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ABSTRACT 

Both the consistent coupled-mode system (CCMS) and the 
eigenfunction matching method (EMM) are well-known mod-
els for simulating the propagation of small-amplitude water 
waves over variable bathymetry.  In this study, a thorough 
comparison is performed through numerical experiments.  For 
the CCMS, a bottom-sloping mode is coupled in the mild- 
slope equation with evanescent modes, then the CCMS are 
discretized by the finite-element method with high-order 
shape functions.  For the EMM, the bottom profile is ap-
proximated in terms of successive flat shelves separated by 
abrupt steps, and then eigensolutions on the shelves are 
matched by the conservation of mass and momentum.  To 
perform error analysis, numerical solutions are compared with 
Roseau’s analytical solution and the semi-analytical solutions 
of the integral equation method.  Numerical results indicate 
that the CCMS and EMM are accurate up to six and four 
decimal places, respectively.  On the other hand, the EMM is 
more efficient for short waves because multiple waves can be 
approximated by few shelves.  In addition, improvements in 
their accuracy over the mild-slope system without bottom- 
sloping mode are shown to be significant. 

I. INTRODUCTION 

The problem of water wave scattering by a bed of arbitrary 

topography is of considerable interest to coastal engineers, and 
continues to receive attention.  Although the nonlinear effects 
become significant as the shoreline is approached, a consistent 
linear solution is still very useful and provides extensive in-
formation concerning the wave field and its impact on the 
nearshore and coastal environments.  In addition, linear theory 
usually serves as the basis for weakly nonlinear models. 

Because analytic solutions are rare except for the cases of 
constant bottom and Roseau’s (1976) profile, numerical solu-
tions are required for solving problems of water wave scat-
tering.  For example, Berkhoff (1972) derived the mild-slope 
equation (MSE) by removing the vertical coordinate using the 
integration of depth function, and hence reducing the dimen-
sionality of the considered problem by one.  Kirby (1986) 
extended the MSE by including a rapidly varying topography 
and applied the derived equation to the Bragg scattering of 
waves passing over sinusoidal beds.  Chamberlain and Porter 
(1995) further modified the MSE by adding the bottom cur-
vature and slope-squared terms into the traditional MSE by 
Berkhoff (1972).  A significant restriction for any of the pre-
scribed one-equation models is that the vertical structure of the 
wave field is given by a specific depth function.  Therefore, 
these models cannot totally resolve water wave scattering over 
complicated bottom topography.  Further improvements were 
made by considering the propagating and all evanescent modes 
and deriving a hierarchy of MSEs (Massel, 1993; Porter and 
Staziker, 1995), denoted as the mild-slope system (MSS) in 
this study.  The vertical modes of the MSS have zero vertical 
derivative at the local depth; therefore, this model is incon-
sistent for problems with the Neumann condition on a sloping 
bottom.  Athanassoulis and Belibassakis (1999) improved the 
model by including a sloping-bottom mode and deriving the 
consistent coupled-mode system (CCMS).  The CCMS have 
been applied for a variety of water wave problems (Belibassakis 
et al., 2001; Belibassakis and Athanassoulis, 2002; Belibassakis, 
2007; Athanassoulis and Belibassakis, 2009). 

Alternatively, there are eigenfunction matching methods 
(EMMs), in which the bed profile under consideration is ap-
proximated by a sequence of flat shelves separated by abrupt 
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steps and the solution on each shelf is constructed by eigen-
functions.  The EMMs can be classified into the indirect 
(Newman, 1965; Miles, 1967; Mei and Black, 1969; Devillard 
et al., 1988; O’Hare and Davies, 1992; O’Hare and Davies, 
1993; Tsai et al., 2011; Tsai et al., 2014) and direct methods 
(Takano, 1960; Kirby and Dalrymple, 1983; Rey, 1992; Rey, 
1995; Bender and Dean, 2003; Tsai et al., 2013; Seo, 2014).  
Recently, Tsai et al. (2011; 2014) demonstrated that the nu-
merical accuracy of the indirect and direct EMMs is the same, 
although the latter method is simpler.  In addition, the resulted 
matrix of the direct EMM is sparse and can be solved effi-
ciently either by sparse matrix solvers, such as the SuperLU 
(James et al., 1999), or the transfer matrix formulation (Seo, 
2014).  Therefore, we will focus only on the direct EMM and 
denote it as the EMM in the following of this study. 

As a first impression, one may conclude that the MSE-type 
models are better than the EMMs, in both efficiency and ac-
curacy, when solving problems of water wave scattering over 
an arbitrary smoothly varying bottom topography.  However, 
O’Hare and Davies (1993) demonstrated that the numerical 
solutions of the extended MSE (Kirby, 1986) and the indirect 
EMM with wide-space assumption (Devillard et al., 1988; 
O’Hare and Davies, 1992) are comparably accurate.  Recently, 
Tsai et al. (2014) demonstrated the superiority of the EMM 
over the MSS in terms of accuracy (Massel, 1993; Porter and 
Staziker, 1995); both require similar computational cost when 
they are solved by the sparse matrix solver SuperLU (James et 
al., 1999).  These results invite us to perform a detailed com-
parison between the CCMS, the MSS, and the EMM.  Cur-
rently, the applications of EMM are limited to stationary 
problems in two-dimensional or three-dimensional axisym-
metric domains (Bender and Dean, 2005). 

To perform error analysis for the CCMS, MSS, and EMM, 
numerical results are compared with Roseau’s analytical so-
lution (1976).  Furthermore, we consider Porter and Porter’s 
study (2000), in which an integral equation method (IEM) was 
developed to obtain highly accurate solutions for water wave 
scattering by a step of arbitrary profile.  In that study, they 
declared that their semi-analytical solutions were accurate up 
to six decimal places by floating-point computing.  In this 
study, we carefully reproduced their method for solving water 
wave scattering by sinusoidal shoal and slope, and compared 
the results with the numerical results of the CCMS, MSS, and 
EMM. 

This paper is organized as follows: the wave problem is 
mathematically modeled in Section 2.  Next, the CCMS and 
EMM are reviewed in Sections 3 and 4, respectively.  Nu-
merical comparisons are performed in Section 5 and the con-
clusions are drawn in Section 6. 

II. WAVE MODEL 

We consider a two-dimensional problem for a monochro-
matic wave propagating over an arbitrary bottom configura-
tion with time dependence te i , where t is the time,  is the  

O
x

xM = ∞
h+

x = l− x = l+

x0 = −∞
h−

y

 
Fig. 1.  Configuration of problem definition. 

 
 

angular frequency, and 1 i  is the unit of complex num-
bers, as depicted in Fig. 1.  In the figure, the coordinate  
(x, y) is defined such that x is the horizontal direction and y is 
the vertical direction positively upward from the still water 
level on y = 0.  It is assumed that the bottom slope exhibits an 
arbitrary one-dimensional variation in a subdomain of finite 
length lying between two regions of constant but different 
depths, h = h and h = h+ for x  L and x  L+, respectively. 

Furthermore, the bottom profile is described by 

    for y h x L x L      (1) 

with ( )h L h   and ( )h L h  . 
According to Airy’s (1845) linear wave theory, the velocity 

potential, ( , ),x y  is governed by the Laplace equation as 

 2 0,    (2) 

and subject to the free surface conditions 

 0 on 0K y
y


   


 (3) 

and 

 0 on 0,g y    i  (4) 

and the bottom boundary condition 

  0 on ,
dh

y h x
y x dx

 
   

 
 (5) 

where 
2

,K
g


  with g the acceleration of gravity.  In Eq. (4), 

 is the surface elevation relative to the still water level. 
Furthermore, the following far-field conditions are required 

to make the solution unique: 
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where R and T are the reflection and transmission coefficients, 
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respectively.  In Eq. (6), we have assumed that the amplitude 
of the incident wave is one without loss of generality.  Before 
introducing the solution procedure, it should be mentioned 
that R and T are the desired solutions to be obtained. 

III. CONSISTENT COUPLED-MODE SYSTEM 

Athanassoulis and Belibassakis (1999) used the variational 
formulation for deriving the CCMS.  In this study, we alter-
natively utilize the Galerkin method, which has been used for 
deriving the MSS (Massel, 1993).  First, the Galerkin method 
is applied to the governing Eq. (2) for obtaining 

  
 

2 20

2 2
, 0 for 1, 0,1, 2, ... ,lh x

f y h x dy l
x y

    
    

  
  

  (7) 

where   ,lf y h x  is the depth function, defined as 

        

     
 

3 2

1 ,

cosh
, for 0,1, 2, ... ,

cosh

l

l
l

y y
f y h x h x

h x h x

k y h x
f y h x l

k h x



                     
 
  


 (8) 

where the propagating wavenumber, k0, and evanescent 
wavenumbers, k1, k2, ..., are respectively the positive real and 
pure imaginary roots of the dispersion relation: 

  tanhm mk k h x K  (9) 

To be more precise, the evanescent wavenumbers can be 
alternatively defined as m mk  i  with 1 2 3 , ...,      and  

  tan  for 1, 2, 3, ... .m mk h x K l    (10) 

In Eq. (8), the choice of the depth function for the sloping- 
bottom mode is not unique and has been further explained in 
the literature (Athanassoulis and Belibassakis, 1999). 

Then, we can expand the desired solution as 

   
1

( , ) , ( ).n n
n

x y f y h x x




    (11) 

Substituting Eq. (11) into Eq. (7) and performing some 
mathematical manipulations can result in the CCMS, as fol-
lows: 

 
1

0 for 1, 0, 1, 2, ...,n n
ln ln nl ln n

n

d dd dh
a b b c l

dx dx dx dx

 






 
      

 
  

  (12) 

with 

 ,ln l na f f  (13) 

 ,n
ln l

df
b f

dh
  (14) 

 
2 2

(1) (2)
2

,ln ln ln ln

dh d h
c c b c

dx dx

    
 

 (15) 

 
 

2
(1)

2
,n n

ln l l

y h x

d f df
c f f

dhdh


 
   

 
 (16) 

and 

 
 

2
(2)

2
,n n

ln l l

y h x

f f
c f f

yy


  
     

 (17) 

where the operator    is defined by 

        
 

0
.

h x
F y G y F y G y dy


   (18) 

In Eqs. (12)-(17), the wavenumbers are also functions of 
h(x); thus, the chain rule should be applied when performing 
differentiation with respect to h.  For example, 

 n n n n

n

df f f dk

dh h k dh

 
 
 

 (19) 

where ndk

dh
 can be found from dispersion relation (9). 

To introduce the boundary conditions of the CCMS, we use 
Eq. (6) to obtain 

       
1

cosh
, ,

cosh
nk xk x k x

n n
n

k y hg
x y e Re R f y h e

k h
 


  

 
 


     ii ii  

  (20) 

and 

       
1

cosh
, ,

cosh
nk xk x

n n
n

k y hg
x y Te T f y h e

k h



 

 
 


    iii

 

  (21) 

for x  L and x  L+, respectively.  In Eqs. (20) and(21), Rn and 
Tn are unknown coefficients to be solved.  For the matching 
condition at x = L, we can apply the conservations of mass 
and momentum, respectively, as  
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   
1

,
( )  l ln n

n x Lx L

x y dh
f y b L

x dx








 




   

for 1, 0, 1, 2, ...l    (22) 

and 

   
1

, ( ) for 1, 0, 1, 2, ... .l ln n
n

f y L y a L l


  


     (23) 

Eliminating R and Rn in Eqs. (20), (22) and (23) and using 
the definition (13) can result in 

        ln 0 0 00
1

0 0 0 0 2n
ln n ln l n l

n

d dh
a b k a k a

d d


  





         
 

 i i
n n

 

                               for 0, 1, 2, ..l   (24) 

and 

       1, 1, 1, 0 1,0
1 0

0 0 0 0 2n
n n n n n n

n n

d dh
a b k a k a

d d


 

 

   
 

 
        

 
  i i

n n
 

  (25) 

with n the unit outward normal vector.  We can obtain similar 
matching conditions at x = L+ by dropping the right-hand side 
of Eqs. (24) and (25).  Boundary conditions (24) and (25) were 
introduced by Porter and Staziker (1995) for the case in which 
the slopping-bottom mode is discarded. 

Until now, no approximations have been involved.  When 
numerical solutions are considered, the upper limits of both l 
and n should be truncated to N.  Then, standard numerical 
methods, such as the finite difference or finite-element method 
(FEM), can be utilized to discretize Eq. (12).  In this study, we 
use the generic finite-element library (Renard and Pommier, 
2002) for numerical solutions.  If M is the spatial degree of 
freedom for the FEM, we will roughly have an M(N + 2) by 
M(N + 2) sparse matrix, which is then solved by the SuperLU 
(James et al., 1999).  If the MSS is considered, we can simply 
discard the sloping-bottom mode of the present formulation. 

IV. EIGENFUNCTION MATCHING METHOD 

Next, we will introduce the direct EMM solution for solv-
ing the water wave scattering problem defined in Section 2.  
According to most step methods, the bottom profile should be 
approximated by a succession of flat shelves, as depicted in 
Fig. 2. 

In the figure, there are M shelves with depth hm in intervals 
of 1m mx x x    for 1, 2, 3, ...,m M  and 1M   steps at 

mx x  for 1, 2, 3, ..., 1m M  .  To simplify the formulation, 
it is assumed that 0x    and Mx   . 

To apply the EMM, bottom boundary condition (5) is ap-
proximated by 

xM = ∞hm+1hm

x

h1 = h−
x0 = −∞ hM = h+

x = x1 = l− x = xM−1 = l+

y
x = xm

O

 
Fig. 2.  Configuration of the EMM. 

 

10 on  for  and 1, 2, ...,m
m m my h x x x m M

y 


     


 (26) 

and 

max min0 on  for  and 1, 2, ..., 1m m mx x h y h m M
x


      


 

  (27) 

with max
1max( , )m m mh h h  and min

1min( , ).m m mh h h   In Eq. 
(26), m  is the solution on the mth shelf.  In Eq. (27), the  
wall boundary condition is considered only for a deeper shelf.  
To match the solutions on shelves, the following matching 
conditions are required at each step: 

 1m m    (28) 

and 

 1m m

x x
 


 
 (29) 

on mx x  for min 0mh y    and 1, 2, ..., 1m M  . 
According to the linear wave theory, a complete solution on 

the mth shelf can be constructed as 

        , 1 ,

, , ,
0

,  for 1, 2, ...,m n m m n mk x x k x x
m m n m n m n

n

x y A e B e f y m M


  



    i i  

  (30) 

with ,m nA  and ,m nB  the unknown coefficients and 

 
0

for 1,2,..., 1

0.
m m

M

x x m M

x x

  
  

 (31) 

Furthermore, the eigenfunction, , ( ),m nf y  is defined simi-

larly to Eq. (8) as 

    ,
,

,

cosh
 for 0, 1, 2, ... 

cosh
m n m

m n
m n m

k y h
f y n

k h


   (32) 
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with wavenumber ,m nk  defined as 

 , ,tanh  for 1, 2, ...,  and 0, 1, 2, ... .m n m n mk k h K m M n    

  (33) 

Then, far field conditions (6) indicate that 

 
1,0

1,

,

0 for  1, 2, ...,

0 for 0, 1, ...,
n

M n

g
A

A n N

B n N


  

  

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 (34) 

and 

 

1,0

1,0

,0

1,0

.M

B
R

A

A
T

A






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

 (35) 

Finally, the EMM can be constructed by considering the 
conservations of mass and momentum, respectively, as 

    , 1 , max
, , , , ,

0

m n m m m n m mk x x k x x
m n m n m n m n m l

n

k A e B e f f


  



 i ii  

    1, 1, 1 max
1, 1, 1, 1, ,

0

m n m m m n m mk x x k x x
m n m n m n m n m l

n

k A e B e f f  


  

   


  i ii  

  (36) 

and 

    , 1 , min
, , , ,

0

m n m m m n m mk x x k x x
m n m n m l m n

n

A e B e f f


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
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

  i i  

  (37) 

for 1, 2, ..., 1m M   and 0, 1, ...,l   with 
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 (39) 

In Eqs. (36) and (37), the definition of    is extended 

from Eq. (18), with h(x) replaced by the water depth corre-
sponding to the first eigenfunction F(y). 

To perform numerical solutions, the upper limits of both l 
and n are truncated to N.  Then, we have (M  1)(N + 1) linear 
equations from both Eqs. (36) and (37), and 2(N + 1) linear 
equations from Eq. (34).  These linear equations can be used 
for solving the 2M(N + 1) unknowns Am,n and Bm,n.  Then, the 
sought reflection and transmission coefficients can be found 
by using Eq. (35).  Here, only connected shelves are related, as 
shown in Eqs. (36) and (37).  As a result, the system matrix of 
the EMM is also highly sparse and will be solved by the sparse 
matrix solver SuperLU (James, et al., 1999). 

V. NUMERICAL RESULTS 

To obtain a firm error analysis for the CCMS, MSS, and 
EMM, numerical results are compared with Roseau’s (1976) 
analytical solution and the semi-analytical solutions of IEM 
(Porter and Porter, 2000) for water wave scattering over si-
nusoidal shoal and slope.  Here, the IEM solutions are ob-
tained by a re-implementation from the first author.  Specific 
reflection coefficients are tabulated for further reference and 
future studies.  Furthermore, both the root-mean-square error 
(RMSE) and the maximum error (ME) are used in the fol-
lowing cases.  M and N are the numbers of spatial degrees of 
freedom and evanescent modes, respectively, for all three 
models. 

1. Roseau’s bottom (Example I) 

First, we consider Roseau’s bottom, defined by 

  21
ln ln 1 2 cos ,

2
x

    
     (40) 

where 

     
1

1 1
sin cos .tan tan

1 1

h x h x   
 


                

 

  (41) 

Eq. (40) defines a variable step of depths from 1  to  ; 

max(0, )   is the steepness of the variable step with 

 1
max

1
tan .

4

 


 
   (42) 

Here, max  is obtained by enforcing the positiveness con-
dition of the bottom slope and is given explicitly for the first 
time, to the best of our knowledge.  The analytical reflection 
coefficient was derived by Roseau (1976) as 

 
 
 

1

1

sinh
,

sinh

k k
R

k k

 
 


 


 





 (43) 

in which the wavenumbers k and k+ are defined by 
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Fig. 3.  RMSE comparison of different orders for (a) CCMS and (b) MSS.  

 

 tanh tanh .K k k k k      (44) 

To perform an error analysis, we initially consider a case 
with  = 0.5 and  = 1.0.  The computational domain is estab-
lished by l  17.5550 and l+  8.77749 such that 

   81 10h l 
    (45) 

and 

   810 .h l  
    (46) 

In addition, the RMSE and ME are evaluated between the 
numerical reflection coefficients and the analytical values 
obtained by Eq. (43) for 2 g = 0.5, 0.75, ..., 2.5.  The optimal 
error for the present configuration will be 108, as suggested 
by Eqs. (45) and (46). 

Before performing numerical solutions, we studied the or-
der effect of FEM shape functions for the MSE-type models  
of CCMS and MSS.  Fig. 3 shows that numerical solutions  
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Fig. 4. RMSE comparison with different M and N of Roseau’s case for  

(a) CCMS, (b) MSS, and (c) EMM. 
 
 
obtained by higher-order shape functions significantly improve 
the accuracy, particularly when the sloping-bottom mode is in-
cluded in the solution procedure.  Therefore, we will adopt quar-
tic elements for the MSE-type models in the following study. 

Fig. 4 gives the numbers of spatial degrees of freedom 
versus RMSEs with different N for the numerical solutions  
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Fig. 6. Error comparisons with different N for the normal case of Ro-

seau’s bottom. 
 
 

obtained by the CCMS, MSS, and EMM.  These results sug-
gest that the required M is essentially independent of N for the 
MSE-type models.  Therefore, we selected M = 500 and M = 
300, respectively, for the CCMS and MSS in this example.  
For the EMM solutions, we can observe that there is an opti-
mal M value for every individual N, as shown in Fig. 4(c) and 
further explained in Fig. 5.  In Fig. 5, a linear relation between 
N and the corresponding optimal M can be found. 

Fig. 6 gives the numbers of evanescent modes versus the 
RMSEs and MEs for the three models.  In the figure, the 
CCMS only requires N = 5 for obtaining numerical solutions 
with errors approaching the optimal value of 108.  Comparing 
the MSS and the EMM, the EMM requires much fewer eva-
nescent modes (N = 2) for obtaining solutions with a similar 
accuracy of 105, although optimal values of M should be used 
in the EMM, which is still a concern. 

Table 1 addresses the computing times required for differ-
ent configurations of the three models.  Because all three  

Table 1. Computing times for the normal case of Roseau’s 
bottom. 

kh = 0.5  = 0.5  = 1 Total degrees of freedom Time (s)

CCMS (M = 60, N = 0)   120 0.15 

CCMS (M = 120, N = 0)   240 0.25 

CCMS (M = 240, N = 0)   480 0.46 

CCMS (M = 60, N = 2)   240 0.57 

CCMS (M = 120, N = 2)   480 0.99 

CCMS (M = 240, N = 2)   960 1.88 

CCMS (M = 60, N = 5)   420 0.87 

CCMS (M = 120, N = 5)   840 3.35 

CCMS (M = 240, N = 5) 1680 6.43 

MSS (M = 60, N = 0)     60 0.07 

MSS (M = 120, N = 0)   120 0.10 

MSS (M = 240, N = 0)   240 0.18 

MSS (M = 60, N = 2)   180 0.35 

MSS (M = 120, N = 2)   360 0.61 

MSS (M = 240, N = 2)   720 1.12 

MSS (M = 60, N = 5)   360 1.26 

MSS (M = 120, N = 5)   720 2.37 

MSS (M = 240, N = 5) 1440 4.51 

EMM (M = 60, N = 0)     60 0.01 

EMM (M = 120, N = 0)   120 0.02 

EMM (M = 240, N = 0)   240 0.46 

EMM (M = 60, N = 2)   180 0.03 

EMM (M = 120, N = 2)   360 0.08 

EMM (M = 240, N = 2)   720 0.25 

EMM (M = 60, N = 5)   360 0.09 

EMM (M = 120, N = 5)   720 0.26 

EMM (M = 240, N = 5) 1440 0.94 
 
 

models result in sparse system matrices, the numerical effi-
ciencies are similar based on the total degrees of freedom.  The 
EMM is slightly more efficient than the MSE-type models 
because it requires no numerical integrations. 

2. Roseau’s Bottom (Example II) 

To demonstrate the superiority of the EMM, with which 
multiple waves can be approximated by fewer shelves, we 
consider an extreme case with  = 0.1,  = max  103, and the 
computational domain is given by l  7.94328 and l+  
0.794322 according to Eqs. (45) and (46).  Both the CCMS 
and MSS fail in this example, due to the requirement of high 
spatial resolution for approximating the multiple waves and 
the extreme geometry with very large curvature and slope.  For 
the EMM solution, Table 2 gives the numerical errors for 
different values of M with N = 5, in which the errors are 
evaluated by considering 2 g  = 4, 4.25, ..., 6, and the 
shelves are of equal lengths. 

If we further examine the EMM solutions, we can find that 
a high resolution is required only for the rapidly varying part  
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Table 2. Accuracy comparison for the extreme case of 
Roseau’s bottom. 

N = 5 ME RMSE 

M = 50 1.31E-02 7.60E-03 

M = 100 3.40E-02 3.29E-02 

M = 200 1.05E-02 9.88E-03 

M = 300 2.65E-03 2.36E-03 

2M   6.10E-03 5.04E-03 

4M   5.58E-03 4.75E-03 

6M   4.44E-03 3.98E-03 

8M   3.18E-03 3.18E-03 

10M   2.72E-03 2.30E-03 
 
 

of the bottom profile.  Therefore, we divide the computational 
domain into two regions separated at x = l0  0.0612120, 
which is defined by 

  0 0.5.h l   (47) 

In the rapidly varying region, we approximate the bottom 
profile by 29  uniform shelves, whose length is approximately 
equivalent to that of the previous configuration with M = 300.  
Table 2 gives the numerical errors for different shelf numbers, 

,M  in the left region.  In the table, only 10M   shelves are 
required to obtain a numerical solution with similar accuracy 
to the previous configuration at M = 300.  This demonstrated 
the superiority of the EMM over the MSE-type models. 

3. Water Wave Scattering over a Sinusoidal Slope 

Next, we consider the problem of water wave scattering 
over a sinusoidal slope defined by 

   0.55 0.45sin
0.45 2

s
h x x

    
 

 (48) 

with l = 0, 0.45 ,l s   h = 1, h+ = 0.1, and s being a slope 
parameter.  Two cases of short (kh+ = ) and long (kh+ = 10 ) 
waves are considered. 

For the short-wave case, Fig. 7 gives the numbers of spatial 
degrees of freedom versus RMSEs with different N for the 
numerical solutions obtained by the CCMS, MSS, and EMM.  
In the figure, the errors are evaluated compared to the IEM 
solution with s = 2.7, 2.75, ..., 3.2.  In this case, we carefully 
re-implemented the IEM solution such that the accuracy is at 
least six decimal places, as addressed in Table 3 for s = 3.  In 
the table, the notations of parameters can be referred to the 
literature of Porter and Porter (2000).  Based on the results in 
Fig. 7, we typically consider M = 36 and M = 16 for the CCMS 
and the MSSs, respectively, in the short-wave case.  For the 
EMM solutions, we select the optimal M value for every in-
dividual N, as further explained in Fig. 8, which shows a linear 
relation between N and its corresponding optimal M. 
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Fig. 7. RMSE comparison with different M and N of the short-wave 

sinusoidal slope for (a) CCMS, (b) MSS, and (c) EMM. 

 
 
Fig. 9 gives errors versus N for all three models.  In the 

figure, the CCMS requires N = 25 for obtaining numerical 
solutions with errors approaching the optimal value of 106.  
At the same time, the computational efficiency of the CCMS is 
much higher than that of the IEM semi-analytical solution,  
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Table 3.  IEM solutions for the short-wave sinusoidal slope. 

N1 N2 11Q  12Q  22Q  R  T  Time (s) 

0 0 1.346206 3.085958 6.484078 0.133683 1.024239 85 

2 2 0.987939 2.471228 5.337687 0.150134 1.021801 670 

5 5 0.978752 2.434815 5.178499 0.148372 1.022076 2440 

10 10 0.978421 2.434807 5.178429 0.148112 1.022116 7864 

20 20 0.978375 2.434758 5.178397 0.148111 1.022117 25013 
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Fig. 8. Relation between optimal M and N for the short-wave sinusoidal 

slope. 
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Fig. 9. Error comparison with different N for the short-wave sinusoidal 

slope. 
 
 

which can be concluded from the typical computing times in 
Tables 1 and 3.  In addition, the present case requires more 
evanescent modes than the first example of Roseau’s bottom,  

Table 4. Reflection coefficients obtained by CCMS (N = 
25), MSS (N = 25), and EMM (N = 20) for the 
short-wave sinusoidal slope. 

s IEM/CCMS MSS EMM MSS error EMM-error

2.7 0.139122 0.142385 0.139087 3.26E-03 3.51E-05

2.75 0.140742 0.144078 0.140713 3.34E-03 2.89E-05

2.8 0.142310 0.137649 0.142287 4.66E-03 2.30E-05

2.85 0.143830 0.147308 0.143812 3.48E-03 1.76E-05

2.9 0.145302 0.148850 0.145289 3.55E-03 1.26E-05

2.95 0.146729 0.150346 0.146721 3.62E-03 7.90E-06

3 0.148111+ 0.151796 0.148108 3.68E-03 3.55E-06

3.05 0.149452+ 0.153204 0.149453 3.75E-03 4.50E-07

3.1 0.150753 0.145906 0.150757 4.85E-03 4.15E-06

3.15 0.152015 0.155898 0.152023 3.88E-03 7.58E-06

3.2 0.153240 0.157188 0.153251 3.95E-03 1.08E-05
 
 
which is expected due to the less smoothness of the present 
bottom at x = l and x = l+.  On the other hand, the EMM only 
requires N = 5 for obtaining numerical solutions with accuracy 
better than 104 while including more evanescent modes pro-
vides negligible improvement. 

Furthermore, the numerical results of both the CCMS and 
the EMM are more accurate than those of the MSS, as shown 
in Fig. 9.  The detailed reflection coefficients are tabulated in 
Table 4, which can be adopted for comparison in further 
studies. 

Here, the numerical values of the CCMS and IEM are es-
sentially the same up to six decimal places; therefore, a unified 
column is provided for the two models.  Furthermore, if the 
sixth decimal places of the two models are different by 1 due 
to round-off errors, a symbol + is added. 

Additionally, we consider the long-wave case in which the 
errors are evaluated for s = 1.5, 1.55, ..., 2.  Figs. 10 and 11 
show the resulted RMSEs versus M and N, respectively.  
Based on Figs. 10(a) and (b), we selected M = 36 and M = 12, 
respectively, for the CCMS and the MSS in the long-wave 
case.  The results are similar to those of the short-wave case, 
except slightly more evanescent modes are needed for the  
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Fig. 10. RMSE comparison with different M and N of the long-wave 

sinusoidal slope for (a) CCMS, (b) MSS, and (c) EMM. 
 
 

EMM and the accuracy of MSS improves slightly with N.  
Additionally, we provide the detailed reflection coefficients in 
Table 5 for comparison in future studies. 

4. Water Wave Scattering over a Sinusoidal Shoal 

Finally, we consider the problem of a water wave scattering 
over a sinusoidal shoal, defined by 

Table 5. Reflection coefficients obtained by the CCMS (N = 
25), MSS (N = 25), and EMM (N = 20) for the 
long-wave sinusoidal slope 

s IEM/CCMS MSS EMM MSS error EMM error

1.5 0.498580 0.498794 0.498582 2.14E-04 2.36E-06

1.55 0.499169 0.499383 0.499171 2.14E-04 2.32E-06

1.6 0.499707+ 0.499922 0.499710 2.15E-04 2.25E-06

1.65 0.500202 0.500416 0.500204 2.15E-04 2.18E-06

1.7 0.500657 0.500871 0.500659 2.15E-04 2.09E-06

1.75 0.501076+ 0.501291 0.501078 2.15E-04 2.00E-06

1.8 0.501465 0.501680 0.501467 2.15E-04 1.91E-06

1.85 0.501825 0.502040 0.501827 2.15E-04 1.83E-06

1.9 0.502160 0.502375 0.502162 2.15E-04 1.73E-06

1.95 0.502472 0.502688 0.502474 2.15E-04 1.65E-06

2 0.502764 0.502979 0.502765 2.15E-04 1.56E-06

 
 

0 10 20 30
N

1E-007

1E-006

1E-005

1E-004

1E-003

1E-002
CCMS-ME
CCMS-RMSE
MSS-ME
MSS-RMSE
EMM-ME
EMM-RMSE

er
ro

r

 
Fig. 11. Error comparison with different N for the long-wave sinusoidal 

slope. 

 

   2
0.55 0.45sin

2
h x x

w

     
 

 (49) 

with l = 0, l+ = w, h = 1, and h+ = 0.1, and w being a width 
parameter.  Only a short-wave case (kh+ = ) is considered in 
this example.  The errors are evaluated based on w = 0.5, 
0.55, ..., 1. 

Figs. 12 and 13 show the resulted RMSEs versus M and N, 
respectively.  Based on Figs. 12(a) and (b), we selected M = 
100 and M = 40, respectively, for the CCMS and MSSs in this 
example.  Additionally, the optimal values of M are utilized for 
the EMM in Fig. 13.  Compared with the sinusoidal-slope 
cases, larger numbers of M are required to obtain a similar 
level of accuracy.  In Fig. 13, the CCMS and EMM are accu-
rate up to six and four decimal places, respectively.  Fur-
thermore, their accuracy significantly improves over the  
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Fig. 12. RMSE comparison with different M and N of the sinusoidal 

shoal for (a) CCMS, (b) MSS, and (c) EMM. 

Table 6. Reflection coefficients obtained by the CCMS  
(N = 40), MSS (N = 40), and EMM (N = 30) for 
the sinusoidal shoal. 

w IEM/CCMS MSS EMM MSS error EMM error

0.5 0.353932+ 0.361688 0.353979 7.76E-03 4.73E-05

0.55 0.345327+ 0.352615 0.345391 7.29E-03 6.35E-05

0.6 0.336311+ 0.339943 0.336380 3.63E-03 6.87E-05

0.65 0.326921+ 0.333387 0.326985 6.47E-03 6.42E-05

0.7 0.317194+ 0.320426 0.317245 3.23E-03 5.08E-05

0.75 0.307174+ 0.310330 0.307204 3.16E-03 2.93E-05

0.8 0.296907+ 0.302311 0.296907 5.40E-03 5.30E-07

0.85 0.286440+ 0.291516 0.286405 5.08E-03 3.48E-05

0.9 0.275823+ 0.279023 0.275747 3.20E-03 7.61E-05

0.95 0.265109 0.268368 0.264987 3.26E-03 1.22E-04

1.0 0.254348+ 0.257671 0.254175 3.32E-03 1.73E-04
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Fig. 13.  Error comparison with different N for the sinusoidal shoal. 

 
 

MSS.  Finally, Table 6 addresses the detailed reflection coef-
ficients for comparison in further studies. 

VI. DISCUSSIONS AND CONCLUSION 

Both the CCMS and the EMM are reviewed.  To perform 
numerical studies, a generic FEM code is implemented for 
solving the MSE-type models of CCMS and MSS.  Further-
more, quartic elements are adopted in the FEM numerical 
solution procedures.  Sparse matrices are resulted for all of the 
CCMS, MSS, and EMM, which can be solved efficiently by a 
sparse matrix solver.  These numerical results are compared 
with Roseau’s analytical solution and the IEM semi-analytical 
solutions of sinusoidal bottoms, which are obtained from a 
re-implementation by the first author.  Specific reflection 
coefficients are tabulated for comparison in future studies.  
The numerical solutions of the CCMS are accurate up to ex-
treme values for all cases.  The numerical solutions obtained 
by the EMM are accurate up to at least four decimal places.  In 
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addition, their improvements in accuracy over the MSS are 
significant.  For an extreme case of Roseau’s bottom, only the 
EMM can produce reasonable solutions with few shelves. 

Overall, the CCMS is in a relatively more mature stage of 
development than the EMM, which is currently limited to 
stationary problems in two-dimensional or three-dimensional 
axisymmetric domains.  The application of the EMM beyond 
this limit is currently under investigation. 
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