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ABSTRACT 

An advanced diffusion model is used to calculate the con-
centration of a substance diffused in a solid cylindrical me-
dium.  The mathematical process in this study adopts Neu-
mann’s algorithm for applying the advancing model to revise 
the solution derived by Carslaw and Jaeger.  The modified 
solution clearly indicates a diffusion front which does not exist 
in the original model.  Calculating the diffusion depth be-
comes possible and is novel for a solid cylindrical medium.  
The major contribution of this study is the application of the 
advancing model to solve the diffusion problem of a cylin-
drical medium in cylindrical coordinate system. 

I. INTRODUCTION 

Fick’s diffusion law is widely used for studying diffusion 
mechanisms.  The concentration of a diffusing substance in a 
medium depends on the location in the medium, the diffusion 
duration, the geometry of the medium, the environmental con-
ditions and the material properties of both the diffusing sub-
stance and medium. 

Carslaw and Jaeger (1959) applied Laplace transform to 
solve the temperature of a semi-infinite space in a case that the 
heat is conducted from the surface of the space toward its 
depth.  By assuming the solution to be a uni-formed function, 
Carslaw and Jaeger formulated the solution as an asymptotic 
function.  When the solution was applied to the diffusion 
problem of the same medium, which has the same governing 
equation as that of heat conduction problem, the solution 
indicated that the concentration in the medium infinitely ap-
proached zero as the diffusing substance moved along its 
path inward but can never be zero regardless of the duration 
(Crank, 1975).  The solution reveals no diffusion front, and  

the diffusion depth is impossible to be calculated.  However, 
transporting molecules of a diffusing substance in a medium 
takes time.  The molecules of a diffusing substance do not 
appear deep inside the medium immediately after the diffusion 
begins.  The Crank’s solution is inapplicable for diffusion in 
semi-infinite space in practice even if it is mathematically 
correct. 

Carslaw and Jaeger (1959) presented Neumann’s solution 
for heat conduction of a semi-infinite space with a moving 
boundary.  When the famous Neumann’s solution was applied 
to the diffusion in the case of a semi-infinite medium with a 
moving boundary, the model was called the advancing model 
(Crank, 1975; Chang et al., 2008; Wang, 2010; Lin et al., 
2012).  The solution of this model is a bi-formed and con-
tinuous but not a smooth function.  The solution is in a series 
form in the contaminated zone which is close to the surface, 
while it is zero in the uncontaminated zone which is deeper 
than the contaminated zone.  The bi-formed solution clearly 
indicates a diffusion front and enables calculation of the dif-
fusion depth. 

Carslaw and Jaeger (1959) also presented the solution of 
the temperature for heat conduction in a solid cylindrical me-
dium in terms of the Bessel function without the advancing 
model.  For the past half century, the high complexity of the 
cylindrical coordinate system has prevented researchers from 
deriving the solution of the temperature for heat conduction or 
the solution of the concentration of the diffusing substance for 
diffusion by using the advancing model. 

This study successfully applied the Neumann’s algorithm to 
the cylindrical coordinate system by focusing on the local 
diffusion around the surface of a cylindrical medium and 
correlating the modification factors of the advancing model 
for both Cartesian and cylindrical coordinate systems.  Similar 
to the solution with the advancing model, presented by Crank 
for the diffusion in a semi-infinite medium, the solution 
clearly shows the diffusion front.  The result can be used to 
characterize the diffusion parameters of a cylindrical specimen 
medium, which is very common for concrete specimens. 

II. THEORY 

The governing equation of Fick’s second diffusion law 
(Crank, 1975) is 
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Fig. 1.  Diffusion in a semi-infinite medium. 
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where c is the concentration of the diffusing substance in a 
medium defined as the mass of a diffusing substance in unit 
volume of medium, t is the diffusion duration, and D is the 
diffusivity, which is a positive constant.  In a three-dimensional 
Cartesian coordinate system, Eq. (1) becomes 
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where x, y and z are the three coordinates. 
In a one-dimensional case, Eq. (2) becomes 
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For the semi-infinite case, the medium exists only in the 
region where x  0 and is initially free of the diffusing sub-
stance.  The diffusing substance exists in the region where  
x < 0 and is transported inward from the surface of the medium 
at x = 0 according to Fick’s diffusion law (Fig. 1).  In this 
typical one-dimensional diffusion case, c is a function of t and 
x, represented as c(t;x).  The assumed boundary condition is 
that, when the diffusing substance comes into contact with the 
medium at the boundary, the boundary is instantly saturated 
and remains so throughout the process of diffusion (Crank, 
1975). 

 ( ;0)c t c  (4) 

where c is the saturated c.  The initial condition is  

 (0; ) 0c x   (5) 

Accordingly, c(t;x) was solved as 
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The right side of Eq. (6) has two parts, a unit constant, which 
is a particular solution, and a complementary function of the 
solution.  Both parts satisfy the governing equation, Eq. (3). 

Next modify Eq. (6) by dividing the complementary func-
tion by a modification factor C.  Eq. (6) then becomes 
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where C is a constant such that the governing equation and 
boundary condition are satisfied.  If C = 1, Eq. (7) is identical 
to Eq. (6).  Since C and c∞ are constants, Eq. (7) satisfies both 
Eq. (3) and the boundary condition represented by Eq. (4).  
Neumann defined C for Eq. (7) as 
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where  is Neumann’s constant named after Neumann, F. 
(Carslaw and Jarger, 1959; Crank, 1975; Wang et al., 2011). 

Therefore, Eq. (7) becomes 
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Eq. (9) implies a very interesting result in that it vanishes at 

 2
2

x
or x Dt

Dt
    (10) 

and becomes negative at any location deeper than 2 Dt .  A 
negative concentration is illogical.  Redefine Eq. (10) as a 
bi-formed equation (Crank, 1975; Tsai et al., 2014). 
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Fig. 2.  Diffusion in a cylindrical medium. 

 
 
Since transport of the diffusing substance starts from x = 0, 

2 Dt  stands for the diffusion depth. 
For a cylindrical coordinate system, Eq. (1) becomes 
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where r andare the polar coordinates and z is the axial 
coordinate.  In the case of axially symmetrical diffusion in an 
infinitely long solid cylinder with radius ra, c is dependent 
only on t and r, c(t;r), and Eq. (12) becomes 
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Again, assume that the concentration of the diffusing sub-
stance in the cylinder is initially zero. 

 c(0;r) = 0 (14) 

The diffusing substance exists in the surrounding envi-
ronment, penetrates the surface when the diffusion process 
starts and diffuses toward the center of the cylinder (Fig. 2).  
As in the previous case, the assumed boundary condition is 
that, when the diffusing substance contacts the medium at the 
boundary, the boundary is instantly saturated and then remains 
so throughout the diffusion process. 

 c(t;ra) = c (15) 

By separation variable, let c(t;r) = R(r)T(t) where R(r) is  
a function of r and where T(t) is a function of t.  Eq. (13) be-
comes 
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The left side of Eq. (17) is a function of t only, and the right 
side is a function of r only.  Both sides must be constant to be 
compatible in one equation.  Let 
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when k = 0, 
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Eq. (19) implies that T is a constant, and Eq. (20) implies 
that R is a constant or ln(r).  Since ln(r) becomes undefined 
when r = 0, ln(r) is an unacceptable solution for R.  In this 
particular condition, the solution of c(t;r) is a constant. 

 0 0( ; ) , : constantc t r    (21) 

when k  0, 
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Eq. (23) is a Bessel’s differential equation of zero order, and 
its solution is 

 0( ) ( )mR r J k r  (24) 

where m is a multi-value index, km is the multi-value k, and  
J0 is Bessel function of the first kind of order zero.  For Eq. 
(22), the solution corresponding to the m-th term of R(r) is 

 e( ) mk DtT t   (25) 

The general solution for c(t;r) is the combination of Eq. 
(21), Eq. (24) and Eq. (25). 
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To satisfy the boundary condition, Eq. (15), let 
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where m is the m-th zero of J0, listed in APPENDIX I, which 
is very close to (m-1/4) when m > 20 (Abramowitz and 
Stegun, 1972).  Eq. (26) becomes 
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The initial condition, Eq. (14), yields  
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Multiply both sides of Eq. (29) by rJ0(nr/ra), where n is  
an integer index, and then integrate both sides with respect to  
r from 0 to ra (APPENDIX II) to obtain 
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Eq. (26) becomes 
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Eq. (31) is the normalized c(t;r), an uni-formed solution.  
The right side of Eq. (31) is separated into two parts, one part 
being a particular solution which is an unit constant and the 
other part being a complementary function.  Both parts satisfy 
the governing equation, Eq. (13).  For the case of chloride 
diffusion in a water-logged cylindrical concrete specimen 
(Wang et al., 2011), assume c∞ = 0.025 g/cm3, D = 0.00758 
cm2/day, ra = 7.5 cm and the ends of the specimen are painted 
to block the chloride diffusion through the ends, Fig. 3(a) 

shows the c(t;x)/c∞ versus r/ra for different / aDt r . 

After applying the Neumann’s technique to divide the 
complementary function by a modification factor C, Eq. (31) 
becomes 
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Fig. 3a. c(t; x)/c∞ versus r/ra in a cylindrical medium for C = 1, (a) / aDt r = 

0, (b) / aDt r = 0.05, (c) / aDt r = 0.1, (d) / aDt r = 0.2, (e) / aDt r = 

0.5, (f) / aDt r = 1. 

 
 
Since C and c∞ are constants, Eq. (32) satisfies Eq. (13) and 

the boundary condition, Eq. (15). 
When r is sufficiently small but t is not sufficiently large, 

the numerator of the second term on the right side of Eq.  
(32) could be bigger than its denominator, meaning that Eq. 
(32) might be negative.  A negative concentration value is 
irrational.  Eq. (32) must be set to zero under this condition.  
As a result, the cross section of the cylinder is separated into 
two zones, a contaminated zone that is closer to the surface 
and an uncontaminated core.  However, when t is sufficiently 
large, the cylinder is contaminated thoroughly and there is no 
uncontaminated core. 

Before the medium is thoroughly contaminated, c(t;x) grad-
ually decreases as it approaches the center, becomes zero at a 
critical location, and is set to zero for the rest area where it is 
numerically negative.  The critical location where r = rf stands 
for the diffusion front.  The zone where r  rf is the uncon-
taminated core.  The distance between the surface and diffu-
sion front is the diffusion depth, which is not considered in Eq. 
(31).  The location of the diffusion front rf depends on t and 
can be calculated numerically by setting Eq. (32) to zero.  
Define the critical t when the diffusing substance reaches the 
center, rf = 0, as tc.  When t  tc, redefine Eq. (32) as  
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  (33) 

Neumann defined C for Eq. (7) as Eq. (8), and resulted in 

the diffusion depth as 2 Dt .  Here, the important task is 
defining C for this cylindrical coordinate system.  Before 
solving C, however, the local diffusion near the surface should 
be discussed.  Eq. (31) is the solution for the normalized 
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concentration of the cylindrical medium obtained without the 
advancing model.  Let the original point of a unidirectional 
Cartesian coordinate system be placed on the left edge of the 
cylinder, with the x-coordinate oriented toward the center of 
the cylinder (Fig. 2).  Clearly, x = ra – r or r = ra – x.  Eq. (31) 
becomes 
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When x is very small, the local geometry around the surface 
should be very close to a semi-infinite domain, meaning that 
Eq. (34) should be the same as Eq. (6). 

Similarly, the complementary functions on the right side of 
both Eqs. (34) and (6) should be the same. 
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When the advancing model is considered, Eq. (31) becomes 
Eq. (32).  For the diffusion near the area close to the surface  
of cylinder, Eq. (32) should be very close to Eq. (9).  With the 
aid of Eq. (35), the C in Eq. (32) is proven to be the same as 
that in Eq. (7) for a Cartesian coordinate system as shown in 
Eq. (8).  Therefore, Eq. (32) becomes 
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and Eq. (33) becomes 
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  (37) 

For the case of a water-logged cylindrical concrete speci-
men with ra = 7.5 cm, where the two ends are painted, c∞ = 
0.025 g/cm3 and D = 0.00758 cm2/day, Figs. 3(b)-(d) show the 

results for c(t;x)/c∞ versus r/ra for varying / aDt r ,  and C, 

respectively. 
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Fig. 3b. c(t; x)/c∞ versus r/ra in a cylindrical medium for  = 1, C = 0.84,  

(a) / aDt r = 0, (b) / aDt r = 0.05, (c) / aDt r = 0.1, (d) / aDt r = 0.2, 

(e) / aDt r = 0.5, (f) / aDt r = 1. 
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Fig. 3c. c(t; x)/c∞ versus r/ra in a cylindrical medium for  = 0.7, C = 0.68, 

(a) / aDt r = 0, (b) / aDt r = 0.05, (c) / aDt r = 0.1, (d) / aDt r = 0.2, 

(e) / aDt r = 0.5, (f) / aDt r = 1. 
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Fig. 3d. c(t; x)/c∞ versus r/ra in a cylindrical medium for  = 0.5, C = 0.52, 

(a) / aDt r = 0, (b) / aDt r = 0.05, (c) / aDt r = 0.1, (d) / aDt r = 0.2, 

(e) / aDt r = 0.5, (f) / aDt r = 1. 

III. DISCUSSION 

Along the radius coordinate toward the center of the cy-
lindrical medium, r = rf is the location where c(t;r) starts  
to be 0, which is the location of the boundary between the  
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Fig. 4.  rf  /ra versus / aDt r  in a cylindrical medium. 
 
 

contaminated zone and the uncontaminated core.  Setting the 
first term of the right side of Eq. (37) to zero obtains
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The relationship between rf /ra and / aDt r  can be calcu-

lated numerically via Eq. (38) for different  (Fig. 4). 

Clearly, 2f ar r Dt   around the surface of the cylin-

drical medium where 2 Dt  is the diffusion depth for a semi- 
infinite medium.  In the cylindrical medium, the speed  
of the diffusion front increases as it approaches the center.  
This phenomenon does not occur in a semi-infinite medium.  
When the diffusing substance approaches the center of the 
medium, it is thickened because of the smaller space.  Fick’s 
first law is that the diffusion rate of a diffusing substance, 
along a diffusion path, is proportional to the derivative of the 
concentration of the diffusing substance.  When the substance 
thickens along its path inward toward the center, the deriva-
tive of the concentration increases, and the diffusion rate ac-
celerates.  Such an inward flow accelerated by the thickening 
diffusing substance which is named thickening-substance- 
accelerated-inward flow, TSAI flow in short, will be critical 
for further studies of reverse osmosis efficiency. 

The area deeper than rf is the uncontaminated zone, where 
c(t;r) is zero.  When rf = 0, the t is defined as the critical du-
ration tc when the diffusion reaches the center of the medium 
and Eq. (38) becomes 
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Fig. 5. /c aDt r  versus   in a cylindrical medium. 

 
 

The relationship between /c aDt r  and  can be calculated 

numerically via Eq. (39) (Fig. 5).  When t  tc, Eq. (37) is 
applied to get the concentration of the diffusing substance.  
When t  tc, Eq. (36) is applied because there is no uncon-
taminated core.  Future studies can extend Eqs. (36) and (37) 
to a cylindrical specimen with finite length, which is very 
common for concrete specimens. 

Values of rf and tc depend on t, , D and ra and must be 
calculated numerically from Eqs. (38) and (39).  The process is 
tedious and needs further study for simplification, which will 
be included in the future work. 

Cylindrical specimens are commonly used in compression 
test to determine the strength of concrete.  If the specimen is 
placed in an environment full of chloride or other diffusing 
substance before the compression test, the concentration of 
chloride in the specimen can be measured by using the broken 
specimen after the compression test.  Strength and chloride 
concentration can be obtained from the same specimen.  By 
fitting the result of this work to the data of chloride concen-
tration in the cylindrical concrete specimens, the parameters of 
chloride diffusion in the concrete will be obtained as well as its 
strength.  In addition, the results can also be used to study the 
influence of chloride concentration on the concrete strength, 
and this should be another interesting work for the future. 

IV. APPENDIX 

1. Appendix I: Zeros of J0 

m m m m 

  1   2.4048255604 51 159.4366111649 

  2   5.5200781056 52 162.5781886695 

  3   8.6537279135 53 165.7197667486 

  4 11.7915344396 54 168.8613453698 

  5 14.9309177091 55 172.0029245037 

  6 18.0710639685 56 175.1445041225 
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m m m m 

  7 21.2116366305 57 178.2860842007 

  8 24.3524715314 58 181.4276647143 

  9 27.4934791327 59 184.5692456412 

10 30.6346064690 60 187.7108269607 

11 33.7758202142 61 190.8524086532 

12 36.9170983543 62 193.9939907007 

13 40.0584257652 63 197.1355730863 

14 43.1997917138 64 200.2771557939 

15 46.3411883723 65 203.4187388088 

16 49.4826098980 66 206.5603221168 

17 52.6240518417 67 209.7019057049 

18 55.7655107556 68 212.8434895606 

19 58.9069839267 69 215.9850736721 

20 62.0484691908 70 219.1266580286 

21 65.1899648008 71 222.2682426197 

22 68.3314693305 72 225.4098274355 

23 71.4729816042 73 228.5514124667 

24 74.6145006443 74 231.6929977046 

25 74.6145006443 75 234.8345831410 

26 80.8975558717 76 237.9761687679 

27 84.0390907775 77 241.1177545779 

28 87.1806298442 78 244.2593405639 

29 90.3221726378 79 247.4009267193 

30 93.4637187825 80 250.5425130376 

31 96.6052679516 81 253.6840995128 

32 99.7468198593 82 256.8256861392 

33 102.8883742548 83 259.9672729112 

34 106.0299309171 84 263.1088598237 

35 109.1714896504 85 266.2504468717 

36 112.3130502811 86 269.3920340504 

37 115.4546126543 87 272.5336213553 

38 118.5961766315 88 275.6752087821 

39 121.7377420886 89 278.8167963268 

40 124.8793089138 90 281.9583839852 

41 128.0208770066 91 285.0999717538 

42 131.1624462758 92 288.2415596288 

43 134.3040166389 93 291.3831476069 

44 137.4455880209 94 294.5247356847 

45 140.5871603535 95 297.6663238591 

46 143.7287335743 96 300.8079121270 

47 146.8703076264 97 303.9495004856 

48 150.0118824576 98 307.0910889321 

49 153.1534580198 99 310.2326774638 

50 156.2950342691 100 313.3742660781 
 

2. Appendix II: Verification of Eq. (30) 

Multiply both sides of Eq. (29) by rJ0(nr/ra), where n is an 
integer index, and integrate both sides with respect to r from 0 
to ra.  The left side becomes 
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The right side becomes 
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Since J0(nr/ra) is one of the solutions of Eq. (23), 
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By the same process, 
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However, 
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Eq. (A5) and Eq. (A6) are the same.  Subtract Eq. (A5) by 
Eq. (A6) to obtain 
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On the right side of Eq. (A8), either m = n will make the 
first term zero, or the integration should be zero.  Eq. (A8) 
verifies the orthogonality of Bessel function, meaning that the 
integration in Eq. (A2) must vanish when m  n.  Eq. (A2) 
becomes 
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Multiply both sides of Eq. (A4) by 0 ( / )
2 n adJ r r

r
dr


.  The 

left side becomes 
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The right side becomes 
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Combine Eq. (A10) and Eq. (A11) to obtain 
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Integrate both sides of Eq. (A13) with respect to r from 0 to 
ra. 
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Eq. (A9) and Eq. (A2) become 
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Combine Eq. (A1) and Eq. (A15) to obtain 
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