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ABSTRACT 

According to observations over the few years before and 
after typhoon and extreme rainfall events in the Laonong 
catchment of Kaohsiung, Southern Taiwan, this study com-
bined a genetic adaptive neural network architecture, image 
texture analysis, and a geographic information system (GIS) in 
satellite image interpretation and land use change analysis to 
obtain disaster records and surface information.  A multivari-
ate hazards evaluation method was applied to quantitatively 
analyze the weights of various natural environmental and 
slope development hazard factors.  Furthermore, this study 
established a slope landslide potential assessment model and 
depicted a slope landslide potential diagram by using the GIS 
platform.  The impact of extreme rainfall events on slope land-
slide and landslide developmental characteristics were dis-
cussed.  The findings can be a reference for subsequent slope 
development countermeasures and as an assessment for the 
academia and engineering fields involved in predicting land-
slide disasters caused by slope development. 

I. INTRODUCTION 

Because of poor physiographic conditions and steep moun-
tainous terrain, concentrated rainfall accompanying typhoons 
and rainstorms can easily trigger landslides and debris flows in 
unstable regions.  In recent years, because of extreme rainfall 
events, numerous slope landslides, heavy river siltation, and 
riverbank dikes have markedly changed the natural environ-
mental conditions of catchment regions in Taiwan.  In August 
2009, Typhoon Morakot produced extremely heavy rainfall 

over Taiwan; the cumulative maximum rainfall in the southern 
Taiwan’s mountainous region exceeded 2900 cm, causing se-
vere landslides, debris flows, flooding, and slope collapses.  
This disaster critically affected inhabitants, damaged property 
and the living environment, and threatened major public con-
struction projects, severely affecting overall industrial and 
economic development and transport pathways. 

Slope landslide analyses generally explore primary hazard 
factors used for identifying the slope slide hazard factor com-
binations and establishing landslide potential assessment 
models.  Several studies conducted in Taiwan and elsewhere 
have recently explored the hazard factors of slope landslides 
(Popescu, 2002; Wang and Sassa, 2006; Lee et al., 2008; Chen 
et al., 2009; Abay and Barbieri, 2012).  Similar to other geo-
logical disasters, each landslide is caused by unique factors, 
comprising a few influencing factors such as potential causes 
(e.g., geological factors including soil, topography, and hy-
drology) and impetuses (e.g., rainfall, earthquakes, and an-
thropogenic factors).  Geological factors include lithological 
factors, structural conditions, soil thickness, and cover situa-
tions; topographical factors include slope, aspect, and eleva-
tion location; and anthropogenic factors include timber har-
vesting, road construction, land development, mining, and 
vegetation changes.  Studies have explored various factors used 
for assessing and estimating landslide factors from various 
perspectives.  Although uncertainties continue to exist regard-
ing various hazard factors, and certain challenges are difficult 
to overcome, these factors provide essential information for 
estimating the size of potential landslides. 

Because technological advances afford numerous land use 
monitoring tools, in post disaster large-area slope disaster 
interpretation and judgment, aerial photography and satellite 
imagery are often used for risk interpretation and assessment 
(Nikolakopoulos et al., 2005; Lin et al., 2006; Chen et al., 2009; 
Chen et al., 2013).  Because satellite imaging is characterized 
by short data acquisition cycles and rapid, wide, and low-cost 
capturing of ground surface changes using computer analyses 
and geographic information system (GIS) platforms, they can 
be utilized to quickly assess situations, particularly in moun-
tainous and inaccessible areas.  Therefore, satellite imaging is 
feasible for large-area survey applications and long-term land 
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use change monitoring (Liu et al., 2001). 
In recent years, scholars have published studies on using 

artificial neural networks (ANNs) in satellite image classifi-
cation and landslide interpretation and assessment (Yoshida 
and Omatu, 1994; Jarvis and Stuart, 1996; Dymond et al., 
1999; Chen et al., 2009; Chen et al., 2013); ANNs are advan-
tageous and economical and extract more parametric infor-
mation through learning and interaction capabilities.  In addi-
tion, texture is a parameter of satellite images.  In an image 
block, when local statistical properties or image characteristics 
remain unchanged, change slowly, or are approximately pre-
dicted, the texture is considered unchanged (Sklansky, 1978).  
Recently, scholars have used textural information as auxiliary 
information in satellite image interpretation to improve the 
degree of precision (Shen and Sarris, 2008; Chen et al., 2011). 

In the past, scholars have applied the multivariate hazards 
evaluation method (HEM) (Su et al., 1998) in studies per-
taining to the delineation of catchment landslide potential (Lin 
et al., 2009).  HEM involves a multinonlinear mathematical 
model based on measurement as the primary concept.  Using 
relative relationships, Lin et al. (2009) proposed a danger 
index (Dt) for assessing the risk of environmental hazards in 
different regions. 

Genetic algorithms (GAs), a type of artificial intelligence 
(AI) proposed by Holland (1975), is an optimized search 
mechanism that functions on the basis of computer simula- 
tions of biological natural selection and genetic rules (Holland, 
1975; Goldberg, 2007).  GAs search for the desired parameters 
in the natural evolution process, including reproduction, cros- 
sover, and mutation.  GAs differ from traditional numerical 
search methods in that GAs converts possible solutions into 
chromosomes by using an encoding technology and directly 
search the search space.  Combined with specific search op-
erators, GAs exchange information during the search, thus 
determining the global optimal solution. 

Our study area covered various parts of the Laonong catch-
ment in Kaohsiung, southern Taiwan.  According to previous 
studies (Chen et al., 2010; Chen et al., 2013), this study ap-
plied a genetic ANN (GANN) in classifying satellite imagery, 
using the gray level co-occurrence matrix (GLCM) for ex-
tracting textural information from high-resolution satellite 
images to improve assessment and interpretation accuracy.  
Moreover, HEM was applied for quantitatively analyzing the 
weights of various hazard factors related to natural environ-
mental and slope development to estimate the landslide sus-
ceptibility of the study area.  Finally, GIS was used to describe 
the landslide susceptibility diagram and explore the impact of 
extreme rainfall events on slope landslide and development 
characteristics of the landslide region. 

II. RESEARCH METHODS 

1. Genetic Adaptive Neural Networks 

An ANN is an AI technique combining the high computing 
speed, memory, and learning ability of advanced computing 

technologies.  ANNs are ideal for processing highly complex 
nonlinear functions because of their simple training methods, 
lack of equation assumptions, and large-scale data processing 
abilities with high precision and speed.  The back-propagation 
neural network model (BPN) used in this study is the most 
representative and widely used ANN learning model.  The 
BPN is a three-layer neural network comprising input, hidden, 
and output layers and uses the gradient steepest descent method 
for minimizing the error function.  Each layer accepts the 
output of the previous layer as its input, and the hidden layer 
contains a number of neurons.  The layers are connected using 
weights and biases, and the BPN multiplies the input and the 
total weights.  Obtained through the transfer function, the out-
put value is compared with the target value, and the weighted 
value is modified using the algorithm to minimize the error 
function.  The BPN activation function converts the output 
value range after superimposing the input values.  The defined 
value maintains the neuron output values in a reasonable range 
through the conversion of the total sum of the implication of 
the input and weight.  After referring to Chen et al. (2010) and 
Chen et al. (2013), this study used the tansig function as the 
activation function, and the set normalized output values 
ranged from −1 to 1. 

In addition to the result being locally minimized rather than 
globally minimized, other drawbacks of using an ANN include 
inadequate training or overtraining and its inability to con-
verge.  To overcome these disadvantages, according to the 
studies by Chen et al. (2010) and Chen et al. (2013), parame-
ters were optimized using GAs coupled with an ANN; the 
basic principle involved setting the ANN architecture pa-
rameters, including the weighting matrix, as the GA chromo-
somes (i.e., target solutions).  This study adopted the differ-
ence between the network predicted and actual values as the 
fitness function of the algorithm by using the mean squared 
error as the criterion with which to assess chromosomal fitness.  
The actual values refer to the subcategories of the factors to be 
interpreted; the output classified the predicted spectral values 
of various sample regions through GANN simulations.  De-
pending on the GA’s ability to determine the optimal solution, 
a network structure that minimizes the error between the pre-
dicted and actual values was determined. 

For GANN computation, this study adopted binary GA en-
coding as well as elitism selection and uniform crossover with 
200 generations (the number of chromosome groups), which 
had been selected by other scholars (D’Ambrosio et al., 2006).  
The common selection rate is around 0.1 and the general 
crossover probability is primarily 0.5-0.8.  Generally, a high 
mutation probability is similar to a random search.  Heng et  
al. (1999) recommended a mutation rate between 0.1 and 
0.001.  To avoid the loss of the optimal search capability, the 
widely-used mutation rate of 0.1 was used in this study.  A 
high mutation rate ensures a faster optimal solution search 
process, whereas a low mutation rate stalls the search process.  
According to Chen et al. (2009), this study adopted a crossover 
rate of 0.6.  The BPN parameters are the number of hidden 
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layers and neurons, learning rate, and learning time.  One 
hidden layer is adequate for general problems and two hidden 
layers can satisfy most problems.  Therefore, the upper limit 
for the number of hidden layers was set as two.  The opera-
tional speed is considerably reduced when the number of 
neurons exceeds 30 (Chen et al. 2009).  Therefore, according 
to the operational bit limit, the upper limit of the number of 
neurons was set as 32.  On the basis of testing experience, the 
network converges after 15,000 learning steps (Chen et al., 
2013).  Hence, the upper limit of the learning steps was set as 
15,000 to enable the algorithm to search for the optimal solu-
tion in this range.  Satisfying one of the following conditions 
ceased the search operation (Chen et al., 2013): 

 
(1) The fitness function equals zero or the allowed value; 
(2) All generations of percentages, excluding the mutation 

rates, satisfy the optimal fitness value without more than 
1,000 evolutionary changes; 

(3) The operational time reaches the set cumulative value. 

2. Texture Analysis 

In image analysis, the pixel grayscale values are of low 
order, and the mutual relationships between pixels, such as 
direction and rules, are of high order (i.e., texture); the image 
exhibits different textural features for various land cover  
types.  This study applied the texture analysis function of 
ENVI (RSI, 2005) image processing software for establishing 
the GLCM and for satellite image quantification within the 
study area.  The results were used for ANN image interpreta-
tion, training, and classification. 

GLCM is a second-order statistical method used to sum  
the frequency of each grayscale value at specific relevant 
positions.  The computational method is shown in Eq. (1) 
(Haralick et al., 1973): 

    

 
0 0

,
,

,

ij
uj N N

ij
i j

P d
C d

P d





 




 (1) 

where Pij denotes the joint probability of grayscale values i 
and j at relative position (d,  ), d is the distance, and  is the 
direction.  Eq. (1) yields the textural eigenvalues. 

Several methods exist for quantifying texture.  Haralick et 
al. (1973) suggested various methods for quantifying the tex-
tural statistics of the GLCM matrix.  The most widely applied 
textural quantification method, described in the following,  
was used in this study. 

Homogeneity: used to measure textural uniformity.  High 
uniformity yields high homogeneity.  
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where subscripts i and j represent the grayscale values of the 

pixels, and Cij is the value after GLCM computation. 
Contrast: used to measure textural contrast.  High textural 

contrast yields a low contrast value. 
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Dissimilarity: used to measure the image grayscale dis-
similarity degree. 
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Entropy: used to measure the textural chaotic degree.  A 
more random image texture yields a lower entropy. 
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Angular second moment (ASM): used to measure textural 
uniformity and evenness.  A low ASM value indicates that the 
matrix elements are evenly distributed. 
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This study employed the ENVI module for estimating tex-
tural information, such as homogeneity, contrast, dissimilarity, 
and the ASM of the red (R), green (G), blue (B), and near- 
infrared (NIR) spectra of satellite images of the study area.  
Spectral values extracted using ArcGIS were combined with 
standardized spectral values of the original images and input 
into the ANN for training and classification. 

3. Multivariate Hazards Evaluation Method 

Multivariate HEM is a measurement-based multivariate 
nonlinear mathematical model.  Using relative relationships, 
HEM involves applying a danger index (Dt) as the risk indi-
cator of environmental hazards in different regions of the 
study area. 

To estimate the impact weights of the various hazard factors, 
the coefficient of variation (V) is obtained using the graded 
disaster-triggering ratio of the factors.  The coefficient, which 
represents the sensitivity of the graded response to the land-
slide probability of various factors, is computed as shown in 
Eq. (7):  

 100%V
X


   (7) 

where  is the standard deviation and X is the average damage 
in the sample regions of various graded levels.  The weight of 
a factor is calculated as the ratio of the coefficients of variation 
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of the factor to the total coefficient of variation of all factors, 
as shown in Eq. (8); the weights represent the degree of impact 
of each factor affecting the landslide. 

 
1 2

i
i

n

V
W

V V V

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 (8) 

where W and V are the factor weight and coefficient of varia-
tion, respectively.  The graded score values of hazard factors  
d, represented by relative values in the range of 1-10, is esti-
mated using the damage percentages of the various factors, as 
shown in Eq. (9). 
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max min
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n
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where Xi denotes the sample region’s disaster-triggering rate, 
and Xmax and Xmin represent the maximal and minimal loss per-
centages of various sample regions, respectively. 

Finally, the weights (Wi) are arranged according to the 
variation (V) to obtain different scores of the factors:  

 3 51 2 4
1 2 3 4 5

nW W WW W W
t nD d d d d d d       (10) 

where Dt is the danger index of the potential disaster repre-
sented by a relative value in the range of 1-10. 

III. RAINFALL-INDUCED SLOPE LANDSLIDE 
ASSESSMENT MODELING 

The rainfall-induced slope landslide assessment model for a 
catchment in southern Taiwan was constructed in seven stages, 
as elaborated in the following. 

1. Selection of Study Area 

In August 2009, Typhoon Morakot induced large-scale 
slope landslides in the eastern and southern regions of Taiwan, 
with the Kaohsiung-Pingtung region being the most affected.  
Moreover, in recent years, extreme rainfall has caused fre-
quent slope landslides.  Therefore, after such considerations as 
the numerous land disturbance factors associated with regions 
affected by typhoons and extreme rainfall and the satellite 
images before and after the rainfall, the rectangular area formed 
by the UTM coordinates (214115, 2559916) and (2239550, 
2553630), covering Baolai Li (Liugui District) and Jianshan 
Li (Taoyuan District) in the watershed of the Laonongxi River 
(Fig. 1), was used as the study area.  To explore whether the 
landslide region and the distribution of the landslide locations 
were unaltered after Typhoon Morakot, this study focused on 
the 3 years after Typhoon Morakot (2009 to 2011).  During this 
period, the study area experienced six heavy rainfall events 
(24-h cumulative rainfall >130 mm): four typhoons and two 
heavy rainfall events. 

W E

N

S

0 5 10 20 30
Kms

Legend
Liouguei district
Taoyuan district

Jianshan villageJianshan villageJianshan village
Baolai villageBaolai villageBaolai village

 
Fig. 1.  Location and satellite image of the study area. 

 

2. Constructing Original Image Data 

The original image data of the Laonongxi River catchment 
(Baolai Li and Jianshan Li) region contains FM2 satellite 
images, digital elevation maps (DEMs), and geological maps 
before and after typhoons and heavy rainfall events.  The 
relevant features and spatial data of the images were estab-
lished through GIS integration. 

According to the dates of heavy rainfall events recorded by 
the Central Weather Bureau of Taiwan, 12 satellite images 
were selected for the six events.  Table 1 lists the basic data 
pertaining to these satellite images.  

3. Establishing Basic Grid 

The FM2 multispectral images used in this study have a 
spatial resolution of 2-8 m, whereas the DEM resolution is 
only 40 m  40 m.  Therefore, this study employed the GIS 
software ArcGIS to establish a 40 m  40 m basic grid and the 
spatial analyst module to estimate the geological type and the 
average slope and elevation of each grid. 

4. Selecting Influencing Factors 

Regarding the environmental and anthropogenic factors 
affecting the slope landslide, a factor database was established 
according to the following natural environmental, triggering, 
and land disturbance factors for constructing the landslide 
potential assessment model: 

 
(1) Natural Environmental Factors 

Several slope landslide factors have been considered in 
previous studies.  After a literature review, the most widely 
used, easily accessible, and most strongly influential slope 
landslide factors were selected as the major natural environ-
mental factors affecting the landslide disaster potential: slope,  
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Table 1. Basic data associated with selected FM2 satellite 
images. 

Event  
No. 

Event Date 
Image  

Shooting  
Date 

Image  
Resolution

Before Typhoon Morakot 
(2009/08/05) 

2009/5/9 2 m 
A 

After Typhoon Morakot 
(2009/08/05) 

2009/8/24 2 m 

---- 
Before heavy rainfall 

(2010/7/27) 
2010/5/25 2 m 

B After heavy rainfall 
(2010/7/27) 

Before Typhoon Meranti 
(2010/9/9) 

2010/8/10 2 m 

---- 

C 

After Typhoon Meranti 
(2010/9/9) 

2010/9/11 2 m 

Before Typhoon Fanapi 
(2010/09/17) 

2010/9/11 8 m 
D 

After Typhoon Fanapi 
(2010/09/17) 

2010/11/21 8 m 

---- 
Before Typhoon Meari 

(2011/6/23) 
2011/5/8 2 m 

E After Typhoon Meari 
(2011/6/23) 

Before Typhoon Nanmadol 
(2011/08/27) 

2011/8/17 8 m 

---- 

F 

After Typhoon Nanmadol 
(2011/08/27) 

2011/10/24 8 m 

 
 

aspect, geology, elevation, distance from river, and slope 
roughness.  The spatial analysis module of ArcGIS, recom-
mended by Chen et al. (2013), was used to obtain and grade 
the average slope, aspect, and elevation in various unit grids.  
Moreover, the values were classified according to the strength 
of the geological factors on the basis of the geological de-
scriptions and corresponding features.  The classification en-
coding method summarizes the rock characteristics according 
to geological descriptions and relevant geological character-
istics.  Next, the geological rock characteristics and compres-
sion strength were used with the compression strength- 
weakness grade relationship proposed by the International 
Society for Rock Mechanics (1981) to categorize and encode 
the geological descriptions (Chen et al., 2013).  ArcGIS was 
applied for computing the grid distance from the river, and the 
grids were sorted according to the distance.  Wilson and Gal-
lant (2000) proposed that the slope standard deviation within 
the round window can be used for measuring the slope change; 
it is of indicative significance in the measurement of slope 
undulations in a window of a specific radius.  Windows with a 
large slope roughness indicate drastic changes in slopes, such 
as near river bluff cliffs, cliffs, and waterfalls.  The slope 
roughness values are encoded according to grade. 
(2) Rainfall Triggering Factors 

Climatic factors generally include rainfall, temperature, and 

humidity.  Concentrated or extended rainfall highly affects 
slope stability.  Therefore, similar to the aforementioned natural 
environmental factors, rainfall is considered one of the condi-
tional factors affecting slope landslide.  In this study, record 
were collected from five rainfall measurement stations of the 
Central Weather Bureau (Biaohu, Jiaxian, Gaozhong, Xinfa, 
and Xinan) during the six typhoon and rainfall events (24-hour 
cumulative rainfall of 130 mm or more) during August 2009- 
October 2011 (Table 1).  For rainfall data grading, the effective 
accumulative rainfall (EAR) near the five rainfall measure-
ment stations was computed, the basic grid of the study area 
was superimposed using the ArcGIS spatial analyst module, 
and the average EAR of the various grids was estimated using 
the inverse distance weighted method.  Finally, the inferred 
EARs of the grids were graded and encoded.  As reported by 
Seo and Funasaki (1973), EAR was computed as the sum of 
the direct and previous indirect rainfall.  Direct rainfall is the 
consecutive rainfall during the landslide, the cumulative 
rainfall from the first rain to the occurrence of the slope land-
slide disaster (i.e., the hour of the greatest rainfall in the major 
rainfall area).  Previous indirect rainfall refers to the 7-day 
rainfall before the major rain; it is estimated as  

 
7

1

n
n bn

k P P


  (11) 

where Pn is the rainfall over n days before the major rain (mm), 
and k is the diminishing coefficient, set as 0.9 in this study.  
The direct rainfall directly contributes to the occurrence of the 
slope landslide.  Therefore, its contribution to the disaster is 
large and, thus, not discounted.  EAR is estimated using the 
following equation: 

 r bEAR P P   (12) 

where Pr is the direct rainfall. 
(3) Land Disturbance Factors 

Because land disturbance varies with place and time, dis-
aster and surface information can be obtained through satellite 
image interpretation classification, as elaborated in the pre-
ceding sections.  According to the two principles of impor-
tance and reasonable accessibility and the study by Chen et al. 
(2009), six factors—green coverage (grassland, forest) rate, 
agricultural land (paddies and upland) planting rate, fruit tree 
planting rate, bare ground density, building density, and road 
density—were used as the land disturbance factors contribut-
ing to slope landslides.  According to Chen et al. (2009, 2012), 
the grid index for land disturbance is defined as 

 DC DCI G R   (13) 

where GDC, the grading of disturbance condition, is the score 
of the grid land disturbance factors and R is the percentage of 
the land disturbance factors accounting for the basic grid.  The 
GDC score is based on the score value proposed by Chen et al.  
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Table 2.  Network training optimal architectural parameters. 

Image Date 
Number of the  
hidden layers 

the 1st hidden layer  
number of neurons, 

the 2nd hidden layer 
 number of neurons, 

learning  
rate 

learning  
times 

Training  
accuracy (%) 

2009/05/09 2 22 29 3 14000 92.2 

2009/08/24 2 22 29 2 15000 93.6 

2010/05/25 2 26 27 1.4 10000 88.9 

2010/08/10 2 30 15 3.1 10000 92.8 

2010/09/11 2 31 28 2.1 9000 98.0 

2010/09/11 2 7 6 1 9500 83.6 

2010/11/21 2 8 8 0.9 3300 88.4 

2011/05/08 2 28 17 1.8 15000 99.7 

2011/08/17 2 8 7 0.5 9000 82.8 

2011/10/24 2 8 7 0.5 9000 85.8 
 
 
(2013).  After estimation, IDC values were automatically clus-
tered using the clustering analysis tool and graded and en-
coded according to the clustering results.  

5. Satellite Image Interpretation 

(1) Preprocessing Satellite Images 
(a) Image retrieval correction 

Because the original FM2 satellite images are im-
ages of spectral wavelengths, the relevant parameters 
of the satellite images were input.  After combination 
and coordinate correction by using ERDAS Imagine 
software (ERDAS, 2011), the images were converted 
to image files compatible with the GIS system. 

(b) Removal of image clouds and shadows 
To remove the effect of clouds on the image inter-

pretation results, ArcGIS software and artificial draw-
ing was applied to select the regions covered by 
clouds and shadows in the satellite images.  Subse-
quently, the original satellite images and the selected 
clouds were incorporated in ERDAS Imagine for 
removal. 

(c) Textural information processing 
This study used software to compute the textural 

information of homogeneity, contrast, dissimilarity, 
entropy, and ASM for the study area.  ArcGIS was 
used to extract textural and R, G, B, and NIR spectral 
information from satellite images for GANN image 
interpretation training and input value classification. 

(d) Standardization 
Before selection and drawing of the training sam-

ple regions, textural and R, G, B, and NIR spectral 
information and satellite images were standardized 
for image training and classification.  The standardi-
zation equation is as follows: 

 
x mean

S
std


  (14) 

where S is the standardized value, x is the factor for  

Table 3.  Image interpretation results. 

Image Date OA (%) Kappa 

2009/5/9 77.0 0.75 

2009/8/24 78.7 0.77 

2010/5/25 76.4 0.75 

2010/8/10 75.2 0.73 

2010/9/11 80.4 0.79 

2010/9/11 79.6 0.78 

2010/11/21 82.2 0.81 

2011/5/8 74.6 0.72 

2011/8/17 82.1 0.79 

2011/10/24 81.3 0.80 
 
 
standardization, mean is the average of the factor, and 
std is the factor’s standard deviation. 

(2) Sample Region Selection and Training 
In the satellite images, sample regions of representative in-

terpretation factors were selected and trained using GANN 
modules (Chen et al., 2013) developed on MATLAB (MATLAB, 
2010).  The study factors considered for obtaining disaster and 
surface information were river channels, water bodies, forests, 
grasslands, agricultural fields, fruit trees, buildings, and roads.  
Table 2 shows the optimal architectural parameters of the ten 
satellite images of the study area before and after the six events.  
As the results suggest, the average training accuracy, which 
represents the probability of correct classification at any point in 
the sample region, is as high as 91%. 
(3) Image Interpretation Classification Results (Accuracy 

Evaluation) 
According to the optimal network architecture of image 

interpretations obtained using the aforementioned GANN 
training, this study involved conducting interpretation classi-
fication of the ten satellite images of the study area.  Accord-
ing to the methodology of Chen et al. (2009), the coefficient of 
agreement kappa (Cohen, 1960) and overall accuracy (OA) 
were used as the basis for calculating the interpretation clas-
sification accuracy.  Table 3 lists the image interpretation OA  
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Table 4.  Correlation test results of the slope landslide hazard factors. 

 slope aspect elevation EAR IDC geology distance from the river slope roughness

slope 1 -.080** .395** -.013** -.011** .168** -.190** -.016** 

aspect  1 .043** -.008** .000 .181** -.103** -.096** 

elevation   1 -.008** -.022** .224** -.360** -.098** 

EAR    1 .008** -.002 .013** -.003 

IDC     1 -.020** .021** -.002 

geology      1 -.249** -.023** 

distance from the river       1 .029** 

slope roughness        1 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

 
 

and kappa values of the ten satellite images.  The image in-
terpretation OA and the average kappa are approximately 80% 
and 0.77, respectively.  According to a relevant study (Landis 
and Koch, 1977), the obtained image interpretation classifi-
cation results are of medium and high accuracy and, thus, are 
acceptable. 

6. Selecting Slope Landslide Location 

This study used ArcGIS software and DEM for projecting 
the ridgeline of the study area.  If the area of bare land in the 
images before and after a typhoon or heavy rain event ac-
counts for more than half of the grid area, and the normalized 
difference vegetation index (NDVI) of the images is less than 
0, then the grid is considered the landslide location.  The 
NDVI is used to evaluate the vegetation coverage, generally 
highlighting the differences in vegetation-covered areas by 
enhancing the strong NIR spectral reflection of plants, which 
absorb red light; it is therefore used for plant resources (Rouse 
et al., 1973; Mantovani et al., 1996).  The NDVI is estimated 
as the ratio of R and NIR light.  The projection relationship 
equation is  

 
NIR

NDVI
NIR

R

R





 (15) 

According to the method of Meunier et al. (2008), the dis-
tances between the landslide region peak and the nearest 
ridgeline top (dr), between the lowest point of the landslide 
region and the nearest river (ds), and between the ridge top and 
the river (dt) were obtained to evaluate the causes of and in-
formation relevant to landslides in the study area. 

7. Constructing Slope Landslide Assessment Model 

HEM was applied in the quantified evaluation of slope 
landslide potential, and the construction process is described 
as follows: 

 
(1) Test of Factors 

As mentioned previously, slope, aspect, geology, eleva-

tion, distance from river, slope roughness, EAR, and the 
index of land disturbance factors were used as factors in the 
slope landslide potential model.  The Pearson correlation 
testing tool of SPSS statistical software (SPSS, 2005) was 
employed for determining the correlations among the hazard 
factors; Table 4 details the results for a rainfall event (2009 
Typhoon Morakot).  Regardless of the rainfall event, the 
factors were either correlated to a low degree (correlation 
coefficient = 0.1-0.4) or were not correlated (correlation 
coefficient  0.1). 
(2) Assessment Model Construction Results and Analysis 

(a) Computing factor weight score 
As described previously, multivariate HEM was 

used to establish the slope landslide potential model.  
Table 5 lists the weight scores of the landslide poten-
tial factors.  In the following, the factor weight score 
projection is explained using the slope factor as an 
example.  The study area has slopes of seven grades.  
The table presents the grids in each grade and the 
number of landslides and damage percentages.  After 
projecting the damage percentage standard deviation 
( = 0.011), Eqs. (7) and (8) were used to project the 
coefficient of variation (V = 0.714) and factor weight 
(W = 0.122), respectively.  Finally, according to the 
maximal and minimal damage percentages of the 
slope factors, the grades of the slope factors were 
projected using Eq. (9).  The weights and scores of 
various factors were computed similarly.  The weight 
of geology (0.265) was the highest, whereas that of 
slope roughness (0.018) was the lowest.  Moreover, 
the landslide ratio was the highest when the slope 
grade was 4 (slope > 30%-40%). 

(b) Danger index modeling 
After analysis, the weights of the eight slope land-

slide potential factors were ranked, in descending 
order, as follows: geology (Gs), aspect (As), EAR 
(EAR), slope (S), degree of land disturbance (IDC), 
distance from river (Dr), elevation (El), and slope 
roughness (Rs).  The established multivariate HEM 
assessment model is expressed in Eq. (16): 
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Table 5.  Weights of landslide susceptibility factors. 

Influencing 
factors 

Factor  
grade 

Total number  
of grids 

total number  
of landslides 

landslide
ratio 

score 
Influencing

factors 
Factor 
grade

Total number 
 of grids 

total number  
of landslides 

landslide
ratio 

score 

1   6654   135 0.020   7.625 1     270     8 0.030   9.770

2 18180   318 0.017   6.711 2 29814 449 0.015   1.000

3 55818 1096 0.020   7.411 3 27948 576 0.021   4.341

4 29568   815 0.028 10.000 4 20772 570 0.027   8.452

5   5130   124 0.024   8.892 5 16752 295 0.018   2.535

6 0 0 0.000   1.000 6 11862 356 0.030 10.000

7 0 0 0.000   1.000 7   7932 234 0.030   9.692

 standard deviation = 0.011 
coefficient of  

variation = 0.714 
 standard deviation = 0.006 

coefficient of  
variation = 0.261 

slope (Ss) 

Weight = 0.122 

elevation (El)

Weight = 0.045 

1   2778   41 0.015   1.000 1 12 2 0.167 10.000

2   5382   85 0.016   1.436 2   8796 230 0.026   1.513

3 10750 218 0.020   3.328 3 25578 628 0.025   1.417

4 16684 277 0.017   1.778 4 26514 468 0.018   1.000

5 23414 449 0.019   2.863 5 34452 643 0.019   1.061

6 32158 545 0.017   1.923 6 19998 517 0.026   1.495

7 24184 873 0.036 10.000 standard deviation = 0.058 
coefficient of  

variation = 1.265 

standard deviation = 0.007 
coefficient of  

variation = 0.369 

distance 
from the 
river (Ds) 

Weight = 0.063 

aspect (As) 

Weight = 0.216 

1 0 0 0   1.000 1 0 0 0.000   1.000

2 0 0 0   1.000 2 21837 795 0.036   8.677

3 69368 1525 0.022 10.000 3 20036 133 0.007   2.400

4 45982   963 0.021   9.574 4 52300 739 0.014   3.980

5 0 0 0   1.000 5   2245   13 0.006   2.221

6 0 0 0   1.000 6 18932 808 0.043 10.000

standard deviation = 0.011 
coefficient of  

variation = 1.55 
standard deviation = 0.017 

coefficient of  
variation = 1.004 

Geology 
(Gs) 

Weight = 0.265 

EAR 

Weight=0.172 

1 12840   242 0.019   1.000 1   8588   205 0.024   2.320

2 38280   761 0.020   3.175 2 98818 1860 0.019   1.000

3 64230 1485 0.023 10.000 3   7944   423 0.053 10.000

standard deviation = 0.002 
coefficient of  

variation = 0.108 
standard deviation = 0.019 

coefficient of  
variation = 0.0581

Slope 
roughness 

(Rs) 

Weight = 0.018 

IDC 

Weight = 0.099 
 
 

     0.265 0.216 0.172

t s sD d G d A d EAR    

     0.122 0.099 0.063

s DC sd S d I d D    

   0.0180.045

sd El d R   (16) 

where d(Gs) is the score of the geology-influencing 
grid factors; similarly, the remaining variables denote 
the scores of the other influencing grid factors.  The 
equation clarifies that the influence of geology is the 
strongest, as reported by most scholars, followed by 

that of EAR and aspect.  Rainfall is a critical slope 
landslide triggering factor, and aspect is associated 
with seasonal variations.  The influence of the front 
aspect on the slope landslide is more pronounced than 
that of the back aspect.  The influence of the slope and 
degree of land disturbance on the slope landslide are 
similar because historical rainfall-induced landslides 
were closely associated with the degree of land dis-
turbance.  Furthermore, because of climate changes, 
the type and speed of vegetation distribution and 
weather erosion varied with elevation.  Development 
around rivers is often accompanied by soil and bank 
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erosion.  All of these factors directly or indirectly af-
fect slope stability. 

IV. DRAWING AND VERIFICATION OF 
LANDSLIDE DISASTER POTENTIAL 

DIAGRAMS 

The danger index assessment model (Eq. (16)) was used to 
investigate the slope landslide potential factor of each grid and 
estimate Dt; the average Dt values of the same grid locations 
for the six rainfall events ranged from 3.415 to 5.782.  Log 
normal distribution was applied to convert the obtained po-
tential grades to the landslide probability values by using 
multivariate HEM.  The log normal distribution for computing 
potential grade probability is expressed as 

 
1

22
1

( ) [( / ]
2

P F e nx  



   (17) 

where x is the grade of the danger index, and  and  are the 
average and standard deviation of the danger index grades, 
respectively.  The potential grade probability estimated using 
log normal distribution ranged from 0.498 to 0.762.  After stan-
dardization with Eq. (18), the probability ranged from 0 to 1. 

 min

max min

( )
( ) '

( )
iX X

P F
X X





 (18) 

where Xi is the factor for standardization and Xmax and Xmin  
are maximal and minimal values of the landslide potential 
factors, respectively.  After estimating the potential grades to 
the landslide probability values in each grid of research area 
by using Eq. (17), and standardizing by using Eq. (18), we 
applied clustering analysis (SPSS, 2005) to automatically 
categorize the landslide disaster potential grades into four 
categories: low, medium-low, medium-high, and high land-
slide potential.  In addition, to verify the constructed slope 
landslide assessment model, several instances and types of 
major slope landslides that occurred in the study area in recent 
years were selected from the major landslide and debris flow 
information provided by the landslide disaster prevention 
information network of the Water and Soil Conservation Bu-
reau of the Agricultural Council, Executive Yuan.  GIS images 
of the landslide locations and the projected landslide potentials 
were used to conduct a superimposed imagery comparison.  
Fig. 2 shows the landslide-affected regions and the potential 
landslide regions in the superimposed images.  Nearly 70% of 
the affected regions are located in the medium-high and high 
landslide potential regions. 

V. ANALYSIS OF THE LANDSLIDE REGION 
DEVELOPMENTAL CHARACTERISTICS 

Combining the collected data regarding the slope landslides  
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Fig. 2. Superimposed landslide potential regions and locations of land-

slide disasters. 
 
 

triggered by the six typhoon and rainfall events, the landslide 
location interpretation results, and the application of the digi-
tal topographical diagrams of the study area, this study ex-
plored the landslide location developmental characteristics.  
Following Meunier et al. (2008) and according to the satellite 
image interpretation and landslide location judgment results 
before and after the typhoon and rainfall events, the distances 
between the landslide region peak (or bare land) and the 
nearest ridge top (dr), between the lowest point in the land-
slide and the nearest river (ds), and between the ridge top to 
the river (dt) were obtained.  Fig. 3 presents the changes in 
(dr/dt), (ds/dt), and landslides. 

The diagrams illustrate the distribution of landslides trig-
gered by the six typhoon and rainfall events during 2009-2011.  
A comparison of the number and area of landslides at various 
periods revealed that the number and area of landslides in-
creased substantially after rainfall.  In particular, the distribu-
tion of landslides before and after the rainfall of the 2009 
Typhoon Morakot (Table 1, Event A; Figs. 3(a) and 3(b)) was 
the highest.  Fig. 3(b) shows that the number and area of 
landslides in the study area increased drastically after Typhoon 
Morakot, with large-area landslides occurring.  Moreover, 
differences in the bare land spatial distribution before and after 
the six events facilitated analyses of the bare land restoration 
before each rainfall event.  Fig. 3 shows that the slope bare 
land in the study area reduced after the rainy season of the year 
(Figs. 3(b) and 3(g)) as vegetation recovery was apparent. 

Changes in the landslide locations are clear in the figures.  
Landslide locations biased toward the Y axis (dr/dt = 0) denote 
that the landslide started in the direction of the ridgeline.  
Conversely, landslide locations biased toward the X axis  
(ds/dt = 0) denote that the landslide extended along the river.  
The pre-Event A distribution depicted in Fig. 3(b) clarifies that 
most of the bare land in the study area is located near the river.  
However, after the landslide, the distribution is relatively even, 
with large bare land areas located near the river.  As shown in  
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Fig. 3.  Changes in dr/dt, ds/dt, and landslide range of the study area before and after the six rainfall events over 3 years. 

 
 

Figs. 3(c) and 3(d), certain small bare land plots are present 
near the ridge top.  After Event B, landslides occurred near the 
river with large-sized bare land plots.  According to Fig. 3(e), 
after Event C, although the area of the bare land increased, the 
locations changed slightly.  As shown in Figs. 3(f) and 3(g), 
before and after Event D, most bare land was located near the 
ridge top, similar to the case in Events E (Figs. 3(g) and 3(h)) 
and F (Figs. 3(i) and 3(j)).  However, after rainfall Events E 
and F, medium and large bare land areas developed near the 
river. 

VI. CONCLUSION 

This study applied GANN to interpret and classify satellite 
images associated with six typhoon and rainfall events over 
three consecutive years.  Moreover, multivariate HEM was 
adopted to establish a slope landslide potential model, and the 

landslide spatial distribution characteristics of the study areas 
were explored.  The findings of the study are summarized as 
follows: 

 
(1) GANN, multivariate HEM, and GIS were successfully 

applied in integrating and constructing a slope landslide 
potential evaluation process. 

(2) This study applied GANN to interpret and classify satel-
lite images of six typhoon and rainfall events for obtaining 
the disaster and land surface use information.  The image 
interpretation classification OA was nearly 80% and the 
average consistency index kappa value was 0.77, sug-
gesting acceptable accuracy at medium elevations. 

(3) This study applied the multivariate HEM in the successful 
evaluation of slope landslide potentials.  The landslide 
potential factors were slope, aspect, elevation, geology, 
EAR, index for land disturbance, distance from river, and 
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slope roughness.  A correlation test confirmed the low 
correlation among these factors.  The established assess-
ment model revealed that the influence of geological 
factors is the strongest, followed by that of aspect and 
EAR.  The influence of slope and the degree of land dis-
turbance on slope landslides are similar. 

(4) The projected danger index grade and standardized slope 
landslide probability are positively correlated.  Moreover, 
this study applied GIS in describing the landslide poten- 
tial probability diagram of the study area, revealing that 
nearly 70% of the regions damaged by the rainfall- 
induced landslides are located in the regions of medium- 
high or high landslide potentials. 

(5) This study successfully adopted the GIS tool module of 
ArcGIS and DEM to evaluate the ridge lines.  Further-
more, through satellite image interpretation, the landslide 
location spatial distribution data before and after rainfall 
at six different periods were obtained.  The findings sug-
gest that the number and area of landslides substantially 
increased compared with those before the rainfall events.  
In addition, bare land restoration analysis revealed that the 
slope bare land exhibited vegetation restoration after the 
rainy season. 

(6) The analysis results of the rainfall-induced landslide spa-
tial distribution characteristics suggest that medium and 
large landslide areas appeared to extend to the river after 
the rainfall events, although some landslides developed in 
the direction of the ridge top. 
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