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ABSTRACT 

Peak over threshold (POT) method is frequently used in the 
modeling of extreme values in offshore engineering.  In this 
paper, the POT method is examined in terms of epistemic un-
certainties in practical usage.  Real observed ocean data with 
specific considerations to extreme events are analyzed.  In 
particular, the procedures including the use of de-clustering 
and threshold in POT method are addressed.  A key element in 
the application of probability and statistical theories is the 
estimation of model parameters.  The performance of these 
estimation methods is tested in the context of epistemic un-
certainty.  This is done through a numerical simulation study 
for considering data samples having different tail behavior, 
sample size and noise conditions.  The annual maximum 
method and the rth largest order statistic method in establish-
ing the extreme value model are also included in the com-
parative study.  Main focus is put on the critical issues and 
uncertainties that might be resulted in the established extreme 
value models. 

I. INTRODUCTION 

Occurrences of offshore extreme events are the main reason 
for the failure of constructed marine facilities.  The prediction 
of ocean extreme values is, thus, an important component in 
the engineering design.  Here we focus on coastal and offshore 
structures in this context.  Many design codes or standards 
have specifications with regards to the design values which are 
consistent with the design life (long term), often extrapolated 

from short term data based on statistical concepts (DNV, 2012; 
ABS, 2013).  The most common and simple approach follows 
the annual maximum method.  The generalized extreme value 
distribution is fitted to the annual maximas (Gumbel, 1958).  
However, discarding data other than extremes within the year 
is not an efficient use of available information, especially in 
the case of scarce data.  The established model may incorrectly 
characterize the true extreme values.  Usually, the time dura-
tion of field data is limited to several decades which are con-
sidered short compared with the design life of structures.  
Consequently, many other techniques have been proposed to 
utilize more available data extensively, such as bootstrap 
method (Naess and Clausen, 2001), r largest order-statistics 
method (Guedes Soares and Scotto, 2004) and block maxima 
method (Muraleedharan et al., 2007). 

Among these, the peak over threshold (POT) method has 
attracted the most attention and has been widely applied in 
various applications (Smith, 2001; Jonathan and Ewans, 2013; 
Petrov et al., 2013).  The threshold approach is quite useful in 
treating and effectively utilizing time series data (Ferreira and 
Guedes Soares, 1998).  It is suited for dealing with realizations 
of a stochastic process which is approximately stationary or 
can be split into stationary parts (Kyselý et al., 2010).  How-
ever, when applying the POT method to model ocean envi-
ronment data, numerous factors which affect the accuracy of 
the results, such as the number of data available, the criteria 
used to identify extremes, the choice of threshold and serial 
dependency effects (Mackay et al., 2011).  These factors need 
particular treatments to arrive at a realistic model.  Quantify-
ing these uncertainties in the established extreme value model 
is quite necessary and critical for practical cases.  In practice, 
real collected data are used to establish the model in relation to 
a specific application, and, undoubtedly, uncertainties exist in 
various forms depending on how sophisticated the model or 
situation is (Zhang, 2015a).  For example, in offshore engi-
neering, how will these uncertainties propagate to the results, 
namely, establishing the return level value which is corre-
sponding to a specified level of reliability over the design life 
of offshore structure is of primary interest (Zhang, 2015b).  
This is of significant importance in deriving a consistent, 
acceptable and optimal design value which is leading to a safe 

Paper submitted 05/27/14; revised 05/22/15; accepted 06/04/15.  Author for 
correspondence: Yi Zhang (e-mail: zhang_yi87@163.com). 
1 School of Civil and Environmental Engineering, Nanyang Technological 
University, Singapore. 

2 College of Preschool Education, Zibo Normal College, China. 
3 Department of Civil and Environmental Engineering, National University 
of Singapore, Singapore. 



718 Journal of Marine Science and Technology, Vol. 23, No. 5 (2015 ) 

 

and economical structure. 
Many issues in POT based extreme value statistical appli-

cations have been addressed previously (Deidda and Puliga, 
2009; Ribereau et al., 2011).  These studies examined com-
prehensively the uncertainty conditions associated with POT.  
However, the characteristics inherent existed in the collected 
environmental data, such as serial correlations have not yet 
been part of these investigations so far.  These characteristics 
could influence the performance of POT method quite sig-
nificantly, e.g. through potentially inappropriate use of pa-
rameters and threshold.  The uncertainties regarding the pre-
diction of long term structural performance based on POT 
established extreme value model has been given in Cheng  
et al. (2003).  The practical influences of these uncertainties 
are also reviewed by Bitner-Gregersen et al. (2014).  Recent 
developments on the uncertainty quantifications regarding the 
POT based extreme value modeling with implementation of 
imprecise probability can be found in Zhang and Cao (2015). 

In this paper, the study is focusing on the analysis of various 
types of uncertainties that may be created in performing the 
POT method.  The motivation is to study the uncertainties 
related to an established extreme value model and target to 
have an improved understanding of the importance of the 
methods selected for the construction of an extreme value 
model.  Based on practical issues, this paper wishes to quantify 
the uncertainties in such a way that could provide enough 
guidelines and brief ideas to the design engineers when they 
are facing some design problems involving extreme values.  
The problems in terms of very practical issues would be dis-
cussed. 

Recognizing that, the paper content is organized as following.  
First, the basic concepts and relevant key elements of extreme 
value theories and POT method are reviewed.  A numerical 
simulation based study is then conducted to address the afore-
mentioned concerns about establishing extreme value model 
with regard to practices for modeling observed environmental 
data.  In particular, the quality and performance of different 
parameter estimators are discussed.  The issues of different 
types of uncertainties including tail behavior, noise and range of 
serial dependencies associated with the time series data are 
investigated.  The issues of extrapolation in the construction of  
a statistical model is discussed.  Finally, the obtained conclu-
sions from this study on the uncertainty quantification applied 
to POT are summarized.  The conclusion contributes to a base 
for establishing a robust extreme value model. 

II. REVIEW OF PREVIOUS THEORIES ON 
EXTREME VALUE MODEL 

The classical extreme value theory is based on the statistical 
behavior of block maximas (Gumbel, 1958) 

  1max , ...,n nM Y Y , (1) 

where {Y1, …, Yn} is a collection of independent random vari- 

ables following the same probability distribution.  When the 
size of the block approaches infinity, n → , the probability of 
Mn tends to a stable function asymptotically such that  

    Pr nM x G x   as  n  , (2) 

where G is a non-degenerate distribution function which can 
be expressed as the following Generalized Extreme Value 
(GEV) distribution 

  
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, (3) 

defined on the set {1 + ((z  )/)} > 0, where the location 
parameter , scale parameter  and shape parameter  sat- 
isfy  <  < ,  > 0 and  <  < .  Three types of tail 
behaviors, namely exponentially tail, heavy tail and light tail, 
can be defined corresponding to  = 0,  > 0 and  < 0 re-
spectively.  Based on extreme value theory, the most conven-
ient approach to establish an extreme value model is based  
on the bock maximas which models the maximum values 
within a defined time unit (a block).  For example, the annual 
maximum method, which has a block size of one year leading 
to the GEV distribution, is well-advocated by researchers 
(Winterstein et al., 2001; Zhang, 2013). 

III. PEAK-OVER-THRESHOLD (POT)  
METHOD 

Compared to the traditional approaches, the POT method 
can utilize more information from the data set.  Moreover, it 
does not require the time series data to be strictly stationary 
(Méndez et al., 2006; Jonathan and Ewans, 2011).  It is de-
veloped based on the statistical properties of data sample that 
is following the Pareto distribution. 

1. Pareto Family 

Consider a set of data extracted from an original set of  
data, which is following probability distribution F, such that 
their values are above a certain threshold value of u.  By fol-
lowing the asymptotic rules as given in Eq. (2), the cumulative 
probability function for the exceedances can be expressed as 
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where  is the shape parameter, u is the threshold and   is the 
scale parameter which has a relationship with other parameters 
in GEV model (e.g. ( )u      ).  Eq. (4) belongs to the 
family of Generalized Pareto Distributions (GPD).  The con- 
cept is similar to GEV in the modeling of maxima which  
includes the classification of the tail behaviors in types I, II  
or III. 2004. 

2. Poisson-GPD Model 

In practice, the peaks over a sufficient high threshold of 
time series data are usually rare and memoryless events.  As 
such, their occurrences can be appropriately modeled as a 
Poisson process.  For example, for a set of time series data if 
the number, N, of exceedances x1, …, xn over the threshold u  
in any one year has the inter arrival time following a Poisson 
distribution with mean .  The probability of the annual 
maxima less than X can be calculated as 
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 (5) 

where the exceeding values x1, …, xn over the threshold are 
assumed to follow the GPD model with the corresponding 
statistical parameters  and  as given in Eq. (4).  Thus the 
concepts of Poisson process and GPD models could be con-
voluted.  From a mathematical point of view, this is the basic 
property of extremes in a stationary process, which shows that 
under very general conditions, the magnitudes of the ex-
ceedances can be modeled in a Pareto distribution while the 
occurrence rates are approximately following the Poisson 
process. 

In POT method, the exceedances must be regarded as in-
dependent and identically distributed variables.  For some real 
events, the extremes may have some degree of clustering, 
leading to the issue of dependency between exceedances above 
the threshold.  To resolve this issue, declustering has been 
suggested, which is a process to filter the dependent ex-
ceedances to obtain a set of threshold excesses that are ap-
proximately independent (Coles, 2001).  One possible way to 
identify the peak values within each cluster is to choose a time 
span ∆t (e.g. 1 day, 3 days or 1 week), such that the extreme 
events separated by less than this period of time are considered 
as one “event”, and the highest value is identified as a peak 
value (Morton et al., 1997).  The selection of an appropriate 
time span will be discussed in the later part of this paper. 

3. Parameter Estimate Method 

The importance of parameter estimations in POT method 
cannot be underestimated as they may create errors in estimat- 
ing the high quantiles.  There are numerous parameter esti-
mation methods available in the literature, such as likelihood- 
moment estimations (Zhang and Stephens, 2007), least-squares 
error method (Moharran et al., 1993) as well as empirical 
percentile method (Castillo and Hadi, 1997).  However, most 
of these methods may not be easily implemented and some 
require intensive computations.  Some of the better known 
GPD model parameter estimation methods are briefly sum-
marized herein. 

1) Method of Moments 

The simplest method in estimating the statistical parameters 
in POT method could be the method of moments (MOM).  The 
basic idea is to equate the sample mean and variance to the 
theoretical population mean and variance.  Based on the sta-
tistical relationships within GPD model, the MOM estimates 
are given by 

 
2 2

2 2

1 1
1 , 1

2 2

x x
x

s s
 

   
      

   
, (6) 

where x  and 2s  stand for the sample mean and variance.  
However, the application of MOM requires a limiting value in 
the shape parameter.  For example, a heavy tail GPD model 
may not have an estimate in the moment (the estimate of mean 
will be infinity for shape parameter   larger than 1). 

2) Probability Weighted Moments Method 

Based on a similar idea of the MOM, the probability 
weighted moments (PWM) method utilizes the sample PWM 
in estimating the parameters in the GPD model.  The PWM is 
originally defined as 

      , , 1
q rp

p q rM E x F x F x    
, (7) 

where the p, q and r are determined coefficients.  By linking 
with the Pareto distribution, the PWMs can be expressed in 
terms of the model parameters as 

     
1 ,

1 1

s

s E x F x
s s




        
 

1, 0, 1, 2, ...for s    (8) 

By using the first two PWMs, the GPD model parameters 
can be easily estimated as 

 0

0 1

2
2




 
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
     and      0 1

0 1

2

2

 


 
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
, (9) 

where 0 and 1 are estimated from Eq. (8).  The s value can 
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be calculated from the sample data by 

  : :
1

1
1

n
s

s i n i n
i

x p
n




  ,  (10) 

where xi:n is the ith smallest value in n sample data, pi:n is the 
plotting position which is a general approximation to the true 
value of 1-F.  An unbiased estimate is pi:n = (i-0.5)/n (usually 
we call it probability weighted moments unbiased (PWMU) 
method), while for other cases, various expressions are avail-
able.  For example, a biased estimate of pi:n = (i-0.35)/n is 
given in Mackay et al. (2011) (usually we call it probability 
weighted moments biased (PWMB) method). 

3) Goodness-of-Fit Method 

Other than utilizing the statistical properties of GPD model 
in estimating the parameter values, the goodness-of-fit method 
estimates the statistical parameters in the most obvious way, 
from a plot of the data.  The result of a fitted parametric model 
should give the least sum of squares and must be visually 
compared against the empirical data plot, for example, quan-
tile-quantile (QQ) plot.  In the model test statistics, the null 
hypothesis is Ho: F(x) = Fo(x) where F is the empirical CDF 
and Fo is the distribution being tested.  Two of these well 
known statistics are 

 
Kolmogoriv-Smirnov (KS) statistic: 

   
1 1

1
max max ,maxn o i o i

i n i n

i i
D F x F x

n n   
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    

. (11) 

Anderson-Darling (AD) statistic: 

     2
1

1

2 1
log log 1

n

n o i o n i
i

i
A F x F x n

n  



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The KS test measures the maximum discrepancy between 
the theoretical model and the empirical data whereas the AD 
test places more weight or discriminating power on the tails of 
the distribution.  Theoretically, the smaller the statistic is, the 
better is of the fit.  Thus, the estimators for the GPD model 
parameters could be obtained by minimizing these statistics. 

IV. EXPERIMENT DESIGN OF  
UNCERTAINTY ASSESSMENT  

In selecting the POT method to model the ocean data, nu-
merous uncertainty factors should be considered, such as the 
number of data available, the criteria used to identify peak 
values, the choice of threshold and serial correlation effects. 

The uncertainties associated with POT method is quanti- 
fied herein.  The performance of POT method is examined 
using Monte Carlo simulations for considering different pa-
rameter estimation methods, sample size, tail effects and  

Step 1:
set the 
original
GPD model
parameter
value 

Step 3:
simulate data 
samples 
from the 
modified 
model 

Step 4: 
estimate the 
statistical 
parameter 
values 

Step 5: 
compare 
estimated 
results with 
original 
value

change to another parameter 
estimation method

change to another 
sample size

Step 2:
change the 
value of the 
investigated 
statistical 
parameter 

 
Fig. 1.  Flowchart of performing the uncertainty assessment. 

 
 

noise.  The investigations include the method of moments 
(MOM), maximum likelihood method (MLE), unbiased prob-
ability weighted moments method (PWMU), biased probabil-
ity weighted moments method (PWMB), Anderson-Darling 
test based goodness-of-fit method (AD), and the Kolmo-
goriv-Smirnov test based goodness-of-fit method (KS).  The 
maximum likelihood method refers to the classic statistical 
parameter estimation method which determines the parameter 
value based on maximizing the likelihood function value.  The 
effect of sample size on the determination of GPD model 
parameters are investigated using simulated data with sample 
sizes of n = 10, 20, 30, 50, 80, 100, 150 and 200.  For each  
data sample size n, the simulation will be repeated 10,000 
times and their average estimated parameter values is used as  
a mean for comparisons.  Detailed steps in performing this 
uncertainty assessment are provided as followings: 

 
Step 1: set the original statistical parameter values for GPD 

model. 
Step 2: based on the problem of concern, change the value of 

the investigated statistical parameter value. 
Step 3: simulate a random data sample from the modified 

GPD model based on a chosen sample size. 
Step 4: select a parameter estimation method and use it to es-

timate the parameter values from the simulated data set. 
Step 5: repeat the procedures from Step 2 to Step 4 for dif-

ferent sample sizes and parameter estimation methods. 
Step 6: compare the estimated results with their original val-

ues, calculate the associated bias results.  The flow of 
this calculation process is illustrated in Fig. 1. 

 
A brief explanations about the random simulations are 

given herein.  At the beginning of the work, the GPD model 
parameters (scale, shape and location parameters) are defined.  
Based on these parameter values, we randomly simulate a 
group of data which is following the GPD model with the 
defined model parameters.  Based on the simulated data sam-
ple, we use selected parameter estimation method to estimate 
the GPD model parameters.  And then we compare the esti-
mated parameter results with the original values.  All the steps 
will be iterated to consider using other parameter estimation 
methods.  Finally, all the results will be compared. 

The interested results are the shape parameter, scale pa- 
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Fig. 2.  Bias of estimated scale parameter for different tails. 

 
 

rameter and a high percentile (for this purpose, a non- 
exceedance probability of 0.99 is used).  The accuracy of the 
estimators is compared using the relative bias as a normalized 
measure of deviation from the theoretical value. 

V. COMPARISONS AND DISCUSSIONS 

1. Effects of Tail Behavior 

The tail characteristics, or the value of , of a GPD model 
can critically influence the parameter estimations, which in 
turn will affect the expected return values.  Theoretically, the 
GPD is valid for any value of .  However, not all the estima- 
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Fig. 3.  Bias of estimated shape parameter for different tails. 

 
 

tion methods will yield reasonable estimates that can cover the 
entire range of possible values of  in a GPD model. 

To investigate this issue, the simulated data based on GPD 
model for  = -0.5, -0.25, 0, 0.25 and 0.5 with  = 2 and u = 1 
are used in the numerical study.  This range of values in   
[0.5, 0.5] is commonly observed for environmental variables, 
such as significant wave height.  The computed results of 
relative bias in the shape and scale parameters with respect to 
sample sizes from n = 10 to 200 using various estimated 
methods are presented in Figs. 2 and 3 respectively.  The 
findings based on the simulated results are summarized as 
followings: 

 
 Generally, the relative bias of estimated parameter values 

decreases with increasing sample size.  However, for the 
heavy tails, the bias in the cases of KS and MOM for es-
timating shape and scale parameters are still large even the 
sample size is increased to 200. 

 For all the estimators the relative biases in the shape and 
scale parameters are greater for heavy tails than for light 
tails. 

 Amongst the estimators, the MLE is the most sensitive 
estimator to sample size.  It produces the largest bias esti-
mate for all the sample sizes considered. 

 MOM estimator is the most sensitive estimator to the tail 
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behavior.  For a heavy tail that has a value of  around 0.5, 
the bias is about 30% and does not significantly be im-
proved by increasing the sample size. 

 PWMU and PWMB show consistently better parameter 
estimates for different tail behaviors compared to the other 
estimators.  However, compared to PWMB, PWMU is 
slightly less sensitive to the effects of tail behavior and 
sample size. 

 AD gives a low bias in estimating shape and scale pa-
rameters and is not sensitive to the tail behavior.  However, 
AD is quite sensitive to the sample size.  The bias can go up 
to 20% for a sample size of around 10. 

 KS estimators give large bias results in estimating the shape 
and scale parameters for  > 0.  But for  < 0, the bias is 
relatively small.  The performance of KS estimator is very 
poor for a data set that has a heavy tail or small sample size. 
 
Obviously, it is a compromise to find the most suitable es-

timator covering all conditions shown by the results.  How-
ever, for a data set with  < 0, MOM, AD, PWMU and PWMB 
are reasonably good estimators as the relative bias in the es-
timates is fairly small (< 10%) even for a sample size of 20.   
If the sample size is greater than 100, the MLE is a suitable 
alternative. 

However if  > 0, both PWMB and PWMU stand out as the 
best estimation methods.  If n > 100, the AD and MLE esti-
mators can be adopted in view of their small bias for a large 
sample size. 

2. Effects of Noise 

Another contribution to uncertainty arises from noises in 
the collected data.  For example, as most of the environmental 
data collected at a site is not enough, the data collected at  
a nearby site may also be utilized together for the same sta- 
tistical analysis.  This combination introduces some non- 
stationary data into the data group and causes some noises in 
the statistical parameters of GPD model. 

The effect of noise on the parameter estimates in GPD 
model is investigated in this study by polluting the simulated 
data with Gaussian noise.  Noise is firstly added to the pa-
rameters of the GPD having  = -0.5,  = 2 and u = 1 before  
the data are simulated.  The following cases of noises are 
simulated: 

 
 Noise in location parameter: u = 1 + N(0,  2),  = 2,  = -0.5 

for  = 0.1, 0.3, 0.5. 
 Noise in scale parameter: u = 1,  = 2 + N(0,  2),  = -0.5  

for  = 0.2, 0.6, 1.0. 
 Noise in shape parameter: u = 1,  = 2,  = -0.5 + N(0,  2) 

for  = 0.05, 0.15, 0.25. 
 

where N(0,  2) is a value drawn from a standard Gaussian 
distributed random number generator having a mean of 0 and 
variance equals to  2.  Three noises intensities  2 are chosen, 
corresponding to coefficients of variation of 0.1, 0.3 and 0.5.  

The noise is firstly generated and then added to the GPD sta-
tistical parameters.  Based on the “new” GPD model parameter, 
which combines the initial setting value and the noises, the 
data sample are randomly simulated. 

The calculated biases for the shape and scale parameters are 
presented in Figs. 4-6.  Comparison of the results yields the 
following conclusions: 

 
 The noise in the location parameter yields the largest bias 

results compared to the noise in the scale and shape pa-
rameters.  While the effect of the noise in scale and shape 
parameters can be reduced by increasing the sample size, 
the bias for large noise in location parameter cannot be 
reduced, at least between n = 20 and 100. 

 All the parameters in GPD model experience increase in 
relative bias with increase in noise intensity irrespective of 
the parameter estimation methods, with the location pa-
rameter being the most affected.  The estimates are very 
sensitive to the noises especially for the shape parameter. 

 MLE gives the largest relative bias when noise is present in 
scale and shape parameters.  However, MLE is relatively 
the best estimator when noise occurs in location parameter.  
But the accuracy of MLE estimator is highly sensitive to the 
sample size. 

 MOM, PWMU and PWMB estimators produce similar 
results, giving large relative bias with noise in location 
parameter but low bias with noise in scale and shape pa-
rameters.  None of the parameter estimation methods is able 
to give reliable results when the noise in location parameter 
is very high. 

 Among all the estimators, AD shows the best performance 
with noise in location parameter.  However, for noises in 
shape parameter, AD gives a large bias in the 99th percen-
tile estimate. 

 KS method gives a negative bias in estimating shape pa-
rameter with noise in scale and shape parameters.  However, 
the quantity of this bias estimate is not large. 
 
The effects of noises are clearly not insignificant and the 

parameter estimation methods need to be carefully selected in 
this context.  For noise in location parameter, AD would be the 
most suitable method in estimating the parameters in GPD 
model.  If the intensity of noise in location parameter is high  
( > 0.5 in this study) and sample size is not small (n > 100), 
the MLE method is another good choice.  However, one 
should note that MLE and AD, when the noise intensity is 
large, still lead to large relative bias (> 30%).  For noise in 
shape and scale parameters, MOM, PWMU, PWMB and AD 
are all applicable as long as sample size is not too small  
(n > 20).  However, if the noise in shape parameter is high  
( > 0.25 in this study), the estimations may still produce a 
large bias ( 10%) even though the sample size is 200. 

3. Effects of Range of Dependency 

Dependencies between data points in a time series become  
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important when the sampling frequency is high or when ex-
treme events cause subsequent significant events. 

To analyze the effects of serial dependency, an autoregres-
sive model (AR) of order one is utilized to simulate a weakly 

stationary time series for this investigation, 

 1t t tX c X    , (13) 

where  is the parameter of the model, c is a constant and t  
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Fig. 7.  Biases of estimated 99th percentile in AMM and r largest order statistic method for two time series.  (I) Case 1: φ = 0.95 (II) Case 2: φ = 0. 

 
 
is the noise term.  For comparison purpose, the values of   
are set to 0.95 and 0 which correspond to a highly-correlated 
and an uncorrelated time series, respectively. 

In this study, a value of 0 is given to c and t is assumed to 
follow an exponential distribution which has a rate parameter 
equal to 1 (that is, t ~ Exp(1)).  Theoretically, the parameters 
of the extreme value model for these simulated time series 
have the corresponding values u = 4.605,  = 1 and  = 0 (in 
GPD model).  For each simulated realization (time series), a 
group consisting of 100 continuous time series data is defined 
as a block (e.g. one block represents one year in the annual 
maximum method).  The block is used here to represent a 
reference time unit (for example, the AMM will only utilize 
the maximum value within each block).  In order to test the 
estimates with the effects of different lengths of time series, 
the data simulated will have lengths of 10, 20, 30, 40, 50, 60, 
70, 80, 90 and 100 blocks for comparison purpose.  The re- 
sults of interest in this work is to estimate the 99th percentile 
from each simulated time series.  Each estimate is calculated 
based on an average of the results from 100 simulations (e.g. 
number of time series data set). 

For the purpose of demonstrating the practical advantage of 
using POT, two commonly used approaches in establishing an 
extreme value model are also employed here to estimate the 
99th percentile.  These are annual maximum method (AMM) 
and r largest order statistic method (Guedes Soares and Scotto, 
2004).  Within the r largest order statistic method, four values 
of r are considered, namely, r = 5, 10, 15 and 20.  Within the 

POT method, four different values of threshold and time span 
are used, denoted as U3T0, U3T10, U5T0 and U5T10, where 
the notation UiTj refers to a threshold value of i in identifying 
the excess values, and j represents the value of time span 
(number of continuous time series data, e.g. excesses sepa-
rated by less than this period of time are considered as one 
“event”, and the highest value is identified as a peak value) 
used in de-clustering the peak values.  The results in terms of 
bias in estimating the 99th percentile for each cases are plotted 
in Figs. 7-8.  The findings based on the calculated results are 
summarized as followings: 

 
 Compared to POT and r largest order statistic methods, 

AMM is least affected by serial dependencies within the 
time series with regards to the 99th percentile estimates, 
provided the sample size is larger than 20 blocks.  For 
example, for time series that only have 10 blocks, the bias 
of the estimated 99th percentile is quite large (> 20%).  This 
is because the AMM filters out only a small amount of data 
(only the maximum value within each block is filtered) in 
the time series.  When the number of blocks is limited, the 
statistical uncertainty resulting from small sample size is 
high. 

 r largest order statistic method filters out more data per 
block than AMM and hence the statistical uncertainty is 
smaller.  However, it is more sensitive to the serial de-
pendency.  This is particular obvious when r is small where 
fewer data are filtered.  For example, when r = 5 and only  
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Fig. 8.  Biases of estimated 99th percentile in POT method for two time series (a) Case 1: φ = 0.95 (b) Case 2: φ = 0. 

 
 
 10 blocks of time series data are available, the estimated 

biases in case 1 is much higher (7.3%) compared to case 2 
(2.2%).  These biases can be reduced by utilizing more data 
within the block.  For instance, for r = 20, the bias of the 
estimate for case 1 is much less than for r = 5.  But it does 
not imply utilizing more data within the block is always 
helpful because the basic assumption of asymptotic prop-
erty in order statistic theory is violated for large r.  For this 
reason, the results utilizing 20 largest values is less accurate 
compared to 10 largest values in the case of uncorrelated 
time series. 

 The performance of POT is dependent on the given values 
of threshold and time span.  As shown in Fig. 8, U3T0 gives 
a large positive bias, while U3T10 gives a large negative 
bias.  However, if the threshold changes to 5, the error as-
sociated with the estimations in U5T0 and U5T10 cases are 
very small (-2%~2%).  This implies that the threshold value 
of 3 is too small and is not a suitable value for use in POT 
method.  It is noted that sample size has lesser influence on 
the results in POT method, as it filters more data compared 
to AMM and r largest order statistic method.  It can be seen 
from the comparison between (c) and (d) in Fig. 7, the use 
of time span in U5T10 leads to a smaller bias compared to 
U5T0.  However, the serial dependency in the time series 
has very little influence to the accuracy in POT method  
(the difference between case 1 and case 2 in Fig. 8(c) and  
(d) are quite small) and only leads to a small positive bias in 
the estimates. 

In conclusion, the model selection is a compromise again.  
AMM has very good performance when there is a large 
amount of data and it is not affected by the serial dependency 
effect in the time series.  The r largest order statistic method 
does not need a large amount of data compared to AMM, but it 
is not suitable for highly correlated time series.  POT method 
gives the most suitable results even for time series that has 
high serial correlations.  However, the accuracy of perform- 
ing POT method is quite sensitive to the selected values of 
threshold and time span. 

VI. CONCLUSION 

In this paper, several issues regarding the establishing of an 
extreme value model from ocean data have been investigated, 
focusing primarily on the peak over threshold method.  Simu-
lation studies are conducted to test the robustness of the es-
tablished extreme value model from various methods.  It  
was found that MOM, PWMB and PWMU are the better pa-
rameter estimation methods.  Besides the sample size effect, 
the tail behavior can influence the accuracy of the estimated 
parameter values significantly, especially for light tail in the 
extreme data.  The presence of random noise in the collected 
data increases the uncertainty in parameter estimations.  Noise 
in location parameter has the most significant influence and 
the bias of the estimate arising from this may not be reduced 
much with more data provided.  When limited time series data 
are available, POT method may be the most appropriate ap-
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proach compared to annual maximum method and r largest 
order statistic method.  In addition, serial correlations have 
little impact on the results from POT method.  However, the 
performance of POT method is largely dependent on the ap-
propriate use of time span and threshold.  The current study is 
limited to the considered uncertainties highlighted in the cases 
studies.  Future work could be focusing on finding the most 
appropriate parameter values in approaching the extreme 
values.  More efforts could be put on the real case study on 
different real observed time series data of ocean parameters.  
The time dependent uncertainties would be an interesting 
direction for a further development. 

REFERENCES 

ABS (2013). Accidental load analysis and design for offshore structures. 
Guidance Notes. 

Bitner-Gregersen, E. M., K. C. Ewans and M. C. Johnson (2014). Some 
uncertainties associated with wind and wave description and their im-
portance for engineering applications. Ocean Engineering 86, 11-25. 

Castillo, E. and A. S. Hadi (1997). Fitting the generalized Pareto distribution 
to data. Journal of American Statistics Association 92, 1609-1620. 

Cheng, P. W., G. J. W. van Bussel, G. A. M. van Kuik and J. H. Vugts (2003). 
Reliability-based design methods to determine the extreme response dis-
tribution of offshore wind turbines. Wind Energy 6, 1-22. 

Coles, S. G. (2001). An introduction to statistical modeling of extreme values. 
Springer, London. 

Deidda, R. and M. Puliga (2009). Performances of some parameter estimators 
of the generalized Pareto distribution over rounded-off samples. Physics 
and Chemistry of the Earth 34, 626-634. 

DNV (2012). Environmental conditions and environmental loads. Recom-
mended Practice, DNV-RP-C205. 

Ferreira, J. A. and C. Guedes Soares (1998). An application of the peaks over 
threshold method to predict extremes of significant wave height. Journal 
of Offshore Mechanics and Arctic Engineering 120, 165-176. 

Guedes Soares, C. and M. G. Scotto (2004). Application of the r largest-order 
statistics for long-term predictions of significant wave height. Coastal 
Engineering 51, 387-394. 

Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New 
York. 

Jonathan, P. and K. Ewans (2011). Modeling the seasonality of extreme waves 
in the Gulf of Mexico. Journal of Offshore Mechanics and Arctic Engi-
neering 133, 0211041-49.  

Jonathan, P. and K. Ewans (2013). Statistical modeling of extreme ocean envi-
ronments for marine design: A review. Ocean Engineering 62, 91-109. 

Kyselý, J., J. Picek and R. Beranová (2010). Estimating extremes in climate 
change simulations using the peaks-over-threshold method with a non- 
stationary threshold. Global and Planetary Change 72, 55-68. 

Mackay, E. B. L., P. G. Challenor and A. S. Bahaj (2011). A comparison of 
estimators for the generalised Pareto distribution. Ocean Engineering 38, 
1338-1346. 

Méndez, F. J., M. Menéndez, A. Luceño and I. J. Losada (2006). Estimation of 
the long-term variability of extreme significant wave height using a 
time-dependent Peak Over Threshold (POT) model. Journal of Geo-
physical Research 111, 8-13. 

Moharram, S. H., A. K. Gosain and P. N. Kapoor (1993). A comparative study 
for the estimators of the generalized Pareto distribution. Journal of Hy-
drology 150, 169-185. 

Morton, I. D., J. Bowers and G. Mould (1997). Estimating return period wave 
heights and wind speeds using a seasonal point process model. Coastal 
Engineering 31, 305-326. 

Muraleedharan, G., A. D. Rao, P. G. Kurup, N. Unnikrishnan Nair and M. 
Sinha (2007). Modified Weibull distribution for maximum and significant 
wave height simulation and prediction. Coastal Engineering 54, 630-638. 

Naess, A. and P. H. Clausen (2001). Combination of the peaks-over-threshold 
and bootstrapping methods for extreme value prediction. Structural 
Safety 23, 315-330. 

Petrov, V., C. Guedes Soares and H. Gotovac (2013). Prediction of extreme 
significant wave heights using maximum entropy. Coastal Engineering 74, 
1-10. 

Ribereau, P., P. Naveau and A. Guillou (2011). A note of caution when inter-
preting parameters of the distribution of excesses. Advances in Water 
Resources 34, 1215-1221. 

Smith, R. L. (2001). Environmental statistics, technical report. Dep. of Stat., 
Univ. of North Carolina, Chapel Hill. 

Winterstein, S. R., G. Kleiven and Ø. Hagen (2001). Comparing extreme wave 
estimates from hourly and annual data, Proceedings ISOPE. Conference. 

Zhang, J. and M. A. Stephens (2007). A new and efficient estimation method 
for the generalized Pareto distribution. Technometrics 51, 316-325. 

Zhang, Y. (2013). Modeling time varying and multivariate environmental 
conditions for extreme load prediction on offshore structures in a reli-
ability perspective. Ph. D Thesis, National University of Singapore, 
Singapore. 

Zhang, Y. (2015a). On the climatic uncertainty to the environment extremes: a 
Singapore case and statistical approach. Polish Journal of Environmental 
Studies 24, 1413-1422. 

Zhang, Y. (2015b). Comparing the robustness of offshore structures with marine 
deteriorations — a fuzzy approach. Advances in Structural Engineering 
18(8), 1159-1172. 

Zhang, Y. and Y. Y. Cao (2015). A fuzzy quantification approach of uncer-
tainties in an extreme wave height modeling. Acta Oceanologica Sinica 
34, 90-98. 

 


	QUANTIFICATION OF STATISTICAL UNCERTAINTIES IN PERFORMING THE PEAK OVER THRESHOLD METHOD
	Recommended Citation

	untitled

