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ABSTRACT 

In this study, a numerical simulation of the dynamic be-
havior of a novel floating structure with rigid skirts was con-
ducted using the dual boundary element method.  The thick-
ness of the skirts mounted beneath the structure was negligible.  
A theoretical analysis was derived from linear wave theory, 
and a nonlinear drag term was added in the motion equation  
of the floating structure for improving the solution. 

This study investigated the effects of double vertical skirts 
on a free floating structure and verified the validity of the 
analysis by comparing the result with those of Gesraha (2006).  
The results showed that adding double vertical skirts increases 
the overall mass of the structure, thus enabling the floating 
structure to resist wave forces for longer periods. 

The main purpose of this paper was to investigate the in-
fluences of the angles of the skirt attachment and the nonlinear 
drag term, on the moored floating structure.  This study fo-
cused on the changes in the structure’s motion in each mode, 
reflection and transmission coefficients, energy loss induced 
by the nonlinear drag term, and various angles of skirt at-
tachment.  The analytical results agreed with the experimental 
data.  Involving a nonlinear drag term in the analysis yielded 
superior results, particularly when the structure approached 
the natural period in the three modes of oscillation. 

I. INTRODUCTION 

Floating structures are increasingly used in the near shore 
regions for absorbing wave energy and prevent shoreline ero-
sion.  In addition, Floating structures are inexpensive and can 

be easily installed.  They can also be designed to meet specific 
aesthetic and functional requirements.  However, despite their 
universal advantages, floating structure are used mostly in 
low-wave-energy regions. 

In recent years, Sannasiraj et al. (1998, 2000) utilized the 
two-dimensional finite element method to analyze the moor-
ing forces and the responses of a single floating pontoon-type 
breakwater; this method has also been adopted to evaluate the 
hydrodynamic coefficients and the responses in the sway and 
heave of multiple floating structures.  Gesraha (2006) studied 
the reflection and transmission of incident waves interacting 
with a long rectangular breakwater with two thin sideboards 
protruding vertically downward in the form of eigenfunction 
expansions.  The exciting forces, added-mass and damping 
coefficients, responses of the structure, and the transmission 
coefficient were also examined.  Lee and Cho (2003) nu-
merically evaluated how an incident wave interacted with a 
moored pontoon-type floating breakwater.  In addition, several 
researches have focused on developing various forms of float-
ing structures and investigating their efficiencies.  McCartney 
(1985) classified floating breakwaters into four categories and 
discussed the advantages and disadvantages of various struc-
tures, mooring systems, and anchorage methods.  Isaacson et 
al. (1998) compiled the responses of a floating breakwater and 
compared the results with experimental and field data.  Murali 
et al. (1997) experimentally investigated the reflection and 
transmission characteristics of cage-floating breakwaters.  Wang 
(2010) experimentally studied a floating breakwater fabricated 
using several diamond-shaped blocks.  Besides, Lee and Ker 
(2002) used an analytical solution to solve the surge motion of 
tension leg platform and problem of linear waves with a po-
rous tension leg platform.  Discussion also included drag forces 
on mooring cables.  Williams (1996) investigated the behavior 
of a submerged breakwater of rectangular cross section, The 
viscous-dissipation coefficients were applied in the motion 
equation of structure.  It assumed that viscous effects can be 
modeled using independent flow fields formulation and that 
these effects do not contribute significantly to the exciting 
loads on the structure.  Huang and Tang (2009) studied the 
wave-body interaction of floating dual pontoon structures in a 
two-dimension fully nonlinear numerical wave tank based on  
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Fig. 1.  Definition sketch. 

 
 

the boundary integral equation method.  Lu (2011) presents 
two-dimensional numerical results of the dependence of wave 
forces of multiple floating bodies in close proximity on the 
incident wave frequency, gap width, body draft, body breadth 
and body number based on both viscous fluid and potential 
flow model. 

In this study, a numerical model was developed for ana-
lyzing the behaviors of a floating structure by using the dual 
boundary element method (DBEM).  The response amplitude 
operators, reflection and transmission coefficients, and energy 
loss induced by the drag effect were calculated and analyzed 
for different angles of skirt attachment with the whole range of 
a dimensionless parameter ka. 

II. THEORETICAL FORMULAE 

As Fig. 1 shows, a moored floating structure of a rectan-
gular cross-section, with width 2a and draft q1h, and with thin, 
rigid plates attached to its bottom, was on a sea of uniform 
depth h.  The thickness of the plates was negligible compared 
with the depth of the water and was adopted as zero.  Cartesian 
coordinates were employed with the z-axis directed vertically 
upwards from its origin on the undisturbed free surface.  The 
structure was located symmetrically at x = 0 and linked to the 
sea floor by using an idealized mooring system.  The motions 
of the structure, when subjected to a train of small amplitude 
waves of a height of 20 and frequency  traveling in the 
negative x-direction, were assumed to be small and linear.  The 
fluid in the interesting region was assumed to be inviscid and 
incompressible.  In addition, the motion of the fluid was irro-
tational and can be described in terms of velocity potential  
(x, z; t) = g0 /.(x, z)eit.  The potential of the analytical 
region conformed to Laplace’s equation. 

 2 ( , ) 0x z   (1) 

The analytical region was divided into three sub-regions by 
applying of two auxiliary boundaries (x = l1, l2) for analyzing 
the problem.  The sub-regions were termed as Region (I), (II), 
and (III), and were denoted by their complex potentials as  
j ( j = 1, 2, 3).  If the auxiliary boundaries are set far enough 
from the structure for wave motions in Regions (I) and (III) to 
be unaffected by the evanescent waves induced by the struc-

ture, then the potentials of Region (I) and (III) can be de-
scribed as follows: 

 1 1( ) ( )
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In complex forms, Kr and Kt are reflection and transmission 
coefficients, respectively.  k is the incident wave number, 
which is the root of the linear dispersion relationship 2 = gk 
tanh kh.  The potentials of Region (I) and (III), combined  
with their normal derivatives at auxiliary boundaries x = 1 and 
x = 2, are expressed as: 
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Region (II) is enclosed by the free surface Sf , the immersed 
structure surface Sb, the impermeable sea-floor surface Ss,  
and two fictitious boundaries S1, S2.  The boundary conditions 
on the free surface and sea floor are subject to the following 
equations, respectively: 

2
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2z g
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z
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The requirements of continuity of mass and energy flux 
across the fluid interfaces between each region imply the 
following matching conditions: 
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The floating structure is assumed to be homogenous and 
shows a small amplitude of surge, heave and pitch motions in 
response to the incident and diffracted waves.  The displace-
ment for the three modes of motion may be expressed as: 

 0 0 0 0
ˆˆ ˆ, ,i t i t i tX x x e Z z z e e             (14) 

where, ( , )o ox z  is the coordinate of the center of mass of the 

structure at rest; and ( , )o ox z  is its instantaneous position.  , 

 and  are amplitudes of surge, heave, and pitch motions, 
respectively.  When the floating structure is subjected to wave 
motion, the first order kinematic boundary on the immersed 
surface of the structure may be written as: 

ˆˆ ˆ
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 (15) 

The equation of the structure’s motion under the effect of 
the hydrodynamic wave forces, restoring force, mooring forces 
and viscous drag may be expressed as: 
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where, m is the mass of the structure, I0 is the mass moment of 
inertia around the center of the mass of the structure, p is the 
dynamic pressure of the fluid, and Fr, and Mr are the restoring 
force and moment, respectively.  The foregoing pressure of the 
fluid and restoring components are denoted by 

 i t
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The mooring system is considered the symmetric fore and 
aft of the structure.  Considering a mooring line AB, with its 
spring constant K and pretension Fo, the coordinates of the 
attachment point on the structure and sea floor are (xa, za) and 
(xb, zb), respectively.  By disregarding the inertia effects of the 
mooring line and the viscous forces on the line, Weng (2007) 

derived each component of the forces and moments by using 
the mooring system: 
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The drag force due to the water-particle velocity is negli-
gible when compared with the structural velocity.  Chakrabarti 
(1983) computed the drag force and moment in a particular 
direction and expressed it in terms of a drag coefficient times 
the structural velocity squared team: 

 1 2
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  (19c) 

where, Cdx, Cdz, Cdm are the drag force coefficients of surge, 
heave, and pitch motions of the floating structure, respectively.  
The nonlinear drag terms were linearized by expanding in a 
Fourier series and retaining only the first term.  These terms 
were written in a linear form as: 
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III. DEVELOPMENT OF THE THEORY 

1. Coefficients of Reflection and Transmission 

The coefficients of reflection and transmission are deter-
mined using the continuity of mass and energy flux on the 
fictitious boundaries.  Substituting Eq. (5) into Eq. (11), mul-
tiplying with cosh k(h + z), and integrating from z = h to z = 0, 
the reflection coefficient, Kr, can be expressed in terms of the 

normal derivatives of potential, 1 , as: 

0
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where  0 1 2 / sinh 2 / 2N kh kh  . 

Substituting Eq. (21) into Eq. (4), associating with Eq. (10), 
the relationship between the potential of the auxiliary bound-
ary, x = 1, and its normal derivative can be written as: 
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Similarly, the coefficient of transmission can be derived by 
substituting Eq. (7) into Eq. (13), multiplying with cosh k(h + 
z), and integrating from z = h to z = 0, to yield the following 
form: 
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The relationship between the potential and its normal de-
rivative on the auxiliary boundary, x = 2, can be obtained by 
substituting Eq (23) into Eq. (6), and associating with Eq. (12): 
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2. Motion of Floating Structure 

The motion amplitude of the structure is determined by 
stating Eq. (16), in terms of the potential b on the immersed 
surface of structure, as follows: 
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Eqs. (25)~(27) are the amplitudes of surge, heave, and pitch 
motions of the structure, respectively.  Substituting Eqs. 
(25)~(27) into Eq. (15), and associating with Eq. (14), the 
potential on the immersed surface of the structure can be 
written as: 
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3. Dual Boundary Element Method 

The above problem for the fluid potential of Region (II) is 
solved numerically by using the DBEM.  According to Green’s 
second identity law, the first equation of the DBEM for the 
potential of any point on the boundaries of Region (II) is 
subject to the potential on the boundaries combined with its 
first normal derivative. 

2
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where, ln1/ r  is the solution of Laplace equation.  nxz is the 
normal vector of point (, ).  When the boundaries enclosing 
Region (II) are partitioned into N segments, Eq. (29) indicates 
a matrix form as follows: 
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The second equation of the dual boundary integral formu-
lation for the points on the boundaries is derived as: 

2

' ' 2( , ) ( , ) 1 1
[ (ln ) ( , ) (ln )]

xz xz xz xz xz

ds
n n n r n n r

        


   
 

      

  (31) 

where, xzn  is the normal vector of point ( ' ',  ).  Eq. (31) also 

displays a matrix form: 

   ( , 1, 2, ..., )ij i ij
j

G H i j N
n


            

 (32) 

Matrices of Eqs. (30) and (32) are dependent on the geog-
raphy of the analytical domain and have been derived by Chen 
(1983).  Boundaries of the rigid skirts of the floating structure 
are degenerate boundaries since the thicknesses of the rigid 
skirts is assumed to be zero.  Eqs. (30) and (32) are a linearly 
dependent equations and cannot be solved directly.  However, 
the degenerated system can be desingularized by rearranging 
the matrix of degenerate boundaries between Eqs. (30) and 
(32), and formulating a new independent equations as follows: 

  * * ( , 1, 2, ..., )ij i ij
j

G H i j N
n


             

 (33) 

Substituting the boundary conditions of Region II, and  
Eqs. (8), (9), (22), (24), and (28), into Eq. (33), the potential 
and its normal derivative on the boundaries of Region II can  
be obtained.  The motion amplitude of each mode and the 
coefficients of reflection and transmission can also be ac-
quired by substituting the potential on the immersed surface  
of the structure into Eqs. (25)~(27) and Eqs. (21) and (23). 
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Fig. 2.  The experimental setup in detail. 

 

IV. EXPERIMENTAL SETUP 

A series of experiments were conducted in a two dimen-
sional piston-type wave flume for verifying numerical results.  
The flume was 50 m long, 1.0 m wide, and 0.8 m high.  An 
artificial beach with a slope of approximately 1:3 and covering 
a horizontal distance of 2.4 m was installed at the end of 
damping zone of the wave flume. 

A floating structural model, 50 cm long, 96 cm wide, and 20 
cm high, was set at a distance of approximately 21.5 m from 
the wave maker paddle for the experiment.  The model was 
equipped with two skirts, both 15 cm long and 0.2 cm thick, 
and consisted of acrylic fiber at the fore and aft.  The mass and 
mass moment of inertia of the floating structural model were 
approximately 43 kg and 1.16 kg.m2

, respectively.  The posi-
tion of the model’s center of mass was 10 cm under the free 
surface.  Four taut springs, each with a spring stiffness K of 
0.085 kgf/cm in air, pretension force of 1.44 kgf, and an in-
cline of 600 to the horizontal bottom, were employed to anchor 
the test model. 

Five wave gauges were set up for recording the wave evo-
lution.  The gauges G1 and G5 were for the incident and 
transmitted waves, respectively, and G2, G3, and G4 were for 
the reflected waves.  Moreover, two position transducers and a 
roller potentiometer were also mounted on the model for 
measuring the displacement and rotating angle of the model.  
The detailed setup is shown in Fig. 2. 

The three-mode displacements of the floating structure and 
its reflection coefficients were investigated during the model 
test.  In this paper, the reflection coefficients were obtained by 
the analytical method of Goda and Suzuki (1976). 

The model test was performed with regular waves, and the 
wave conditions for linear waves were selected from 0.8 to  
2.5 s for the wave period and 5 to 7 cm for the wave height.  
The water depth was maintained at a constant of 0.5 m 
throughout all model tests. 

V. RESULTS AND DISCUSSIONS 

1. Verification of Numerical Model in Free Body with 
Vertical Skirts 

The efficiency of the numerical model in simulating free 
body dynamics with or without rigid skirts was verified by  
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Fig. 3. Comparison between simulated and Gesraha results heave RAO 

with a = 0.5h, q1h/a = 0.5 and α = 0°.  (Line: present results; dot: 
Gesraha results) 

 
 

comparing the results with the results of Gesraha (2006).  As 
shown in Fig. 3, a good agreement between the present 
analysis (line) and the results of the eigenfunction expansion 
method (dot) derived by Gesraha can be clearly observed over 
the whole analytical range.  Obviously, the duration of the 
peak of the structure’s heave motion tends to increase with the 
length of the skirts.  This increase suggests that a change in the 
natural frequency of the structure’s heave motion occurs be-
cause of the skirts.  The purpose of making changes in the 
natural frequency of the structure’s motion was that water 
under the inner skirts follows the floating structure’s move-
ment, and this gave an additional mass to the structure when it 
was in motion. 

2. Motion of Moored Floating Structure with Skirts 

The response amplitude operators in surge, heave and pitch 
of the moored floating structure as a function of the dimen-
sionless parameter ka were analyzed for various angles of 
skirts attachments ( = 0, 30, 60, 90).  The numerical 
analysis proceeded per the conditions of experimental instal-
lation, and the drag coefficient in each mode of motion was 
assumed to be of the same value for simplifying the problem, 
i.e, Cd = Cdx = Cdz = Cdm.  The results of the analysis are pre-
sented in Figs. 4~7. 

Figs. 4~7 illustrate the numerical and experimental ampli-
tudes of the three-mode motions of the structure with vertical 
( = 0) or inclined ( = 30, 60, 90) skirts, modulating the 
dimensionless parameter ka.  Different drag coefficients (Cd = 
0.0, 1.0, 2.0, 3.0) were applied to understand the effects of 
drag force on the structure’s motions in the numerical analysis.  
Solutions were obtained in an iterating manner.  The amplitude 
in each mode of the structure’s motion was initially assumed to 
be zero, and a new set of values of motion amplitude were 
obtained using Eq. (33) for the next iteration.  The process was 
repeated until a numerical convergence was achieved in the 
amplitudes of each mode of the structure’s motion. 

The numerical solution for the results cited in Figs. 4~7 is 
shown as a solid line.  While the scattering of the experimental  
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(c) Pitch of moored floating structure with skirts.  
Fig. 4. Correlation of three modes motion of moored floating structure 

with skirts (a = 0.5 h, q1 = 0.4 and α = 0°). 
 
 

data may be because of differing amounts of nonlinear damping 
with different wave heights, the correlation between numerical 
and experimental results is much better with this added 
nonlinear damping term.  The nonlinear damping term pro-
vides a better solution particularly when the structure is ap-
proaching its natural period in three modes of oscillation.  As 
illustrated in the figures, the oscillation values of the analytical 
results around the natural period of the structure gradually 
decrease and approach the experimental results as the drag 
coefficient increases from 0.0 to 3.0. 

Figs. 4~7 show that, as the skirts attached to the bottom of  
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Fig. 5. Correlation of three modes motion of moored floating structure 

with skirts (a = 0.5h, q1 = 0.4 and α = 30°). 
 
 

the structure gradually increased their angles of attachment 
from 0 to 90, the natural period of the structure in each mode 
of oscillation increased.  Moreover, the oscillation of the 
structure in each mode decreased in range as the natural period 
approached when the skirts were horizontally directed.  This 
indicated that extending the angle of the skirts increased its 
overall mass when it was in motion. 

3. Reflection and Transmission Coefficients and Energy 
Loss 

In general, a floating structure provides effective defense  
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Fig. 6. Correlation of three modes motion of moored floating structure 

with skirts (a = 0.5h, q1 = 0.4 and α = 60°). 
 
 

against wave energy in low-tide area.  However, the natural 
period of the structure in each oscillation mode has a profound 
effect on wave reflection and the transmission coefficient.  
Figs. 8(a)~(d) shows the correlation between the reflection 
coefficient and ka when the angles of skirt attachment were  
 = 0, 30, 60, 90.  Except for the case of the structure with 
vertical skirts (Fig. 8(a),  = 0), the experimental reflection 
coefficients increased nearly linearly when the incoming wave 
period decreased.  Furthermore, the experimental results dis-
played no significant difference when the skirts were set up in 
an oblique angle ( = 30, 60, and 90).  In the test case of the  
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structure with vertical skirts, the reflection coefficient varied 
significantly as the natural period of the structure approached.  
The result of each analytical case is shown in Figs. 7(a)~(d) 
and represented as a solid line.  The reflection coefficient of 
the numerical analysis increased as the wave period decreased.  
However, the resonance of the moored floating structure 
caused a large motion corresponding to the structure’s natural 
period in each mode of motion, which enhanced the reflecting 
ability of the structure.  The natural period of the structure 
decreased in range as the thin skirts changed their direction 
from vertical to horizontal.  A narrow band around the natural  
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Fig. 8. Correlation between reflection coefficient and ka for four angles 

of skirt (α = 0°, 30°, 60°, and 90°). 
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Fig. 9. Correlation between transmission coefficient and ka for four 

angles of skirt (α = 0°, 30°, 60°, and 90°). 

period indicates a decreasing influence of the resonance period 
on the structure’s motions and its reflecting ability, possibly 
because the reflection coefficients of the experiment scatter 
linearly when the skirt is at an oblique angle ( = 30, 60, and 
90). 

The effect of the drag damping term on the reflection co-
efficient was similar to that in previous descriptions of struc-
tural motions, thereby providing an improved solution par-
ticularly as the natural period of the structure approached.  As 
the figure illustrates, the analytical results around the natural 
period of the structure gradually decrease in value and ap-
proach the experimental results as the drag coefficient in-
creases from 0.0 to 3.0.  In contrast with the results of struc-
tural motions, there is still a significant difference between the 
analytical and experimental results near the natural period. 

Figs. 9(a)~(d) shows the correlation between transmission 
coefficient and ka for four angles of skirt-attachment.  As 
shown in Fig. 9(a), results of the test agree with those of the 
analysis when the drag coefficient is equal to 3.0, except near 
the natural period of structure (ka = 0.8).  Thus, it indicates 
that increasing the drag term and a suitable drag coefficient are 
capable of enhancing the efficiency of analytical model, but 
there is still a significant difference between the experimental 
and numerical results near the natural period of the structure.  
The difference near the natural period of the structure in-
creases as the angle of the skirt becomes horizontal. 

The total energy in analytical Region (II) was discussed here 
for comprehending the effect of the nonlinear drag term on 
wave energy.  According to the law of conservation of energy, 
energy in analytical Region (II) must be constant and can be 
expressed by the reflection and transmission coefficients, i.e. 

2 2 1.T r tE K K     However, some loss of energy occurs when 

vortex shedding appears or drags on the surface of structure 
because of the viscosity of the fluid.  Figs. 10(a)~(d) show the 
distribution of total energy using analytically measured data.  It 
was found that energy loss happens in all cases of experimental 
results.  Besides, the area of major energy loss largely concen-
trates in the neighborhood of the natural period of the structure.  
This demonstrated that the resonance period of the structure is 
a critical factor affecting energy loss during the structure’s 
movement.  With the added drag term, numerical analysis 
provides a better solution and effectively describes the trans-
formation of energy in the inner analytical domain. 

VI. CONCLUSIONS 

In this study, a numerical model was applied using the 
DBEM to analyze the dynamic behavior of a moored floating 
structure with two rigid skirts attached to the bottom.  The 
thickness of the skirt was assumed to be zero.  Nonlinear drag 
terms were also considered during the theoretical analysis.  
Discussions focused on the influences of the nonlinear drag 
term and the angle of skirt-attachment on structural motion, 
reflection, and transmission coefficients.  The conclusions can 
be summarized as: 
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Fig. 10. Correlation between total energy and ka for four angles of skirt 

(α = 0°, 30°, 60°, and 90°). 

1) The numerical model is capable of analyzing the motions of 
a moored floating structure with rigid and extremely thin 
skirts attached to the structure’s bottom at different at-
taching angles, and its validity was verified by comparing 
the analytical results with experimental results. 

2) The inclusion of a nonlinear drag term in the numerical 
analysis provides a better solution, with regard to structural 
motions and energy transformation, particularly as the 
natural period of the structural approaches. 

3) The resonance period of a structure is a critical factor af-
fecting energy loss during structural motions.  The area of 
major energy loss is largely concentrated around the natural 
period of the structure. 
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