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ABSTRACT 

This paper considers the stabilization of discrete-time model- 
based networked control systems under a sequential multiple 
packet transmission policy.  The dynamics of considered model- 
based sequential multiple packet transmission NCSs are 
modeled as switched control systems.  A sufficient condition 
for the existence of stabilizing controllers is derived by the 
switched Lyapunov function approach.  Stabilizing networked 
feedback controllers can be obtained by solving linear matrix 
inequalities and equalities.  A numerical example is proposed 
for verification. 

I. INTRODUCTION 

The stability analysis and control synthesis problems of 
networked control systems (NCSs) have attracted much at-
tention in the last decades.  The information (measured data or 
control signals) in an NCS is exchanged among distributed 
control system components (sensors, controllers, and actuators) 
via a real-time network channel.  Comparing to the traditional 
point-to-point wiring feedback control systems, NCSs have 
the advantages of reduced wiring, low cost, simple installation, 
easy maintenance, and high reliability. 

In an NCS, since data are exchanged via a network channel, 
some network-induced problems, such as uncertain trans- 
mission delay, packet dropout, finite data transmission rate, 
quantization error, and multiple packet transmission, etc., can 
degrade control performances.  They must be taken into con-
sideration in designing networked feedback control laws.  In 
the literature, the research on NCSs focuses on dealing with 
finite communication bandwidth (see e.g., Hristu and Mor-

gansen, 1999; Wong and Brockett, 1999; Tatikonda and Mitter, 
2004; Zhang et al., 2011; Al-Areqi et al., 2015), network 
scheduling (see e.g., Orihuela, 2014), network-induced delay 
(see e.g., Zhang et al., 2001; Walsh et al., 2002; Carnevale et 
al., 2007; Gao and Chen, 2007; Ma et al., 2007; Li et al., 2014), 
and packets dropout (see e.g., Wu and Chen, 2007; Zhang and 
Yu, 2007; Chiuso and Schenato, 2011; Li et al., 2014; Wang 
and Han, 2015), etc.  For a large NCS, the sensors and actua-
tors may distribute at different places and therefore, the meas-
ured data (or the control signal) cannot be transmitted (via 
network channel) in a single packet.  In this case, the effect of 
multiple packet transmission must be considered in synthe-
sizing controllers.  However, in the literature only a few results 
have been proposed on the design of feedback laws for NCSs 
under multiple packet transmission policies (see e.g., Hu and 
Yan, 2008; Wu et al., 2010, 2011; Wu and Yang, 2013; Li et al., 
2014).  In (Hu and Yan, 2008), an NCS under multiple packet 
transmission policy and possible packet dropout is modeled as 
a jumped system.  Stability analysis and controller synthesis 
problems are investigated.  In (Li et al., 2014), a sliding mode 
predictive control approach was proposed for NCSs under 
multiple packet transmission.  In (Wu et al., 2011), a separa-
tion principle for NCSs with multiple packet transmission is 
proposed.  In (Wu et al., 2010), robust H control for uncertain 
NCSs under multiple packet transmission was considered.  In 
(Wu and Yang, 2013), for NCSs under a new multiple packet 
sequential transmission policy, both state feedback and output 
feedback stabilization problems were discussed.  Based on the 
multiple Lyapunov function approach, stabilizing networked 
feedback laws were obtained by solving linear matrix inequali-
ties (LMIs).  In this study, system uncertainties have not been 
considered.  By the setting in (Wu and Yang, 2013), extending 
the approach of (Wu and Yang, 2013) to overcome parameter 
uncertainties will in general lead to conservative results. 

In this paper, motivated by the framework of model-based 
NCSs (Montestruque and Antsaklis, 2003, 2004, 2007; Garcia 
and Antsaklis, 2013a, 2013b; Mehta et al., 2013; Song et al., 
2013), we consider the controller synthesis problem for un-
certain NCSs under sequential multiple packet transmission.  
The concept of model-based NCSs was firstly introduced in 
(Montestruque and Antsaklis, 2003).  It has been shown that 

Paper submitted 10/11/13; revised 06/09/15; accepted 06/25/15.  Author for 
correspondence: Jenq-Lang Wu (e-mail: wujl@mail.ntou.edu.tw). 
Department of Electrical Engineering, National Taiwan Ocean University, 
Keelung, Taiwan, R.O.C. 



 S.-H. Yang and J.-L. Wu: Multiple Packet Transmission Model-Based NCSs 775 

 

model-based NCSs can achieve stability under extremely low 
network usage, and are robust with respect to system uncer-
tainties.  In this paper, we adopt the model-based framework 
for designing controllers to robustly stabilize discrete-time 
uncertain NCSs under a multiple packet sequential transmis-
sion policy.  This framework is very different from that dis-
cussed in (Wu and Yang, 2013).  Moreover, unlike classical 
model-based NCSs (all states of the model are updated simul-
taneously), since the measured data (from sensors) are trans-
mitted sequentially, the states of the approximation model are 
updated sequentially but not simultaneously.  In this paper, 
sufficient conditions for the existence of stabilizing controllers 
are derived.  And, a stabilizing feedback law can be obtained 
by solving linear matrix inequalities and equalities.  We do not 
use the state augmentation technique as (Wu and Yang, 2013) 
and therefore the dimensions of matrix inequalities and equali-
ties to be solved are much less than those in (Wu and Yang, 
2013).  For simplification, here we consider the case that only 
the measured data from sensors to controller are transmitted 
via network.  The control signal generated by the controller is 
directly fed to the actuators without delay.  Moreover, we 
focus on dealing with the effect of multiple-packet transmis-
sion and therefore we assume that the data is transmitted ide-
ally (no delay, no packet dropout, and no quantization error, et 
al.) as assumed in (Wu and Yang, 2013).  For NCSs under 
some particular protocols (e.g., CAN bus), this assumption can 
be reasonable for some applications. 

II. MAIN RESULTS 

Consider a model-based NCS equivalently shown as Fig. 1.  
The dynamic of the plant is described by 

 ( 1) ( ) ( )x k Ax k Bu k    (1) 

where ( ) nx k   is the system state, ( ) mu k   is the control 
input, and A  and B  are constant matrices with appropriate 
dimensions.  Suppose that the parameters in matrices A and B 
are not known exactly.  An approximation model of the plant  
is established at the controller node: 

 ˆ ˆˆ ˆ( 1) ( ) ( )x k Ax k Bu k    (2) 

where ˆ( ) nx k   is the model state, and Â  and B̂  are known 

constant matrices with appropriate dimensions.  Suppose that 
ˆA A A    with A = E and ˆB B B    with B = H, 

where E and H are known constant matrices and uncertain 
parameters 1   and 1  . 

In this paper we consider the case that the sensors distribute 
at different places and therefore the measured states cannot be 
transmitted to the controller in a single packet.  They must be 
transmitted sequentially at different times via the network 
channel.  In Fig. 1, this mechanism is equivalently described  

Plant

Model

k = nq + n k = nq + 1
xn(k)

x1(k)

Controller

xi(k), x̂j(k)

…
…

s1sn

 
Fig. 1.  A configuration of model-based NCSs. 

 
 

as switches s1, s2, …, sn, which are sequentially closed (and 
opened).  Under the scheduling network protocol, the meas-
ured states can be transmitted periodically and therefore the 
states of the approximation model are updated periodically. 

Without loss of generality, at k = nq + i, i  {1, 2, …, n} and 
q = 0, 1, 2, …, let the measured i-th state xi(nq + i) be trans-
mitted to the approximation model and update the model state 
ˆ ( )ix nq i .  That is, 

 ˆ ( ) ( )i ix nq i x nq i   . (3) 

The other states of the approximation model are generated 
by the dynamic equation (2).  Therefore, at k = nq + i, the 
information that can be utilized for generating control signal 
are 1ˆ ( ),x k  2ˆ ( ),x k  …, ˆ ( ) ( ),i ix k x k  1ˆ ( ),ix k  …, and ˆ ( ).nx k  

The objective of this correspondence is to design a periodic 
state feedback control law 

 , ,ˆ( ) ( ) ( ),j i j i i i
j i

u k F x k F x k k nq i


    , (4) 

to exponentially stabilize the system (1). 
Let 

 1, ,  ,  i i i i n iF F F F     , 

and define 

  1, , 1, 0, 1, 1iT diag   , 

where 0 is the (i,i) element.  The feedback law (4) can be 
equivalently expressed as 

 ˆ( ) ( ) ( ) ( ), .i i i iu k F I T x k FT x k k nq i      

With the updating law (3), by (4) we can see that, at k = nq + 
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i, i  {1, …, n} and q = 0, 1, …, the dynamics of the 
closed-loop system can be described as 

  ˆ( 1) ( ) ( ) ( ) ( )i i ix k Ax k BF I T x k T x k      (5) 

   ˆ ˆˆ ˆ ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( ) .i i i i ix k A I T x k T x k BF I T x k T x k        

  (6) 

That is, 

   ˆ( 1) ( ) ( ) ( )i i i ix k A BF I T x k BFT x k      

ˆ ˆˆ ˆˆ ˆ( 1) ( )( ) ( ) ( ) ( ),i i i ix k A BF I T x k A BF T x k       

 , 1, ,k nq i i n    , and q = 0, 1, …. 

Define the state error as:  

 ˆ( ) ( ) ( )e k x k x k  . 

The updating operation can be equivalently expressed as 

  ˆ( ) ( ) ( )ie qn i T x qn i x qn i     . (7) 

That is, 

 ( ) 0ie nq i  . 

By the definition of e(), we have (at k = nq + i) 

 ( 1) ( ) ( ) ( )i i ix k A BF x k BFT e k     (8) 

ˆ ˆˆ ˆ( 1) ( ( ) ) ( ) ( ( ) ) ( )i i ie k A A B B F x k A B B F T e k         

ˆ           ( ) ( ) ( ) ( ).i i iA BF x k A BF T e k        (9) 

Let 

 
( )

( )
( )

x k
x k

e k

 
  
 

. 

The dynamics of the closed-loop system can be described 
as (at k = nq + i) 

( 1) ( )
ˆ( )

i i i

i i i

A BF BFT
x k x k

A BF A BF T

  
   

       
 

0
            ( )

ˆ 0
i i

ii i

A BF BF I
x k

TA BF A BF

    
    

         
 

ˆ 0 0
            

ˆ 00 i

A A

AAT

             
 

ˆ
           ( )

0
i i

BB
F I T x k

B

                       
 

             ( ),i i iA A B B F G x k       (10) 

where  

 
ˆ 0

ˆ0
i

i

A
A

AT

 
  
  

, 

 
0

0

A
A E

A


 
    

 with 
0

0

E
E

E

 
  
 

, 

 
ˆ

0

B
B

 
  
  

, 

 
B

B H
B


 

    
 with 

H
H

H

 
  
 

, 

 i iG I T    . 

Let 

  ci i i iA A A F GB B      . 

The closed-loop system (10) can be expressed as 

 ( 1) ( ),  .cix k A x k k qn i     (11) 

In the sequel derivation, we will need the following lemma. 
 

Lemma 1 (Wu et al., 2010) 
Given matrices R = RT > 0, Q = QT, H, and E of appropriate 

dimensions, then 

 0T T TQ HFE E F H    

for all F satisfying FTF  R, if and only if there exists some  
 > 0 such that 

 2 2 0T TQ HH E RE     . 

Now we are ready to present the main result. 
 

Theorem 2 
Consider system (1).  There exists a feedback law as (4) such 

that the closed-loop system (11) is exponentially stable with 
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decay rate 0 <  < 1, if there exist positive definite matrices 
2 2 ,n n

iS   i = 1, …, n, matrices n n
iL   and 1 n

iN  ,  
i = 1, …, n, and scalars i > 0 and i > 0, i = 1, …, n, satisfying 

1

* * *

* *
0

0 *

0 0

i i

i i i i i i i

i i

i i i

S S

A S BN G S I I

ES I

HN G I



 







  
 
    
  
 
 
  

, 

i = 1, 2, …, n-1  (12) 

1

* * *

* *
0

0 *

0 0

n n

n n n n n n

n n

n n n

S S

A S BN G S I I

ES I

HN G I



 





  
 
    
  
 
 
  

, (13) 

and  

 i i i iL G G S , i = 1, 2, …, n. (14) 

In this case, the feedback law (4) with  

 1
i i iF N L , i = 1, 2, …, n, (15) 

is such that the closed-loop system (11) is exponentially stable 
with decay rate 1  . 
 
Proof:  

Let  

 1
i iP S  , i = 1, …, n, 

and 

 ( ) T
i iV x x P x , i = 1, …, n. 

Consider the switched Lyapunov function 

 ( )( ( )) ( ( )), ( ) if .kV x k V x k k i k nq i      

If the matrix inequalities and equalities (12)-(14) are fea-
sible, by noting (15), we have, for all i = 1, …, n  1, 

1

*i i

i i i i i i i i i i

S S

A S AS BF G S BF G S S





  
 
       

 

1

* 0 * 0 *

0 0

i i

i i i i i i i i i i

S S

A S BF G S S AS BF G S





      
       
             

 

1

( )T
i i i i i i

i i i i i

S S A S BN G

A S BN G S





   
 
   

 

 
0

0 0
0

T
i

i

S E
ES I

I
 

  
             

 

 
0

0 0
0

T T T
i i i

i i i

S G F H
HFG S I

I
 

  
             

 

1

( )T
i i i i i i

i i i i i

S S A S BN G

A S BN G S





   
 
   

 

 
0 1

0 0
0

T
i

i i
i

S E
I ES

I




  
           

 

 
0 1

0 0
0

T T T
i i i

i i i i
i

S G F H
I HFG S

I




  
           

. 

By Schur complement and noting (12), we have 

1

*
0

i i

i i i i i i i i i i

S S

A S AS BF G S BF G S S





  
 

       
, 

1, ..., 1i n    (16) 

Pre- and post-multiplying (16) by  

 








10

0

i

i

P

P
 

and by Schur complement, we can get 

 1 0, 1, , 1T
ci i ci i iA P A P P i n      . 

Similarly, it can be shown that 

 1 0T
cn cn n nA P A P P   . 

That is, 0)(  kx , 

( ) ( 1) ( )( ( )) ( ( 1)) ( ( ))k k kV x k V x k V x k       

( ) ( ( )).kV x k   

This implies that the closed-loop system is exponentially 
stable with decay rate 1   and completes the proof. ■ 
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III. A NUMERICAL EXAMPLE 

Consider the control system 

 ( 1) ( ) ( )x k Ax k Bu k    (17) 

where  

0.47 0.445 0.417 -0.699 -0.255 0.175

0.196 -0.422 0.874 -0.799 0.997 -1.209

0.789 0.308 0.101 -1.221 -0.537 -0.8

A 
   
       
      

 

 

0.251 -0.442

-0.958 0.926

-0.304 -0.813

B 
   
       
      

 

with 1   and 1.    It can be seen that the considered 
uncertainties are large. 

The approximation model of the plant established at the 
controller node is: 

 ˆ ˆˆ ˆ( 1) ( ) ( )x k Ax k Bu k    (18) 

where 

 

0.47 0.445 0.417
ˆ 0.196 -0.422 0.874

0.789 0.308 0.101

A

 
   
  

, 

0.251
ˆ -0.958

-0.304

B

 
   
  

. 

It is easy to verify that the considered system (17) is open- 
loop unstable.  The objective is to find a networked feedback 
law (4) with n = 3 such that the closed-loop system is expo-
nentially stable.  Given  = 0.2, by solving the matrix ine-
qualities and equalities (12)-(14), we have the following so-
lutions (note that 1

i iP S  ) 

 1

430.27 31.83 108.96 0 31.83 108.96

31.83 245.39 -48.85 0 -22.42 -11.83

108.96 -48.85 288.77 0 -11.83 -39.8

0 0 0 1.52 0 0

31.83 -22.42 -11.83 0 245.39 -48.85

108.96 -11.83 -39.8 0 -48.85 288.77

P

 
 
 
 

  
 
 
 
  

, 

 2

329.17 80.26 152.28 -22.85 0 -6.26

80.26 308.15 -43.15 80.26 0 -43.15

152.28 -43.15 293.48 -6.26 0 -35.35

-22.85 80.26 -6.26 329.17 0 152.28

0 0 0 0 1.52 0

-6.26 -43.15 -35.35 152.28 0 293.48

P

 
 
 
 

  
 
 
 
  

, 

 3

350.22 66.61 113.86 -31.23 21.79 0

66.61 224.48 -40.09 21.79 -7.29 0

113.86 -40.09 371.52 113.86 -40.09 0

-31.23 21.79 113.86 350.22 66.61 0

21.79 -7.29 -40.09 66.61 224.48 0

0 0 0 0 0 1.52

P

 
 
 
 
 
 
 
 
 
 
 
 

, 

 -2
1

0.33 -0.09 -0.17

=10 -0.19 0.53 0.21

-0.33 0.21 0.6

L

 
 
 
 
  

,  

 -2
2

0.67 -0.48 -0.46

=10  -0.24 0.51 0.22

-0.46 0.44 0.72

L

 
 
 
 
  

, 

 -2
3

0.53 -0.29 -0.39

=10  -0.29 0.64 0.31

-0.19 0.16 0.42

L

 
 
 
 
  

. 

  -3
1 =10 0.09 -0.34 0.88N  , 

  -3
2 =10 -0.09 -0.29 0.71N  , 

  -3
3 =10 0.02 -0.45 0.79N  . 

It can be verified that P1 > 0, P2 > 0 and P3 > 0.  By (15), the 
controller parameters are 

  1 0.212 -0.125 0.249F  , 

  2 0.049 -0.166 0.181F  , 

  3 0.056 -0.128 0.332F  . 

With these parameters, the feedback law (4) can exponen-
tially stabilize the system (17).  Under initial states x(0) = 

 1 1 1
T

 and  ˆ(0) 2 1 2
T

x   , Fig. 2, Fig. 3, and Fig. 4, 

are the responses of the closed-loop system with five pairs  
of uncertain parameters (, )  = (0.6, 0.7), (, ) = (0.2, 0.8), 
(, ) = (0.9, 0.4), (, ) = (0.5, 0.5), and (, ) = (0.1, 0.87).  
It can be seen that in all cases the state trajectories converge  
to the origin. 
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Fig. 2.  The responses of x(k).  
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Fig. 3.  The responses of ˆ ( )x k . 
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Fig. 4.  The control inputs u(k). 

IV. CONCLUSIONS 

In this paper, a model-based stabilizing feedback law is 
presented for uncertain NCSs under a sequential multiple- 
packet transmission policy.  The dynamics of the resultant 
closed-loop NCSs can be modeled as periodic switched con-
trol systems.  Stabilizing feedback laws can be obtained by 
solving linear matrix inequalities and equalities.  The simula-
tion verifies the theoretical results. 
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