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ABSTRACT 

This work investigates the viscous flow fields induced by a 
solitary wave passing over a shelf or a step.  The proposed 
numerical model solves the unsteady two-dimensional Rey-
nolds Averaged Navier-Stokes (RANS) equations and the 
turbulence equations.  The finite-analytical scheme is used to 
discretize the differential equations involved in the RANS 
model.  The particle level set method is adopted to capture the 
complex free surface evolution.  Accuracy of the proposed 
model in simulating breaking solitary wave on a shelf is veri-
fied by comparing numerical wave profiles from the incident 
stage to the beginning of jet fall with the experimental data.  
Following verification of the accuracy of the proposed nu-
merical model, the surface evolution, kinematic properties and 
energy balance involved in a breaking solitary wave on the 
shelf are elucidated in details.  Numerical results indicate that 
during the overturning of the solitary wave, maximum veloc-
ity of the fluid particles occurs after the first splash-up and 
before the second reattachment. 

I. INTRODUCTION 

Wave breaking is one of the most commonly observed 
features of water waves in the coastal zones.  When waves 
break, the momentum of waves is transformed into the ocean 
surface layer.  Wave breaking thus plays a significant role in 
the dissipation of wave energy.  Given the high complexity of 
the phenomena associated with wave breaking, earlier re-
search focused mainly on the evolution of a breaking solitary 
wave on a continental shelf, which is represented by a vertical 
step.  Goring (1978) studied the reflection and transmission of 
a solitary wave passing over a shelf and the results were con-

firmed by experimental data.  Losada et al. (1989) measured 
the evolution of a solitary wave at a step and classified the 
evolutions into four modes concerned mainly with the distor-
tion, fission and breaking of the wave.  Yasuda et al. (1997) 
investigated the kinematic properties of overturning solitary 
waves on a step by using the potential flow model.  Surface 
profiles and velocity fields of the flow from the initial state to 
the state when the jets that are ejected from their crests plunge 
into the front faces were examined.  Experiments were also 
performed to verify the accuracy of the numerical results for 
the temporal water surface elevation before the breaking point 
and the spatial water surface profiles around the ejected jet.  
Despite its contributions, their study did not address the sur-
face evolution of the breaking solitary wave after the forma-
tion of the ejected jet, such as re-attachment, splash-up and air 
entrainment.  By solving the Reynolds averaged Navier-Stokes 
(RANS) equations, Liu and Cheng (2001) studied the evolu-
tion of a solitary wave over a shelf.  Both nonbreaking and 
breaking solitary waves were examined.  The breaking waves 
were simulated by coupling the RANS equations with k   
turbulence equations.  According to their numerical results, the 
fission processes for generating the second and third solitons 
are quite different for nonbreaking and breaking solitary waves. 

The aforementioned research focuses mainly on the surface 
evolution of the breaking solitary waves.  However, the ki-
nematic behavior and energy balance of the flows associated 
with breaking waves are also crucial for elucidating the mecha-
nism of the breaking waves.  Many experimental studies have 
explored the kinematic behavior associated with breaking 
waves.  By using the Particle Image Velocimetry technique, 
Chang and Liu (1998) measured the fluid particle velocities in 
the overturning jet of a breaking wave.  According to their 
results, the maximum fluid particle velocity at the tip of the 
overturning jet reached 1.68 times of the phase velocity cal-
culated from the linear wave theory. 

The complicated free surfaces involved in a breaking wave 
have been simulated using numerical approaches such as the 
VOF method and the smoothed particle hydrodynamics (SPH) 
method.  Recently, a level set method (LSM) is developed to 
capture the interface between two fluids.  The level set method 
provides an effective means of computing the interface sepa-
ration and combination, such as the motion of air bubbles in 
water or falling water drops in air.  However, numerical dif-
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fusion may occur as time proceeds, subsequently affecting the 
correct capturing of the interface.  Numerous studies have 
developed a more accurate and efficient solution algorithm, 
referred to as the particle level set method, to capture the in-
terface accurately, subsequently improving the conservation of 
mass in the flow domain (Enright et al., 2002). 

Wang et al. (2009) developed a two phase flow model to 
simulate spilling breaking waves, in which the level set method 
was implemented for retrieving the air-water interface.  Ac-
cording to their results, surface elevation, location of the 
breaking point and undertow profiles can be captured.  Lubin 
et al. (2011) simulated two-dimensional breaking waves over  
a sloping beach by solving the Navier-Stokes equations, in air 
and water, coupled with the large eddy simulation (LES).  
Their numerical results were compared with the experimental 
observations. 

This work develops a numerical model to examine the 
surface evolution, kinematic properties, and energy balance 
involved in a breaking solitary wave over a shelf.  The nu-
merical model solves the unsteady, two-dimensional Reynolds 
Averaged Navier-Stokes (RANS) equations and the turbulence 
equations.  The interface between the air and water phases was 
captured using the particle level set method. 

II. GOVERNING EQUATIONS 

This work develops a numerical model to study the surface 
evolution and kinematic behavior involved in a breaking 
solitary wave on a continental shelf.  The continental shelf is 
represented by a step with a vertical face installed in the 
computational domain.  For an incompressible, viscous fluid, 
the continuity equation in the Cartesian coordinate system is 
written in tensor form as 

 i

i

U
O

x





 (1) 

and the unsteady Reynolds Averaged Navier-Stokes (RANS) 
equations are 
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where Ui denotes time-averaged mean velocity of the fluid, for 
two-dimensional flows i ranges from 1 to 2; xi is the coordi-
nates; t is time;  is density; P is hydrodynamic pressure, 
which equals the reduction of the hydrostatic pressure from 
the total pressure, and i ju u   are the Reynolds stress tensor. 

In the k   model of turbulent fluid flows, each Reynolds 
stress is related to the corresponding mean rates of strain by an 
isotropic eddy viscosity T as follows: 
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in which the eddy viscosity is determined as 
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where C is an empirical constant; k is the turbulent kinetic 
energy;  is the dissipation rate of turbulent kinetic energy; and 
ij is Kronecker’s delta. 

In order to take the wall damping effect into account, k   
models for low Reynolds number flows are adopted (Patel et 
al., 1985), which involve empirical constants and additional 
terms expressed as follows: 

 iT
j i j

j j k j j

Uk k k
U u u

t x x x x


 



              
       

 (5) 

T
j

j j j

U
t x x x

  


     
    

      
 

 
2

1 1 2 2
i

i j
j

U
C f u u C f E

k x k 
    


 (6) 

where 
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Launder and Spalding (1974) recommended the following 
empirical constants for a fully turbulent flow, i.e. C = 0.09; 
C1 = 1.44; C2 = 1.92; k = 1.0 and  = 1.3.  Launder and 
Sharma (1974) proposed the following terms in the k   
model for low Reynolds number flows in boundary layers to 
modify the general turbulent transport equation: 
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where the damping function f depends on the turbulence 
Reynolds number RT according to 
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where 

 2 /TR k   (10) 

and 
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III. LEVEL SET METHOD 

The level set method is a numerical scheme developed to 
treat the evolution of interfaces and shapes.  One advantage of 
the level set method is that one can perform numerical com-
putations involving curves and surfaces using an Eulerian 
approach (with a fixed Cartesian grid).  In two dimensions, the 
level set method represents a close curve Γ in the plane as the 
zero level set of a two-dimensional auxiliary function,  , 

  Γ ( , ) ( , ) 0x y x y   (12) 

and then manipulates Γ implicitly through the function .  This 
function is called a level set function.  The signed distance 
function is generally chosen as the level set function.  In this 
work, the interface, Γ, between air and water is the zero level 
set of a smoothed distance function ( , , )x y t , in which  < 0 
denotes the air region and  > 0 refers to the water region.  
Function  is defined as the signed normal distance from the 
interface, Γ, and satisfies 1  .  During time evolution,  
can be viewed as a property convected with the flow field.  
Hence, 

 0j
j

U
t x
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However, numerical diffusion may arise after a finite amount 
of computational time, i.e., the level set  may become ir-
regular and is no longer a distance function.  Thus, the level set 
function  must be re-initialized at each time step to ensure 
that the level set function  maintains a smooth distance 
function.  This can be achieved by iterating the following 
partial differential equation to reach a steady state, and then 
replacing ( , , )x y t  with ( , , )d x y τ , 
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where  is an artificial time and ( )S   is a smoothed signed 
function expressed as  

 
22 2

( )S


 


  
 (15) 

In the numerical computation, the thickness of interface, 
2Δ, is chosen at least three grid cells in the direction normal to 
the interface, Γ.  Thus, the level set function remains a distance 
function with   converging to a unit without changing its 
zero level set.  In numerical implementation, however, con-
servation of mass may be violated during the re-distancing 
procedure.  Enright et al. (2002) developed the particle level 
set method to enhance the mass conservation properties of the 
conventional level set method and to reduce the numerical 

diffusion.  The level set function near a free surface is adjusted 
by using Lagrangian marker particles. 

IV. BOUNDARY AND INITIAL CONDITIONS 
AND NUMERICAL METHOD 

Solving the RANS and turbulent transport equations re-
quires appropriate boundary conditions at all boundaries of the 
solution domain, as well as the initial conditions at 0t   for 
the entire domain.  The initial conditions of velocities, hy-
drodynamic pressure, and surface displacement are set to zero 
at 0t . 

The kinematic condition requires that fluid particles move 
with the free surface.  This concept can be described in terms 
of the advection of the level set function, as described earlier 
in Eq. (13).  The dynamic conditions along the interface, Γ, are 
as follows: 

 O
n


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



 (16a) 

 atmP P

  (16b) 

where   denotes the mean velocity of the fluid (U or V), the 
turbulent kinetic energy (k), or the dissipation rate of turbulent 
kinetic energy (), and n is the direction normal to the interface, 
Γ, /n     .  Eq. (16a) can be satisfied by solving the 
following partial differential equation, until the steady state is 
achieved (Peng et al., 1999), 

 ( )( )S O
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 
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where ( )S   is a smoothed signed function, as expressed in Eq. 
(15);  is a fictitious time; and the operator  represents 
( / , / ).x y      Furthermore, the computational domain is 
extended with time, such that the wave does not reach the 
downstream boundary of the computational domain. 

In the proposed numerical model, the governing equations 
were discretized by means of a finite-analytical scheme.  The 
coupled velocity and pressure fields were calculated using the 
SIMPLER algorithm.  The evolution of level set method was 
solved using the fourth-order TVD Runge-Kutta method and 
fifth-order WENO scheme.  Further details on the generation 
of incident solitary wave in a numerical wave flume and the 
associated numerical schemes can be found in Huang and 
Dong (2001) and Dong and Huang (2004). 

V. VERIFICATION 

To confirm the accuracy of the incident solitary wave and 
the associated velocity field of the flow generated in the 
computational domain, Fig. 1 compares the numerical solitary  
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Fig. 1. Comparison of numerical solitary wave profile with that given 

from Boussinesq’s theory; (○) Numerical results, (—) Analytical 
results using Boussinesq’s theory. 
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Fig. 2. Horizontal velocity profiles within the boundary layer induced by 

a solitary wave at different phases; (symbols) results from the 
proposed numerical model; (---) analytical solutions obtained 
from Huang and Dong (2001). 

 
 

wave profile with an incident wave height of Hi /ho = 0.15  
with the theoretical wave profile obtained from Boussinesq’s 
theory, 

  2sec ( )iH h K x ct    (18) 

where 33 / 4i oK H h  and c denotes the phase speed of the 

wave and equals to ( )og H h .  Additionally, ho is the still 

water depth, and Hi and H denote the incident and local wave 
height, respectively.  In Fig. 1, the time is normalized by Leff /c, 
where Leff is the effective wavelength of a solitary wave (Dean 
and Dalrymple, 1995). 

Fig. 2 compares the numerical and theoretical horizontal 
velocity profiles near the bottom boundary layer induced by 
the solitary wave shown in Fig. 1 at different phases.  The 
theoretical horizontal velocity profiles have been provided by 
Huang and Dong (2001).  The numerical grids used in the 
computational domain are x = 0.1 and y = 0.05 except for 
near the wall region, where 20 and 10 grids are uniformly 
distributed within 0  y* < 5 and 5  y*  10, respectively, 

where y* is defined as y, 0.5 / .Kc    Notably, accord-

ing to Figs. 1 and 2, the numerical wave profile and velocity 
field of the flow generated in the computational domain are 
accurate. 
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Fig. 3. Schematic diagram of the experimental setup for measuring the 

evolution of solitary wave over a shelf (Yasuda et al., 1997 ). 
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wave profiles recorded by the wave gauges P2 to P4, lines (—;  
- - -; …): numerical results; Δx = Δy = 0.0061. 

 
 
To demonstrate the accuracy of proposed numerical model 

in simulating breaking solitary waves on a shelf, the numerical 
results of the wave profile, from the incident stage to the be-
ginning of wave overturning, are compared with the experi-
mental data.  Fig. 3 schematically depicts the experimental 
setup of Yasuda et al. (1997).  The still water depth, ho, is set to 
0.31 m; the height of the shelf is 0.263 m; and the incident 
solitary wave height, Hi, is 0.1314 m.  Four wave gauges (P1 to 
P4) are distributed near the leading edge of the shelf to record 
the temporal water surface elevation.  To reduce the compu-
tational time, the numerical wave flume is set up in a finite 
domain of 10.5 m long and 0.6 m high using 3500  200 uni-
form computation cells.  The upstream boundary condition is 
applied to generate the desired incident solitary wave coinci-
dent with that recorded at station P1 in the experiments, i.e. 
with a wave height of 0.4 ho.  The shelf is installed at 8.5 m 
(about 4 times that of the effective wave length) away from the 
wave paddle, and the wave probes are arranged at the same 
relative locations to the shelf as in Yasuda’s experiments. 

Fig. 4 compares the numerical and experimental water 
surface elevations at wave gauges P2 to P4.  The time axis (t ') 
in Fig. 4 is simply chosen to reflect the time lag when the wave 
crest reaches various wave gauges.  The numerical results are 
computed with x = y = 0.0061.  The wave gauge P4 is placed 
in the vicinity of the breaking point (B.P.).  The lines in Fig. 4 
represent the numerical results and the symbols denote the 
experimental data.  This comparison reveals that evolution of  
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Fig. 5. Comparisons of the computed water surface profiles with the 

experimental records at the breaking point (left curve) and at the 
jet fall initiation (right curve) for various grid cell sizes; (a) Δx = 
Δy = 0.0101, (b) Δx = Δy = 0.0061, (c) Δx = Δy = 0.0043; solid line: 
numerical results, symbols: experimental data. 

 
 

the wave profiles from the initial incident stage to the begin-
ning of overturning is properly simulated using this model.  
This comparison indicates also that before wave overturns, the 
grid cell size x = y = 0.0061 is sufficiently fine to provide an 
accurate resolution of the wave profiles. 

Fig. 5 further compares the wave profiles after wave breaks 
for various grid cell sizes.  With x = y = 0.0101 in Fig. 5(a), 
the grid cell sizes decrease to x = y = 0.0061 in Fig. 5(b), 
and to x = y = 0.0043 in Fig. 5(c).  The time step t varies 
with the grid cell sizes to make the Courant number, defined as 
max(Ut /x, Vt /y), less than one.  By using a high-speed 
video camera, Yasuda et al. (1997) obtained the spatial wave 
profile around the ejected jet.  Two wave profiles were pro-
vided with the earlier one (i.e. the left curve) being that at the 
breaking point, while the latter one (i.e. the right curve) was at 
the beginning of the jet fall.  However, Yasuda et al. (1997) did 
not provide the time duration between these two profiles.  The 
numerical wave profile at the breaking point shown in Fig. 5 is 
identical to the experimental one, as verified in Fig. 4.  
Moreover, the latter one is obtained by simply choosing the 
one closest to the experimental data at any time.  Fig. 5 indi-
cates that with a finer grid cell size, the overturning wave  
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Fig. 6. Evolution of a breaking solitary wave on a shelf at different times, 

where ho = 0.31 m, Hi /ho = 0.424, R/ho = 0.848.  
 

profile can be properly simulated by the proposed numerical 
model.  Additionally, the grid cell sizes in Fig. 5(b) are fine 
enough to capture the experimental wave profiles.  Hence, in 
the latter computation, the grid cell sizes are set to x = y = 
0.0061. 

VI. SURFACE EVOLUTION AND KINEMATIC 
PROPERTIES OF FLOWS 

Fig. 6 presents the evolution of the breaking solitary wave 
on the continental shelf from the initial incident wave at t = 
0.70 s, to t = 2.01 s, when the second splash-up occurs.  The 
incident wave conditions and geometry of the shelf in Fig. 6 
are the same as those presented in Fig. 3.  Fig. 6 indicates that 
when the solitary wave propagates over the shelf, the leading 
part of the wave rises due to the shoaling effect.  For shallow 
water waves, the phase speed of the wave increases with the 
water depth.  Hence, the bulged portion of the wave propa-
gates at a faster speed than the front part of the wave.  This 
propagation causes the wave to steepen towards the front, at  
t = 1.73 s, eventually toppling over at t = 1.84 s.  This toppling 
effect gives rise to the typical picture of a plunging breaker.  
Owing to gravity, a series of splash-up occurs subsequently.  
Fig. 6 clearly reveals the reattachment and splash-up process 
of the overturning waves at t = 1.89 s, 1.95 s, and 2.01 s.  
According to Fig. 6, the proposed numerical model can elu-
cidate complex phenomena involved in the wave breaking, 
such as the overturning of wave, reattachments, and splash-ups. 
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Fig. 7. Contour maps of velocities induced by a breaking solitary wave 

on a shelf at different times, in which t = (a) 1.62 sec, (b) 1.73 sec (c) 
1.84 sec, (d) 1.89 sec, (e) 1.95 sec, and (f) 2.01 sec. 

Figs. 7(a) to (f) show the contour maps of velocity fields 
induced by the breaking solitary wave on a shelf at different 
times to examine the kinematic properties of the overturning 
waves.  In Fig. 7 the abscissas are not fixed, but are chosen to 
focus on the region near the front of the waves.  Notably, Fig. 7 
reveals that as the front of the wave evolved into a vertical 
shape at t = 1.73 s, Fig. 7(b), the maximum flow velocity 
occurs at the top of the front with a speed of 0.93 Co (Co = 

ogh ).  From t = 1.73 s to 1.84 s, water at the wave crest 

moves onshore gradually faster, and eventually exceeds the 
speed of waveform, resulting in the curling of the crest and the 
eventual breaking of waves.  When the wave overturns and 
reattaches the free surface at t = 1.84 s (Fig. 7(c)), gravity 
seems to accelerate the ejected jet; in addition, the maximum 
flow velocity increases to 1.30 Co at the leading edge of the jet.  
The ejected water jet then bumps against the undisturbed 
water surface, causing a water splash into the air, as shown in 
Fig. 7(d).  Meanwhile, a void forms as the jet bumps into the 
water.  The splash-up seems to receive energy from the main 
flow, explaining why the maximum velocity occurs at the 
region near the reattachment point with a high speed of 1.80 Co, 
which is very close to the value of 1.68 observed by Chang and 
Liu (1997).  Figs. 7(e) and 7(f) show the successive recurrence 
of the reattachment and splash-up.  The fluid with the maxi-
mum velocity of 1.8 Co in Fig. 7(d) decreases to 1.56 Co in Fig. 
7(e) and to 1.53 Co in Fig. 7(f). 

VII. ENERGY BALANCE IN A BREAKING 
SOLITARY WAVE ON A SHELF 

The last section described the evolution of breaking solitary 
wave and its kinematic properties on a shelf.  The physical 
phenomena involved in the breaking waves (e.g., reattach-
ments, splash-ups, and air entrainment) cause energy dissipa-
tion, which is an important effect of the wave breaking and 
warrants further study. 

Total energy of the water waves ( )totalE  can be divided into 
the potential energy ( )potE  and the kinetic energy ( )kinE .  
The wave-induced potential energy can be determined as 
follows. 

 
0

( )
o

x y x

hpotE H g ydy dx g ydy dx  
  

       (19) 

where x and y denote the interval of integration in the x and 
y axes, respectively, and ho represents the still water depth.  
The kinetic energy is 

 2 21
( ) ( )

2x y

kinE H U V dy dx 
 

     (20) 

where U and V refer to the horizontal and vertical time- 
averaged mean velocity components, respectively, and H() 
denotes the smoothed Heaviside function and is defined as 
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Fig. 8. Time evolutions of potential energy (), kinetic energy (), and 

total energy () within the whole computational domain as a 
solitary wave propagates over a shelf under the same conditions 
as those in Fig. 3. 
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 (21) 

Section III defines the level set function  and the thickness 
.  The reflection coefficient (KR) and transmission coefficient 
(KT) are defined as 

 /offshore
R iK E E  (22) 

 /onshore
T iK E E  (23) 

where Ei denotes the incident wave energy, and offshoreE  and 
onshoreE  are the energy of the wave propagating in the offshore 

and onshore directions, respectively.  The coefficient of the 
energy dissipation, KD, is then determined as follows. 

 1D R TK K K    (24) 

Fig. 8 presents the time evolution of the potential energy, 
kinetic energy and total energy within the whole computa-
tional domain as a solitary wave propagates over a shelf under 
the same conditions as those in Fig. 6.  Notably, Fig. 8 reveals 
that at the initial state, the kinetic energy of the wave is slightly 
larger than the potential energy.  However, as the wave propa-
gates onto the shelf, the potential energy of the wave increases 
gradually and reaches the maximum value at t = 1.42 s, as 
denoted by the first vertical dashed line.  Thereafter, the po-
tential energy decreases continuously.  The decrease in the 
potential energy results in an increase in the kinetic energy.  
The total energy decreases gradually due to the energy dissi-
pation caused by the interaction of the wave and the shelf.  
The second vertical dashed line in Fig. 8 denotes the time 
when the wave begins to break at t = 1.73 s.  After the wave 
breaks, the potential energy decreases continuously, while the  
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Fig. 9. Temporal variation of time rate of change of potential energy (), 

kinetic energy (), and total energy () as a solitary wave propa-
gates over a shelf.  The unit in the vertical axis is Joule/(s m).  The 
vertical dashed lines indicate some of the times of wave profiles 
shown in Fig. 6, i.e. t = 0.70 sec, 1.28 sec, 1.62 sec, 1.84 sec, 1.89 sec, 
and 1.95 sec. 

 
 

kinetic energy increases continuously due to the flow motions 
induced by reattachments, splash-ups, and void entrainments.  
However, at the latter stage, e.g., t > 2.0 s, when two reat-
tachments and two splash-ups have occurred, all three energies 
decrease continuously over time. 

As is widely recognized, the wave breaking is accompanied 
by a sudden loss of energy, although no experimental data 
have demonstrated this assumption yet.  In Fig. 6, the wave 
breaking procedure begins when t > 1.73 s.  According to Fig. 
8, no sudden loss of wave energy is associated with the wave 
breaking and, in most of the procedure of wave breaking, the 
kinetic energy of the fluid keeps increasing, while the potential 
energy keeps decreasing. 

To further examine the energy variation during the wave 
breaking, Fig. 9 displays the temporal variation of the time rate 
of change of the potential energy, kinetic energy, and total 
energy as a solitary wave propagates over a shelf.  The unit in 
the vertical axes of Fig. 9 is /( ).Joule s m   The vertical dashed 
lines in Fig. 9 indicate some of the times of the wave profiles 
shown in Fig. 6, i.e., t = 0.70 s, 1.28 s, 1.62 s, 1.84 s, 1.89 s, 
and 1.95 s.  Notably, before the wave propagates onto the shelf 
(t < 0.9 s), the time rate of change of the three energies remains 
unchanged with values very close to zero.  The first maximum 
value of the time rate of change of the potential energy appears 
at t = 1.28 s, corresponding to when the leading part of the 
wave rises due to the shoaling effect.  The first maximum 
value of the time rate of change of the kinetic energy appears 
at t = 1.62 s. 

Notably, after the wave overturns and reattaches the free 
surface at t = 1.84 s, although Fig. 8 reveals no abrupt varia-
tions in the time evolutions of the potential, kinetic, and total 
energy, Fig. 9 indicates that the time rate of change in the 
potential energy, kinetic energy and total energy significantly 
vary at some particular instance.  For instance, after the second 
reattachment, which occurs at t = 1.95 s, dEkin/dt increases 
abruptly and dE pot/dt decreases rapidly.  Immediately after  
the second splash-up, t = 2.01 s, both dEkin/dt and dEtotal/dt 
decline abruptly, while dEpot/dt increases rapidly.  Notably,  
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wave propagates over a shelf. 

 
 

the maximum negative value of dEtotal/dt appears at t = 2.03 s 
with a value of 29.03 /( ),Joule s m  after the second splash- 
up has occurred. 

As the solitary wave propagates over the shelf, total energy 
of the incident wave is divided into the transmitted energy and 
the reflected energy.  To clarify the energy loss during wave 
breaking, total energy is divided into two parts: the energy of 
the reflected wave (Eoffshore) contained in the region from the 
wave paddle to the leading edge of the shelf (x  17.7 ho), and 
the energy of the transmitted wave (Eonshore) above the shelf 
from the leading edge to the downstream of the wave tank (x  
24.0 ho). 

Fig. 10 presents the time evolution of the reflected energy 
(Eoffshore/Ei) and the transmitted energy (Eonshore/Ei).  Initially, 
100% of the total energy was evaluated in front of the shelf.  
As the wave propagates over the shelf, approximately 14.8% 
of the incident wave energy remains in front of the shelf at  
t = 2.2 s.  Thus, according to Eq. (22), the reflection coefficient 
KR is 0.148.  Similarly, the transmitted coefficient KT is 0.725.  
Upon completion of the computation, around 87.3% of the 
incident wave energy remains in the computational domain.  
The energy dissipation involved in the whole process is then 
12.7%. 

Fig. 8 reveals that before wave breaking (t < 1.73 s), the 
dissipated energy is about 5%; while at the end of computation 
(t = 2.2 s), the totally dissipated energy increases to 12.7%.  
These values indicate that main part of energy dissipation 
occurs in the short period after wave breaks. 

VIII. CONCLUSION 

This work develops a numerical model to solve the un-
steady two-dimensional Reynolds Averaged Navier-Stokes 
(RANS) equations and the k   turbulence equations for simu-
lating the evolution of breaking solitary waves above a shelf, 
or a step.  The particle level set method is adopted to capture 
the evolving free surface, beginning from the steepening of the 
wave profile to the wave breaking and the successive reat-
tachments and splash-ups.  Based on the numerical results, we 
conclude the following. 

1. Numerical results indicate that the developed numerical 
model can reveal the complex phenomena involved in a 
breaking solitary wave over a shelf, such as the overturning 
of wave, reattachments of the ejected jet, and splash-ups. 

2. The numerical results of wave profiles near the breaking 
point and at the stage with an ejected jet have been shown to 
be identical to the experimental ones. 

3. In the breaking solitary wave, the maximum local fluid 
velocity appears in the period between the first splash-up 
and the second re-attachment.  The contour maps of flow 
velocities near the breaker front indicate that the maximum 

local fluid velocity is 1.8 ogh . 

4. After the wave breaks, the potential energy first decreases 
continuously and the kinetic energy increases continuously; 
while at the latter stage, the potential energy seems to ap-
proach a constant value, but the kinetic energy decreases 
continuously in the same manner as that of the total energy. 

5. Numerical results indicate that in the plunging breaking 
wave, both the reattachment and the splash-up are normally 
accompanied by an abrupt change in the time rate of change 
of kinetic energy (dEkin/dt) and the time rate of change of 
potential energy (dEpot/dt). 
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