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ABSTRACT 

Correlated multi-paths may cause a biased bearing estima-
tion in shallow water, so most existing methods make fully use 
of the multi-path nature and the underwater channel property 
to provide an unbiased bearing estimation.  However, an im-
precise knowledge of the underwater channel parameters or 
the array model mismatches will cause performance degrada-
tion, especially for the high-resolution methods.  Therefore 
development of robust bearing estimation methods in shallow 
water is critically important.  In this paper, a new approach to 
robust bearing estimation is proposed in the presence of un-
derwater channel parameter uncertainties or array model mis-
matches.  The proposed method is based on the convex opti-
mization theory, exactly to say, the vector optimization theory, 
and can be derived by imposing a certain constraint on the 
Euclidean norm of the source vector.  It is shown that the 
proposed method can be reformulated as a convex second- 
order cone program (SOCP) problem and solved efficiently by 
the well-established interior point method, such as SEDUMI.  
Computer simulations and experiment analysis show that the 
proposed method is highly robust against the underwater 
channel parameter uncertainties and array model mismatches, 
moreover, demonstrates its excellent performance as com-
pared with existing methods. 

I. INTRODUCTION 

In the array signal processing domain, the topic of bearing 
estimation has become an area of active interest with applica-
tions in radar, sonar, medical imaging, and other areas (Krim 
and Viberg, 1996; Li et al., 2007).  The conventional time 
delay methods and a variety of high-resolution methods have 
been proposed for bearing estimation, such as Multiple Signal 
Classification (MUSIC) and so on (Xuan et al., 2011).  How-
ever, due to the multi-path effect in shallow water, the signals 
from a sound source travel along different paths and tend to be 
fully or partially correlated, so the above mentioned methods 
for bearing estimation can no longer perform well (Bucking-
ham, 1984; Karthikeyan, 1986; Carey et al., 2006; Heaney, 
2011). 

Many approaches have been proposed during the past sev-
eral decades to tackle the problem of correlated multi-paths in 
shallow water (Chouhan and Anand, 1993; Krasny and An-
tonyuk, 1997; Lee et al., 2009; Nagananda and Anand, 2010; 
Madadi et al., 2011).  Among the literature, the concept of 
Matched Field Processing (MFP) proposed by Bucker is very 
popular and widely used by many researchers (Baggeroer et al., 
1993; Xiao et al., 2009).  In MFP, the comparison between the 
observed signals and the computed acoustic field is based on 
the classical spatial spectrum estimation algorithms such as 
Conventional Beamforming (CBF), Standard Capon Beam-
forming (SCB), and other subspace-based methods (Tolstoy, 
1993; Dosso and Wilmut, 2012).  However, bearing estimation 
using MFP requires either a computationally expensive three- 
dimensional search or a priori knowledge of the source ranges 
and depths (Naidu and Ganesan, 1995).  Several other ap-
proaches are known to be able to partly overcome the above 
problem.  Naidu has introduced a new subspace method called 
Multi-Image Subspace Algorithm (MISA) in which the multi- 
path correlations are employed for bearing estimation (Naidu, 
1991).  Lakshmipathi has developed a new high-resolution 
method called the subspace intersection method to obtain un-
biased bearing estimation in shallow water by a one-dimensional 
search without the prior knowledge of the source ranges and 
depths (Lakshmipathi and Anand, 2004).  Hou et al. (2008) 
adopted the normal modes sound wave theory and the maxi-
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mum likelihood bearing estimation method for target local-
ization in shallow water (Hou et al., 2008). 

However, the main shortcoming of the existing approaches 
is the requirement of a precise knowledge of the underwater 
channel parameters such as bottom sediment and less robust to 
the array model mismatches.  In such cases, robust approaches 
to bearing estimation in shallow water are urgently required. 

As we all know, Robust Capon Beamforming (RCB) can 
perform well in the case of the array model mismatches  
(Vorobyov et al., 2003).  The most popular of RCB algorithms 
include Linearly Constrained Minimum Variance Beamformer 
(LCMV), Diagonal Loading (DL), Worst-Case Performance 
Optimization (WCPO), and so on (Yan and Ma, 2005; Zhang 
et al., 2009).  Among them, the LCMV algorithm provides 
robustness against the signal look direction mismatches 
(Markovich and Gannot, 2012), and the completion of the DL 
algorithm depends on the diagonal loading factor (Li et al., 
2003), while the WCPO algorithm involves minimization of  
a quadratic function subject to infinitely many non-convex 
quadratic constraints (Vorobyov et al., 2003).  In an attempt to 
overcome a substantial degradation of the SCB performance  
in situations of small training sample size and imprecise 
knowledge of the Signal Of Interest (SOI) steering vector, a 
new algorithm called Vector Optimization Robust Beam-
forming (VORB) is proposed by Song et al. (Song et al., 2012a; 
Song et al., 2012b), which is simpler and highly robust against 
the array model mismatches. 

In this paper, we demonstrate how VORB can be extended 
to robust bearing estimation in shallow water in situations of 
imprecise knowledge of the underwater channel parameters.  
Briefly, the proposed method in this paper makes explicit use 
of both the multi-path nature of acoustic propagation in an 
oceanic waveguide and VORB to provide sufficient robust-
ness improvements for bearing estimation in shallow water.  In 
fact, we prove that the uncertainty set of the array source 
vector contains not only the array model parameters but also 
the underwater channel parameters, so the proposed algorithm 
can be derived by imposing a certain constraint on the Euclid-
ean norm of the source vector.  It turns out that our proposed 
method can be reformulated as a convex second-order cone 
program (SOCP) and solved efficiently by the well-established 
interior point method, such as SEDUMI (Sturm, 1999).  More-
over, through computer simulations and experiment analysis, 
we also show a high robustness gain of the proposed method 
over other traditional techniques. 

The content organization is as follows: Section I introduces 
some background of robust bearing estimation in shallow 
water.  Section II presents the array signal model in shallow 
water, where the multi-path nature of acoustic propagation in 
shallow water is considered.  In Section III, the multi-path 
influence to the bearing estimate is analyzed, and the phe-
nomenon for biased bearing estimates is shown.  In Section IV, 
we first describe a new formulation of robust bearing estima-
tion based on VORB in shallow water, and then solve and 
implement the formulation by SOCP.  Section V analyzes the  
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Fig. 1. Array signal model for the signal propagation in a shallow-water 

channel. 
 
 

performance of our proposed M-VORB by numerical results 
in detail.  Section VI contains experimental results, where a 
performance evaluation is presented.  The conclusions are 
summarized in Section VII. 

II. ARRAY SIGNAL MODEL IN  
SHALLOW WATER 

As shown in Fig. 1, consider a uniform shallow water 
channel of depth H meters with a sound source located at zs 
meters below the water surface.  A linear horizontal array of 
N equally spaced hydrophones (spacing d) is at a depth of z 
meters below the surface and r meters horizontally away from 
the source.  Due to the multi-path channel characteristics, there 
exists a series of significant images whose number tends to 
infinity. 

Suppose the first sensor is the reference element, and its 
output is given by 
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where the notation j represents 1 , k is the wave number, Rli 
is the distance from the l  ith image to the reference sensor,  
l represents the order number, i represents the ray number.   
V = 1 is the reflection coefficient for the ray from the sea 
surface, Vli is the reflection coefficient for the l  ith ray from 
the sea bottom.  The distance from the l  ith image to the nth 
sensor can be given by 

 , 0( 1) sin cosli n li liR R n d      (2) 

where 0 is the incident bearing angle, li is the elevation angle 
corresponding to the l  ith ray. 

The output of the nth sensor can be written as 
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Using Eq. (2), we can convert Eq. (3) into 
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  (4) 
when ,d r  Eq. (4) can be approximated as 
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  (5) 

Let us express Eq. (5) in a matrix notation 

 
0

( , )n nl l
l

p r z




 A W  (6) 

 

1

2

3

4

j

1
1

j

2 2
2

j

3
3

j
1

4
4

e
( )

e
( )

e
( )

e
( )

l

l

l

l

kR
l

l
l

kR
l

l l
l

l kR
l

l
l

kR
l

l
l

VV
R

VV V
R

VV V
R

VV
R



 
 
 
 
 
 

  
 
 
 
 
 
 

W  (7) 

 

0 1

0 2

0 3

0 4

( 1) sin cos

( 1) sin cos

( 1) sin cos

( 1) sin cos

l

l

l

l

jk n d

jk n d

nl jk n d

jk n d

e

e

e

e

 

 

 

 

 

 

 

 

 
 
   
 
  

A  (8) 

where Wl is the weight vector corresponding to the l th image, 
Anl is the image space spanned by the l th image on the nth 
sensor. 

So the output of the horizontal linear array in shallow water 
can be represented as 
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where s(t) represents the original transmitting signal.  Eq. (9) 
can be further written in a compact form 
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Tsin cos ( 1) sin cos1, , ,li lijkd jk N d

li e e        a , Al is the 

image space spanned by the l th image, Bl is the source vector 
corresponding to the l th image, B is the source vector. 

When l = 0, only consider the four rays from the 0th image, 
and the array signal model can be simplified as 

 0 0 0( ) ( ) ( )t t t X B s A W s  (12) 
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From the above mentioned equations, we can see that due to 
the multi-path nature of acoustic propagation in the ocean, the 
structure of the source vector is obviously different from that 
of the steering vector in conventional array signal model.  It is 
just the reason why the plane-wave DOA estimation tech-
niques, such as CBF, SCB and so on, yield biased bearing 
estimation in shallow water. 

III. MULTI-PATH INFLUENCE TO THE 
BEARING ESTIMATE 

1. Theoretical Analysis 

As we all know, conventional bearing estimation methods 
are based on the plane-wave assumption, and the output of the 
array of narrowband sensors can be expressed as the vector 
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steeing vector, and k c  is the wave number. 

For the conventional beamformer, the weight vector w() = 
Tsin ( 1) sin1, , ,jkd jk N de e       is chosen, and the average out- 

put power of the array in the direction of bearing angle  can 
be expressed as 

 HH H
0 0( ) ( ) ( ) ( ) ( ) ( ) ( )P E t t            w A s w A s  
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Eq. (16) shows that when  equals to 0 ( = 0), the av-
erage output power P() reaches the maximum, and then the 
bearing estimate 0 is provided by the position of the maxi-
mum peak in the spatial spectrum map. 

However, when the incident signal comes from the multi- 
path propagation as shown in Eq. (12), the average output 
power of the array in the direction of bearing angle  will 
alternately be expressed as 
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where m = 1, 2, 3, 4.  Take Eq. (18) and Eq. (19) into account, 
and we can rewrite Eq. (17) as 
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Then Eq. (20) can be expressed as a contracted form 
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Fig. 2.  A Pekeris channel in shallow water. 
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Eq. (22) can be further transformed to the following form 
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From above equations, it can easily be seen that under the 
conditions of multi-paths, each eigenray makes a contribution 
to the average output power of the array.  If the elevation angle 
0m = 0 (m = 1, 2, 3, 4) and cos0m = 1, A0m will be equiva- 
lent to A(0).  Then the same bearing estimate 0 will be 
provided by the position of the maximum peak of each Pm(), 
and the superposition of Pm() will, of course, indicate the 
correct bearing estimate 0.  Consequently, there exists no bi-
ased bearing estimate. 

However, due to the practical multi-path propagation in 
underwater acoustic channel in shallow water, the elevation 
angle 0m (m = 1, 2, 3, 4) no longer equals to zero (which 
means 0m  0 and cos0m  1).  So each Pm() is different  
and the superposition of Pm() will no longer indicate the 
correct bearing estimate 0.  Consequently, there appears bi- 
ased bearing estimate. 

2. Numerical Analysis 

As shown in Fig. 2, the ocean model is an ideal Pekeris 
channel, where water depth is 25 m, sound speed in water is 
1500 m/s, density of the water is 1.0  103 kg/m3, sound speed 
in sediment is 1700 m/s, density of the sediment is 2.0  103 
kg/m3.  The sound source is at a depth of 5 m below the water 
surface.  The horizontal uniform linear array with 24 sensors 
and half-wavelength sensor spacing is also located at 5 m 
below the surface.  Assume signal frequency is 100 kHz, the 
incident bearing is  = 25 or  = 35, the horizontal distance  
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Fig. 3.  The bearing estimation results for different eigenrays. 

 
 

between the source and the array is R = 100 m or R = 50 m,  
the snapshots number is 1024, Signal to Noise Ratio (SNR) is 
10 dB. 

Fig. 3 shows the spatial spectrums by CBF respectively for 
the first four eigenrays.  Note that the incident bearing is de-
noted by a vertical red dotted line, and each eigenray has a 
different spatial spectrum whose peak indicates a mismatch 
bearing angle against the actual incident angle.  As discussed 
above, the spectrum superposition must indicate a biased 
bearing estimate, which will be depicted in Section V. 

Extensive simulation has been carried out to compute the 
bearing estimate biases by CBF as a function of different inci-
dence angles in Fig. 4.  The biases are computed by averaging 
over 100 Monte Carlo simulations, and the corresponding 
results respectively for R = 50 m, 100 m, 150 m, 200 m are 
given in this figure for comparison.  We can see that the es-
timate bias increases as the incidence bearing angle increases 
under the conditions of the same horizontal distance, while the 
estimate bias increases as the horizontal distance decreases 
under the conditions of the same incidence bearing angle. 
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Fig. 4. The bearing estimate biases as a function of different incidence 

angles. 
 

IV. ROBUST BEARING ESTIMATION 
ALGORITHM IN SHALLOW WATER 

1. Formulation 

Below, we provide a robust bearing estimation algorithm 
using VORB following exactly the same procedure in Song et 
al. (2012a; 2012b), Vorobyov et al. (2003).  In practical ap-
plications, there must exist a distortion of source vector due to 
the underwater channel parameters and array model mis-
matches.  So we assume the source vector distortion to be ΔM 
(the subscript M represents Multi-path for convenience, the 
following is the same) whose norm can be bounded by a cer-
tain constant  > 0, that is 

 M Δ  (24) 

Then the actual source vector B0() belongs to the follow-
ing set 

  '
M 0 0 0 M M( | ) ( ) | ( ) ( ) ,        C B B B Δ Δ  (25) 

where   denotes the norm, '
0 ( )B  is the theoretic source vec- 

tor, M ( | ) C  indicates the uncertainty set whose elements 

represent possible mismatches. 
Let’s impose a constraint on the absolute value of the array 

response, that is, the value should be larger than or equal to 
one for all vectors that belong to M ( | ) C  

 H
M 0( ) ( ) 1  w B , for all 0 M( ) ( | )  B C  (26) 

where wM() is the weight vector. 
So the formulation of robust bearing estimation algorithm 

can be written as the following constrained optimization prob-
lem 
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M

H
M M

( )

H
M 0 0 M

min ( ) ( )

s.t. ( ) ( ) 1 ( ) ( | )for all


 

    





 

w
w Rw

w B B C
 (27) 

We can rewrite the problem (27) as 

 
 

M

H
M M

( )

H ' H '
M 0 M M 0

min ( ) ( )

s.t. ( ) ( ) ( ) 1, Im ( ) ( ) 0


 

     





  

w
w Rw

w B w w B
 

  (28) 

where R is the covariance matrix.  Make explicit use of the 
idea of VORB and the nature of multi-path channel, then we 
can reformulate the optimization problem as 

 
 

M

2
M M2 2( )

H ' H '
M 0 M M 0

min ( . . . ) ( ( ) , ( ) )

s.t. ( ) ( ) ( ) 1, Im ( ) ( ) 0

w r t


 

     





  

w
R Uw w

w B w w B
 

  (29) 

where w.r.t. is the abbreviation for “with respect to”, 2
R  

means that the values of the objective functions M 2
( )Uw  

and M 2
( )w  should be discussed in the set of positive num-

bers, U is the Cholesky factorization factor which can be 
represented as 

 HR U U  (30) 

Eq. (29) is just our proposed algorithm called Multi-path 
based Vector Optimization Robust Beamforming (for abbre-
viation: M-VORB) in this paper, which is a vector optimiza-
tion problem who belongs to a bi-criterion problem.  M 2

( )w  

is the penalty function, which can help us to obtain the robust 
weight vector wM() under the conditions that there exists 
some disturbs in U. 

2. Solution and Implementation by SOCP 

According to the regularized approximation (Boyd and 
Vandenberghe, 2006), (29) can be reformulated as 

 
 

M
M M2 2( )

H ' H '
M 0 M M 0

min ( ( ) ( ) )

s.t. ( ) ( ) ( ) 1, Im ( ) ( ) 0


  

     

 



  

w
Uw w

w B w w B
 

  (31) 

where  > 0 is the constraint parameter.  Introduce two non- 
negative scalars t1, t2 and two new constraints M 12

( ) t Uw , 

M 22
( ) t w , then we can convert Eq. (31) into the following 

problem 

 
M

1 2
( )

M 1 M 22 2

H ' H '
M M 0 M 02

min ( )

( ) , ( ) ,
s.t.

( ) ( ) ( ) 1, Im( ( ) ( )) 0

t t

t t
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  (32) 

Let 

 T T
M 1 2 M[ , , ( )]t t y w  (33) 

 T T
M 1[1, , ]N b 0  (34) 

 T T T (3 3) 1
M (2 2) 1 1[ , 1, ] N

N N
  

   f 0 0 R  (35) 
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0
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 (36) 

Eq. (29) can be further transformed into the SOCP form 

 
T
M M

T 1 1 1
M M M 1 2 3

min

s.t. N N NSOC SOC SOC  




   

y
b y

f F y
 (37) 

So we can easily solve Eq. (37) by the mathematical soft-
ware tool SEDUMI (Sturm, 1999), and obtain the optimization 
weight vector wM-opt (). 

3. The Proposed Algorithm Flow 

The M-VORB algorithm for bearing estimation may be 
described as follows: 

 

(1) Estimate the sample covariance matrix R̂  from the array 

data vector ( )tX  by Hˆ ( ) ( )t t LR X X . 

(2) Do the Cholesky factorization of R̂  as Eq. (30), and ob-
tain the Cholesky factorization factor U. 

(3) According to Eq. (12)-(14), construct the theoretic source 

vector '
0 ( )B . 

(4) Set the constant  (which is used to bound the norm of  
the source vector distortion) and the constraint parameter 
 (which is used for the regularized approximation). 

(5) Form the matrices bM, fM and T
MF  by Eqs. (34)-(36). 

(6) Compute Eq. (37) by the mathematical software tool 
SEDUMI and obtain the optimization weight vector  
wM-opt (). 

(7) Substitute wM-opt () for w in wH Rw, and compute the  



 H.-Y. Song et al.: Robust Bearing Estimation in Shallow Water 157 

 

0 5 10 15 20 25 30 35 40 45 50
-12

-10

-8

-6

-4

-2

0

scanning angle (°)  

sp
at

ia
l s

pe
ct

ru
m

 (d
B

)

CBF
SCB
M-CBF
M-SCB

0 5 10 15 20 25 30 35 40 45 50
-12

-10

-8

-6

-4

-2

0

scanning angle (°)  

sp
at

ia
l s

pe
ct

ru
m

 (d
B

)

CBF
SCB
M-CBF
M-SCB

(a) R = 100 m     = 25°ϕ

(b) R = 50 m     = 35°ϕ  
Fig. 5.  The spatial spectrums of CBF, SCB, M-CBF and M-SCB. 

 
 

 function H
M-VORB M-opt M-opt(φ) ( ) ( )P  = w Rw . 

(8) Scan the spectrum peaks in our interested angular scope, 
the location of the peaks of M-VORB (φ)P  provides estimates 

of the source bearing angles. 

V. NUMERICAL AND EXPERIMENTAL 
RESULTS 

In Section V, we firstly show that a plane-wave assumption 
leads to biased bearing estimates, and then discuss and analyze 
the performance of M-VORB under the conditions of the 
water depth uncertainty and the sediment parameter uncer-
tainty respectively.  For convenience, M-CBF is the abbrevia-
tion for “Multi-path based Conventional Beamforming”, and 
M-SCB stands for “Multi-path based Standard Capon Beam-
forming”. 

1. Spatial Spectrums Analysis for M-CBF and M-SCB 

Simulation conditions are similar to Section III.  Fig. 5 de-
picts the spatial spectrums of CBF, SCB, M-CBF and M-SCB, 
which are respectively denoted by different color lines.  Note 
that the black single-headed arrow indicates the actual bearing 
angle.  We can see that under the multi-paths, the bearing esti-
mate algorithms based on a plane-wave assumption, such as 
CBF and SCB, can no longer obtain an unbiased bearing es-
timation.  While the multi-path based algorithms such as M-CBF  
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Fig. 6.  The 2-Dimension spatial spectrums (R = 50 m). 

 
 

and M-SCB, which make explicit use of the multi-path nature 
for bearing estimate, can obtain an unbiased bearing estimate. 
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Fig. 7.  A source and a array in Pekris channel. 

 

2. Spatial Spectrums Variations versus Incidence  
Bearing Angle 

In this simulation, we will show the spatial spectrums 
variations versus incidence bearing angle in detail.  Simulation 
conditions are the same, except the incident bearing angle 
changes from 0 to 60 and R = 50 m. 

Fig. 6(a) and (b) show the 2-Dimention spatial spectrums 
versus incidence bearing angles respectively for CBF and SCB, 
and the actual angle is denoted by the dashed black line.  Note 
that there exist obvious bearing biases when the signal im-
pinges on the array in large incidence angles.  This phe-
nomenon indicates that the conventional plane-wave based 
methods can no longer be suitable to bearing estimation under 
the multi-paths conditions. 

On the other hand, Fig. 6(c) and (d) show the 2-Dimention 
spatial spectrums respectively for M-CBF and M-SCB.  By 
comparison, we can see that due to the utilization of the multi- 
path nature, multi-path based methods can accurately estimate 
the bearing angle even when the incidence signal is closer to 
the endfire direction. 

Simulation results show the multi-path based methods 
outperform the plane-wave based methods under the condition 
of multi-paths. 

3. Experimental Results 

In this section, the multi-path influence to the bearing es-
timate in shallow water is validated by experimental analysis.  
For convenience, C-based is the abbreviation for “Conven-
tional plane-wave based methods”, and M-based is the ab-
breviation for “Multi-path based methods”. 

The experimental data discussed in this paper were col-
lected in a shallow ocean which can be considered as a Pekris 
channel.  The water depth was 12 m, and the wideband sound 
source was located at 5 m below the sea surface.  The hori-
zontal uniform array with fifteen sensors was deployed at a 
depth of 10 m, and was moored for stable operation.  Several 
elements did not work properly and will be excluded from data 
analysis.  The sound source was respectively located at Point 
A, B, C, and D as shown in Fig. 7, and the horizontal distances 
between the location points and the array were respectively 
18.7 m, 7.8 m, 7.8 m, and 18.7 m.  By the calculation of the 
formula 2d  , the source was considered in the far field of  

Table 1. Numerical results for the bearing estimate (unit: 
degree). 

A B Localization
Frequency C-based M-based C-based M-based

  80 Hz -9.00 -9.79 -6.44 -10.29

100 Hz -5.73 -6.34 -4.41 -7.24

125 Hz -3.48 -3.94 -0.63 -1.08

160 Hz -3.11 -3.56 -1.87 -1.12

200 Hz -0.64 -0.74 -0.14 -0.20

250 Hz -0.86 -0.98 -1.44 -1.78

315 Hz -0.21 -0.75 -0.19 -0.21

400 Hz -6.80 -7.01 -1.81 -2.95

C D Localization
Frequency C-based M-based C-based M-based

  80 Hz -3.76 -6.01 -3.75 -4.08

100 Hz -3.05 -5.00 -1.63 -1.80

125 Hz -2.36 -4.00 -2.67 -3.02

160 Hz 0.88 0.41 1.64 1.88

200 Hz 1.60 2.28 1.91 2.19

250 Hz 0.74 0.90 2.79 3.22

315 Hz 1.06 1.29 1.05 1.12

400 Hz 2.39 3.90 1.64 1.79
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Fig. 8.  The signal waveform from the reference element. 

 
 

the array.  The signal waveform of the reference element is 
shown in Fig. 8. 

For the sake of computational simplicity, we shall hence- 
forth confine our attentions to different 1/3 oct signals.  Firstly, 
according to the above mentioned experimental conditions, 
the 100 Monte Carlo simulations are done, and the numerical 
results of C-based and M-based processors are compared in 
Table 1. 

It is noted from Table 1 that, due to the multi-paths, there 
exist obvious bearing estimate biases.  For example, with re- 
spect to 160 Hz at location A, the C-based estimate is 3.11, 
while the M-based estimate is 3.56 as shown in bolds and 
italics. 
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Table 2. The bearing estimation results for experiment 
(unit: degree). 

A B Localization 
Frequency C-based M-based C-based M-based

  80 Hz -8.81 -9.76 -6.44 -10.32

100 Hz -5.62 -6.34 -4.51 -7.25

125 Hz -3.49 -3.96 -1.20 -1.12

160 Hz -3.24 -3.57 -4.24 -1.12

200 Hz -0.62 -0.73 -0.05 -0.20

250 Hz -0.95 -0.97 -1.81 -1.76

315 Hz -0.15 -0.78 0.39 -0.22

400 Hz -5.19 -7.05 -2.12 -2.98

C D Localization 
Frequency C-based M-based C-based M-based

  80 Hz -3.74 -6.02 -3.82 -4.08

100 Hz -2.98 -4.99 -1.67 -1.82

125 Hz -3.13 -4.05 -2.66 -3.00

160 Hz 0.94 0.40 1.50 1.87

200 Hz 1.89 2.27 1.91 2.22

250 Hz 0.71 0.94 2.75 3.22

315 Hz 0.72 1.29 2.09 1.13

400 Hz 2.67 3.98 1.91 1.80
 
 
Experimental results are shown in Table 2.  It is noteworthy 

that there are almost no difference as compared with Table 1.  
Experimental results as well as many other simulations carried 
out prove conclusively that due to the multi-paths influence, 
the biased bearing estimate of C-based processors is inevitable, 
so M-based processors must be adopted. 

4. Spatial Spectrum Analysis under Sediment Parameter 
Uncertainty 

Having established the ability of the multi-path based 
processor to achieve accurate bearing estimate in shallow 
water, we shall study the performance in greater detail.  In this 
simulation, the spatial spectrum is analyzed under the sedi-
ment parameters uncertainty.  The incident bearing angle is  
 = 35 and the array model mismatch is -10 dB.  In this 
example, the sediment parameters uncertainty means that the 
sound speed and the density in sediment do not match the 
original simulation conditions, and are respectively assumed 
to be 1600 m/s and 1.5  103 kg/m3.  The array model mis-
match is defined as 

 

2

10 2

[ ]

10log ( )F

true F

B

B
 (38) 

where 
F
  is the Frobenius Norm, the B is the disturb of B, 

and B[true] is the actual value of B. 
Fig. 9 shows the spatial spectrum for M-CBF, M-SCB and  
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Fig. 9.  The spatial spectrum under the sediment parameters uncertainty. 
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Fig. 10. Θ‒3dB and PSR versus incidence bearing angles under the sedi-

ment parameter uncertainty.  
 

M-VORB by different line types.  It is obvious from the simu-
lation figure that our proposed M-VORB significantly out-
performs M-CBF and M-SCB.  For example, the main-lobe is 
narrower and the side-lobe is lower.  By this simulation, we 
can confirm that the performance of M-VORB is better than 
M-CBF and M-SCB under the sediment parameter uncertainty. 

-3dB beamwidth (3dB) and Peak to Sidelobe Ratio (PSR) 
are two important parameters for the analysis of the proces-
sor’s performance. 



160 Journal of Marine Science and Technology, Vol. 23, No. 2 (2015 ) 

 

M-CBF
M-SCB
M-VORB

0

-2

-4

-6

-8

-10

-12

sp
at

ia
l s

pe
ct

ru
m

 (d
B

)

-100 -80 -60 -40 -20 0
bearing angle (°)

20 40 60 80 100
 

Fig. 11.  The spatial spectrum under the water depth uncertainty. 
 
 
Fig. 10(a) and (b) respectively show 3dB and PSR versus  

incidence bearing angles for different processors.  It is shown 
that 3dB increases as the incidence bearing angle increases, 
and PSR varies slightly.  However, as for M-VORB, the 3dB 
is narrower and the PSR is higher than other two methods at  
all times. 

5. Spatial Spectrum Analysis under Water Depth  
Uncertainty 

In this example, there exists a water depth uncertainty in 
stead of the sediment parameter uncertainty and the water 
depth uncertainty means that the actual water depth is 1.2 m 
deeper than the original simulation condition. 

Fig. 11 shows the spatial spectrum and Fig. 12 indicates  
the 3dB and PSR versus incidence bearing angles.  All the 
numerical results clearly demonstrate that M-VORB can es-
timate the incident bearing angle accurately with narrower 
main-lobe and lower side-lobe than M-CBF and M-SCB under 
the water depth uncertainty. 

VI. CONCLUSION 

In this paper, a new bearing estimation method in shallow 
water has been proposed, which is highly robust against the 
imprecise knowledge of the underwater channel parameters 
and the array model mismatches.  It is shown that our tech-
nique makes explicit use of the multi-path nature of acoustic 
propagation in shallow water and the excellent performance of 
VORB to provide sufficient robustness improvements for 
bearing estimation.  We have shown that the formulation of 
M-VORB can be transformed into the SOCP form, and then 
efficiently solved by SEDUMI.  Computer simulations and 
experiments analysis have shown excellent performance of 
M-VORB as compared with several other conventional algo-
rithms, such as the narrower main-lobe and lower sidelobe.  
SEDUMI is based on the interior-point methods whose con-
vergence needs some time in practice, so further work about 
how to implement M-VORB more efficiently is required. 
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Fig. 12. Θ‒3dB  and PSR versus incidence bearing angles under the water 

depth uncertainty. 
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