a very important problem 
for the non-destructive testing.  Unlike the standard boundary 
value problem, the inverse Cauchy problem has both the 
Dirichelet and Neumann boundary conditions on part of the 
boundary and has no information on the remaining boundary.  
It is well known that the inverse Cauchy problem is an ill- 
posed problem in nature.  It means that a small disturbance in 
given data may result in great errors in solution.  Since in the 
realistic cases boundary data come from measurements which 
contain noise, it then becomes very important to find a stable 
and accurate numerical algorithm to solve the resulting ill- 

posed algebraic equations. 
However, Many research works have been conducted to 

seek for a stable and efficient method to deal with the ill-posed 
behaviors of Cauchy problem.  We cannot list all of them, and 
the following mentioned methods are some well-known and 
popular methods.  The most popular one is the Tikhonov’s 
regularization method (Tikhonov and Arsenin, 1977), which 
transforms the original incorrectly posed problem into a cor-
rectly posed problem by a minimization of the L2-norm of the 
solution subjected to the constraint equations.  To determine 
the optimal regularization parameter, Hansen (1992) proposed 
the so-called L-curve concept, in which the optimal parameter 
is to seek for the best balance between the distortion of the 
original equations and the norm of solution.  Another well 
known method is the truncated singular value decomposition 
method (Chang et al., 2001).  This method discards some 
small singular values below the threshold, such that the am-
plification of error of data for these small singular values 
would not appear.  Other methods have been proposed to 
regularize the Cauchy problem, for example, an energy- 
minimizing approach (Andrieux et al., 2006), methods using 
quasi-reversibility (Klibanov and Santosa, 1991; Bourgeois, 
2005), and methods of alternating Dirichlet and Neumann 
problems, with regularizing properties (Kozlov et al., 1992; 
Belgacem and Fekih, 2005).  For more references, the fol-
lowing listed papers are some related inverse problems ap-
peared recently (Koya et al., 1993; Yeih et al., 1993; Hào and 
Lesnic, 2000; Leitao, 2000; Berntsson and Eldén, 2001; 
Cheng et al., 2001; Engl and Leitao, 2001; Hon and Wei, 2001; 
Aliev and Hosseini, 2002; Marin et al., 2002; Marin and 
Lesnic, 2002; Li, 2004; Cheng and Cabral, 2005; Mera et al., 
2006; Ling and Takeuchi, 2008; Liu, 2008a, 2008b). 

The method of fundamental solutions (MFS) has been de-
veloped for a long time.  For readers who are interested in the 
development of MFS, the following two classic papers are 
suggested references (Mathon and Johnston, 1977; Bogo-
molny, 1985).  A review paper on the application of MFS on 
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elliptic boundary value problem is found in Fairweather and 
Karageorghis (1998).  Alves and Chen (2005) applied the 
MFS to the nonhomogeneous elliptic problems.  Poullikkas et 
al. (1998) applied MFS for both harmonic and biharmonic 
problems.  The MFS although has its advantage on collocating 
boundary conditions only, it has been reported that MFS may 
be sensitive to source points since it may result in an ill- 
conditioned matrix (Ramachandran, 2002).  Golberg (1995) 
used the MFS to solve the Poisson equation.  Fairweather et al. 
(2003) applied the MFS to solve the scattering and radiation 
problems. 

Marin (2005a) has applied MFS to solve the inverse 
Cauchy problem of a Helmholtz equation and the Tikhonov’s 
regularization technique and the L-curve concept.  Marin 
(2005b) also used MFS to solve the inverse Cauchy problem 
of the elastostatics.  Chen et al. (2005) used MFS to solve the 
inverse 2D Stokes flow problem with overprescribed bound-
ary conditions on part of boundary and underdetermined 
boundary conditions on the remaining.  Young et al. (2008) 
have adopted MFS to solve the inverse Cauchy problem of 
Laplace equation and they found that for some cases this 
method does not require regularization or iteration at all.  
Marin and Lesnic (2005) has applied MFS to solve the inverse 
Cauchy problem associated with two-dimensional Helm-
holtz-type equation and in that paper the Tikhonov’s regu-
larization and L-curve concept were used.  Hon and Wei 
(2004) used the MFS to solve the inverse heat conduction 
problem in which they applied the Tikhonov’s regularization 
and L-curve concept.  Jin et al. (2006) used MFS to solve the 
inverse boundary value problems associated with the steady- 
state heat conduction with anisotropic media.  Marin and 
Lesnic (2004) used MFS to solve the inverse Cauchy problem 
in linear elasticity.  Wei et al. (2007) used the MFS with regu-
larization techniques to resolve the Cauchy problems of ellip-
tic operators.  Among these papers which used MFS to solve 
the inverse problems, most of them adopted regularization 
technique to tackle with the ill-posed problem arising in the 
linear algebraic equations.  In this paper, we will use a newly- 
develop exponentially convergent scalar homotopy algorithm 
(ECSHA) to tackle with the ill-posed problem.  In such a 
technique, no need of regularization parameters is required 
and thus it does not distort the original equation at all.  The 
remaining parts of this paper contain the following arrange-
ments.  In section 2 we will give a brief introduction of MFS, 
inverse Cauchy problem and the ECSHA.  In the section 3, 
four numerical examples are shown to check the validity of  
the proposed method.  Final section contains conclusions. 

II. MATHEMATICAL FORMULATIONS 

The governing equation is the Laplace equation: 

 2 0u   (1) 

where u denotes the potential and 2 is the Laplacian operator. 

There are many numerical methods to solve the Laplace 
equation.  Here, we adopt the MFS.  The MFS assumes the 
solution can be written as the linear combination of funda-
mental solutions measuring from various source points as: 

      log ,  i j ij ij i j i j
j

u C r r   x x s x s  (2) 

where xi is the observation point, sj is the source point and  
Cj is the source density.  Notice that the fundamental solution 
becomes singular when the observation point coincides with 
the source point; therefore, we arrange the source points out-
side the domain of interest.  In addition, we should stress that 
for a multiply connected domain with genus p we need to 
arrange source inside each hole.  Therefore, the source points 
usually are arranged on an artificial source point surface  
which is outside the domain but similar shape as the physical 
boundary. 

Since the fundamental solution already satisfies the gov-
erning equation, we only need to satisfy the boundary condi-
tions on the boundary collocation points.  There are several 
types of boundary conditions listed as: 

 (Dirichelet boundary condition, 1st kind B.C.)u f , (3) 

 (Neumann boundary condition, 2nd kind B.C.)
u

g
n





, (4) 

 (mixed type boundary condition, 3rd kind B.C.)
u

u h
n

  
 


, 

  (5) 

where  and  are constants, n denotes the outward normal 
direction and ,f  g  and h  are known functions.  To under-
stand the influence of noise, we assign the absolute random 
error as: 

 b b sn random    (6) 

where b is the noisy data, b  is the noise-free data, sn denotes 
the noise level and random is a random number in the range of 
[-1,1]. 

The standard boundary value problem is defined as: for 
each boundary point only one kind of boundary condition is 
given.  The inverse Cauchy problem is different.  For the in-
verse Cauchy problem, on part of the boundary both the po-
tential and the normal derivative of the potential is known 
while on the remaining part of boundary no information is 
given.  Unlike the standard boundary value problem, the in-
verse Cauchy problem encounters great difficulty in numerical 
calculation because it is an ill-posed problem.  More specifi-
cally speaking, a small disturbance in data may result in great 
deviation in solution.  This is called the numerical instability, 
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or the solution is not continuously dependent on data in Ha-
darmard sense.  To deal with this problem, the conventional 
approach try to formulate a well-posed problem from the 
original ill-posed one by slightly distorting the original system 
(the Tikhonov’s regularization) or design a filter to discard 
some sensitive singular values (the truncated singular value 
decomposition method).  These methods all require us to de-
termine some regularization parameter and the process be-
comes very complex.  In addition, for some extreme cases  
the above-mentioned methods even cannot obtain acceptable 
results.  Recently, the fictitious time integration method has 
been used to deal with the inverse Cauchy problem success-
fully (Chi et al., 2009) and it has a better noise resistance than 
the conventional Tikhonov’s regularization method.  In a re-
cent paper by Liu and Atluri (2009), they used the filter theory 
to explain why the fictitious time integration method is a better 
filter than the conventional Tikhonov’s regularization.  The 
fictitious time integration method although shows its suc-
cessfulness in many difficult problems, it has a main drawback 
that it requires the number of equation should be equal to the 
number of unknown.  To relax this restriction, a scalar for-
mulation of the fictitious time integration method has been 
developed and named as the manifold-based exponentially 
convergent algorithm (MBECA) in a previous researches (Ku 
et al., 2010).  Actually, the MBECA can be viewed as an ex-
ponentially convergent scalar homotopy algorithm by con-
sidering a change of variables.  Therefore, we give a new name 
for this method as the exponentially convergent scalar homo-
topy algorithm (ECSHA).  In the followings, the ECSHA (or 
MBECA) will be briefly reviewed.  The ECSHA has been 
used for solving the nonlinear plate problem (Dai et al., 2011) 
and other problems (Chan et al., 2011; Fan and Chan, 2011; 
Fan et al., 2012; Fan et al., 2013) involving ill-posed systems. 

Assuming there are m-algebraic equations in n variables to 
be solved as: 

   0F x  (7) 

where mRF  and nRx . 
Consider a space-time manifold as: 

   21
, : ( )

2
h t Q t C x F  

where Q(t) > 0 and is a monotonically increasing function  
with Q(0) = 1 and C can be determined from the initial guess 

x0 as   2

0

1

2
C  F x .  By requiring that the trajectory of x 

remains on the manifold and assign appropriate function for 
Q(t) we can obtain the revolution ODE for x as: 

 
2

2(1 )
T

Tt 






F
x B F

B F
  (8) 

where  and  are parameters that control the convergence 
speed (Ku et al., 2009), B is the Jacobian matrix with its 

components as .i
ij

j

F
B

x





  If one takes a look at Eq. (8), it 

seems that this equation is a scalar formulation of the fictitious 
time integration method.  If one introduces a variable  such 
that when t = 0 then = 0 and when t   then = 1, then 
equation can be rewritten and the new formulation for x and  
 is a evolution equation derived from the scalar homotopy 
method (Liu et al., 2009). 

It is noticed here the direction of evolution in Eq. (8) is BTF 
which is the same as that used in the Landsweber iteration 
method.  If one takes the time step in Eq. (8) as 1 and dis-
carding the modification factor in front of BTF, that is 

2

2(1 ) Tt 




F

B F
, then Eq. (8) is the same as the Landsweber 

iteration method.  The modification factor really can help con-
vergence and this declaration can be verified in the next section. 

In addition, the formula in Eq. (8) is easily implemented for 
parallel computation in large-scale calculation.  Moreover, the 
method proposed here although is used for an ill-posed linear 
algebraic system in this article it can be applied to an ill-posed 
nonlinear algebraic system as well. 

We can use Eq. (8) and employ numerical integration tech-
nique to obtain numerical solution.  In this paper, a constant 
time step size Euler forward integration scheme is used.  It 
should be mentioned here that one needs to use adaptive time 
step size if we want the trajectory of x always on the manifold.  
However, we seldom use adaptive time step size in the real 
calculation.  If the time step size exceeds the limit, it results in 
the trajectory of x deviating from the manifold and we will not 

have decreasing 
2

F as we expect but have a sharp jump in 
2

F .  Nevertheless, the trajectory will still go back and locate 

on the manifold after several time steps since the constraint  
of manifold forces such a motion.  In reality, we may see a 

fluctuating curve of 
2

F versus the time (or number of time 

steps) but the trend of 
2

F keeps decreasing as shown in Fig. 

1.  Therefore, we have to record the relatively smallest value 

of 
2

F and its corresponding time.  The relatively smallest 

value of 
2

F is defined as the local minimum of 
2

F . 

The following convergence criterions are used, when any  
of them is satisfied the procedure terminates: 

 
(1) when the root mean square error (RMSE), defined as 

2

:RMSE
m


F

is small enough, i.e., RMSE  err1 where 

err1 is the assigned tolerance; 
(2) when the number of iteration exceeds the maximum it-

eration number (maxiter); 
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Fig. 1.  A typical plot of RMSE versus fictitious time using ECSHA. 
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Fig. 2.  A square domain considered in Example 2. 

 
 

(3) when the slope of RMSE is small enough, i.e., 

 
   10 10log log

2
new old

new old

RMSE RMSE
err

t t





 

where RMSEnew is the newest relatively minimum RMSE 
value with its corresponding time denoted as tnew, RMSEold is 
the previous relatively minimum RMSE value with its corre-
sponding time denoted as told and err2 is another user defined 
tolerance value. 

III. NUMERICAL EXAMPLES 

1. Example 1 

In this example, a simple square region with edge length 
equal to 1.0 is considered as shown in Fig. 2.  The designated 
analytical solution is given as 

  , 2u x y xy . 

0
0.1
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0.7
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0.7
0.8
0.9

1

 
Fig. 3. (a) Exact solution; (b) Numerical solution of case 1; (c) Numerical 

solution of case 2; (d) Numerical solution of case 2 with aid by 
adding Cauchy data at (0,0). 
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We have 100 collocation points on the boundary and 60 
source points on a fictitious surface of source, which is also a 
square with edge length equal to 1.2.  Inside the domain, we 
place 400 interior points to represent the solution.  We assign 
half of the boundary has the Cauchy boundary data and half  
of the boundary has no information.  Two cases are studied, 
the first case we give Cauchy boundary data on the sub- 
boundaries 1 and 3 and for the second case we give Cauchy 
data on the sub-boundaries 1 and 2.  The following pa-
rameters for ECSHA are used: = 10.0, = 0.001, t = 0.001, 
maxiter = 1000000, err1 = 1.0  103, err2 = 1.0  107.  The 
initial guess is that all the source strengths are set to be 1. 

For case 1, the inversion is shown in Fig. 3(b) and it is ac-
ceptably close to the analytical solution in Fig. 3(a).  However, 
for case 2 the inversion is shown in Fig. 3(c).  It can be seen 
that only in the region for x + y > 1 the contour lines of solution 
is close to the analytical one.  For the region x + y < 1, the 
solution deviates from the analytical solution and is not ac-
ceptable.  It shows that how Cauchy data is given influence the 
result.  And similar to previous research the inversion becomes 
better when the Cauchy data is prescribed more diversely 
(Chang et al., 2001; Wei et al., 2007).  Since we do not have 
good result in case 2, we add one point prescribing Cauchy 
data to the system and (0,0) is selected.  After adding addi-
tional point with Cauchy data, the result is much better as 
shown in Fig. 3(d).  In reality, the Cauchy problem usually 
relates to the non-destructive test.  From this example, we can 
claim that if one can arrange the Cauchy data point more di-
versely a better result can be obtained. 

2. Example 2 

In this example, an annular region with outer radius equal to 
1 and inner radius equal to 0.5 is considered.  The designated 
analytical solution is given as 

 
2

1
( , ) sin 2u r

r
   

where (r,  ) is the polar coordinates measuring from the 
origin.  On the outer and inner radius, we both place 50 col-
location points.  To place the source points of MFS, we select 
two circles having radius 1.1 and 0.3 and 30 source points are 
arranged on each circle.  To represent the solution, except  
the boundary points we place totally 80 interior points inside 
the domain by equally dividing the distance in radial direc- 
tion with 4 layers and 20 points equally distributes in the 
-direction.  The following parameters for ECSHA are used: 
= 10.0, = 0.001, t = 0.001, maxiter = 1000000, err1 =  
1.0  103, err2 = 1.0  107.  The initial guess is that all the 
source strengths are set to be 1. 

We first consider the Cauchy problem with Cauchy data on 
the outer radius and no information on the inner radius.  The 
analytical result, numerical result for noise level sn = 0.0 and 
numerical result with noise level sn = 0.1 are illustrated in  
Fig. 4.  It can be seen that even under absolute random error  
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Fig. 4. Inverse Cauchy problem of an annular region for prescribing 

Cauchy data on the outer radius: (a) exact solution; (b) numerical 
solution with sn = 0.0; (c) numerical solution with sn = 0.1. 
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Fig. 5. Inverse Cauchy problem of an annular region for prescribing 

Cauchy data on the inner radius: (a) numerical solution with  
sn = 0.0; (b) numerical solution with sn = 0.1. 

 
 

of 0.1, the current approach still can obtain good results.  In 
addition, we observe that for the case of no noise totally 1619 
steps are used and for the case of noise level of sn = 0.1 totally 
145210 steps are used.  They all terminate the process because 
the slope of RMSE tends to zero. 

Next, we consider the Cauchy problem with Cauchy data 
given on the inner radius and no information on the outer 
radius.  The numerical result for noise level sn = 0.0 and nu-
merical result for noise level sn = 0.1 are shown in Fig. 5.  
Comparing with the previous case, one can find out that to do 
the inverse Cauchy problem for the Cauchy data on the inner 
radius is more difficult than that for the Cauchy data on the 
outer radius under the same noise level in this example.  For 
noise level sn = 0.1, the basic shape of the solution contour  
is recovered but with a little distortion.  However, for an ill- 
posed inverse problem like this case such result is acceptable.  

In addition, it is observed that for the case of no noise only 
1985 steps are required to achieve the convergence but for the 
case of noise level of 0.1, totally 93886 steps are required. 

3. Example 3 

In this example, a peanut shape domain with its boundary 
curve written as: 

 2( ) 0.3 cos 2 1.1 sin 2      0 2r           

where (r, ) is the common polar coordinate system. 
The source points are placed on a enlarged peanut shape 

with its curve written as: 

 2( ) 0.36 cos 2 1.1 sin 2      0 2r           

We have two cases studied in this example: for the first case 
we assign Cauchy boundary data on 0     and for the 

second case we assign Cauchy boundary data on
3

0
2

  .  

The designated analytical solution is written as 

  , cos .xu x y e y  

On the boundary, we arrange 120 points and distances be-
tween any two adjacent points are equal.  On the fictitious sur-
face of source point, we arrange 100 source points.  In the do-
main, we uniformly distribute 58 interior points.  The following 
parameters for ECSHA are used: = 1.0,   = 0.001, t = 0.001, 
maxiter = 1000000, err1 = 1.0  103, err2 = 1.0  107.  The 
initial guess is that all the source strengths are set to be 1. 

For each case, we study the case of no noise in boundary 
data and that of absolute random error of the level sn = 0.05.  
The analytical result, numerical result of Cauchy data on 1/2 
boundary with no noise in data, numerical result of Cauchy 
data on 1/2 boundary with noise level sn = 0.05 in data, nu-
merical result of Cauchy data on 3/4 boundary with no noise in 
data and numerical result of Cauchy data on 3/4 boundary with 
noise level sn = 0.05 in data are illustrated in Fig. 6(a) to 6(e), 
respectively.  It can be found that more portion of the boundary 
has given Cauchy data more accurate result we can obtain.   
For 1/2 boundary with Cauchy data, the result in the region  
x > 0 is better while the result in the region x < 0 is worse.  It  
is because that the potential value in the region x > 0 is bigger 
and under the same error level the deviation of contour lines 
will not so apparent as that for the region with smaller value 
potential.  In Table 1, we also tabulated the required iteration 
steps for all cases.  We should mention here for the noisy case 
it is not necessary to have more steps to convergent. 

4. Example 4 

In the last example, in stead of giving the Cauchy data de-
rived from an analytical solution we will give the Cauchy data  
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Fig. 6. Inverse Cauchy problem for a peanut shape: (a) exact solution;  

(b) numerical solution with Cauchy data on 3/4 boundary and sn 
= 0.0; (c) numerical solution with Cauchy data on 3/4 boundary 
and sn = 0.05; (d) numerical solution with Cauchy data on 1/2 
boundary and sn = 0.0; (e) numerical solution with Cauchy data 
on 1/2 boundary and sn = 0.05. 

 
 

from a forward standard boundary value problem.  The inter-
ested domain is a circular region with its radius equal to 2.  
The source points are arranged on a fictitious circular bound-
ary with a radius of 2.1.  The forward problem is designed to 
solve the following boundary value problem: 

( 2.0, ) 10, 0
2

u r
      

( 2.0, ) 5,
2

u
r

n

  
   


 

Table 1.  Iteration steps for Example 3. 

  Number of Steps
sn = 0.0 70137 

1/2 boundary with Cauchy data 
sn = 0.05 82907 
sn = 0.0 103662 

3/4 boundary with Cauchy data 
sn = 0.05 63738 
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Fig. 7. (a) Numerical solution for a forward boundary value problem;  

(b) numerical solution for the inverse Cauchy boundary value 
problem. 
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Fig. 8. Comparison of the performances between the proposed method 

(ECSHA) and Landsweber iteration. 
 
 
The numerical result for the forward problem using MFS  

is plotted in Fig. 7(a).  After we solve the forward problem, we 
assign numerical Cauchy data on the boundary: r = 2, 0   < 

2


 and r = 2,    < 

3

2


.  We assign 120 boundary points, 

120 source points and 179 interior nodes.  The parameters 
used for ECSHA are: = 1.0, = 0.001, t = 0.001, maxiter = 
1000000, err1 = 1.0  103, err2 = 1.0  107.  The initial guess 
is that all the source strengths are set to be 1. 

The numerical result of this inverse Cauchy problem is 
plotted in Fig. 7(b).  Comparing these two figures, one can find 
out that the current approach can obtain acceptable results.  
The errors in contours appear in the area with smaller values 
and the reason is given in the previous examples. 

Next, we will compare the performances of the proposed 
method with Landsweber iteration method and the Tikhonov’s 
regularization method.  In Fig. 8, the RMSEs for our proposed 
method (ECSHA) and the Landsweber iteration method are 
plotted.  It can be found that although the directions of the 
evolution for both methods are the same, the RMSE obtained 
from Landsweber iteration method increases as the number  
of iteration steps increases while the RMSE obtained from 
ECSHA decreases gradually.  It can be concluded that the 
factor before the evolution direction in ECSHA, which is 

2

2(1 )t 




F

B FT
, helps the convergence. 

To compare with the Tikhonov’s regularization method, the 
best regularization parameter is determined from the L-curve 
concept [22].  The best regularization parameter is 1.0e-5.  
Substitute this parameter into the regularized equation ob-
tained from the Tikhnov’s regularization method, the nu-
merical solution then can be obtained.  The result is shown in 
Fig. 9, and one can find that the numerical solution obtained 
from the Tikhnov’s regularization method is far from the so-
lution obtained from the forward problem (see Fig. 7(a)).  
Therefore, among three compared methods, the method pro-
posed here is the best method. 
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Numerical solution: sn = 0.05, regularization parameter = 1.e-5
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Fig. 9. Numerical solution obtained from the Tikhonov’s regularization 

method with the noise ratio sn = 0.05 and regularization para- 
meter of 1.e-5. 

 

IV. CONCLUSIONS 

In this paper, we solve the inverse Cauchy problems asso-
ciated with Laplace equation by using the MFS and ECSHA.  
It is found that due to the merit of ECSHA, no regularization is 
necessary and thus this method does not solve the distort 
equation but directly solve the original equation.  It is found 
that when the Cauchy data information can be given more 
diversely on the boundary the inversion results are better.  
Even when noise exists in data, the current approach still  
can obtain reasonable results.  Since the MFS is a meshfree 
method and collocation only needs to be done on the boundary, 
it is concluded that the current approach is an easy way to 
solve the inverse Cauchy problem of the Laplace equation. 
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