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ABSTRACT 

The early Earth is generally believed to be a hot planet with 
a primitive basaltic oceanic crust.  However, the question of 
how a batholiths-bearing continent was formed is still unre-
solved.  Although many hypothetical interpretations seem 
appealing, the origin and volume dilemma of the batholiths is 
still under debate.  According to recent literature, the Hadean 
Ocean is characterized by heat, acidity and reduction, sig-
nificantly unlike its counterparts in Earth’s history.  We have 
found that this crucial marine setting, favoring the chemical 
weathering of basaltic rocks, is the key element for forming 
and stabilizing the primitive continents through convergent 
tectonics and the anatexis of voluminous weathering-induced 
amorphous quartz and clay minerals. 

I. INTRODUCTION 

It is generally believed that the earth was initially a hot melt 
(Sleep and Windley, 1982; Hamilton, 1998).  Through cooling, 
an unstable thin-layered crust was repeatedly formed and torn 
apart to be recycled back into the earth’s mantle.  This pre- 
plate-tectonic setting is most probably predominated by ver-
tical mantle upwellings and/or plume diapirism along with 
delamination or sagduction rather than lateral movement of 
plates (Sharma and Pandit, 2003; Bedard, 2006; Sankaran, 
2006; Rollinson, 2007; van Hunen et al., 2008). 

As the hot dry recycling process continued, the out-gassing 
processes resulted in a water-layered primitive ocean (de Wit, 
1998; Morse and Mackenzie, 1998; Watson and Harrison, 
2005; Cawood et al., 2006; Papineau, 2010).  This allowed 
plate tectonics to proceed below sea level, signifying the onset 

of modern-style plate tectonics.  A common viewpoint holds 
that the process started earlier in the Archaean (Kusky and 
Polat, 1999; Cawood et al., 2006; 2009; Witze, 2006; Rollinson, 
2007; Condie and Kröner, 2008; Windley and Garde, 2009) or 
even Hadean time (de Wit, 1998; Harrison et al., 2005). 

Only a few intra-plate basaltic plateaus and seamounts or vol- 
canic islands developed under the plume dominated pre-plate- 
tectonic setting in the primitive ocean.  As modern plate tecton-
ics succeeded, primitive basaltic island arcs began to develop 
alongside trench systems.  These amalgamations of arcs and 
plateaus resulted in micro-continents (Kusky and Kidd, 1992), 
continents, and eventually even super-continents as a result of 
secular collision, folding, and granitization (Kisters et al., 2010; 
Tani et al., 2010; Griffin et al., 2011).  Evidence of such growth 
at accretionary convergent margins throughout geological time 
are well documented (Ben-Avraham et al., 1981; Card, 1990; de 
Wit, 1998; Komiya et al., 1999; Kusky and Polat, 1999; Sharma 
and Pandit, 2003; Cawood et al., 2009; Xiong et al., 2011). 

As a result of the high temperatures (Witze, 2006; Brown, 
2008), the newly formed primitive crust is widely accepted  
to have been basaltic crust (de Wit, 1998; Sharma and Pandit, 
2003; Furnes et al., 2007).  Similarly, the magma generated 
and involved in processes operating at any intra- and inter- 
plate regions must also have been basaltic.  The greatest di-
lemma currently facing us is the issue of how the continents 
gained their average andesitic composition as well as signifi-
cant granitic batholiths from their original basaltic setting. 

Various hypothetical models have been proposed (Table 1).  
In general, most of the models suggest that the partial melting 
of wet subducting slabs or the remelting and fractional crys-
tallization of the lower intra-crust are required to induce in-
termediate to silicic melts and leave the eclogitic residue 
sinking back into mantle (delamination).  These explanations 
seem appealing.  However, there are problems which remain 
unsolved: the mass balance problem, where the formation of 
huge batholiths appears to require far greater volumes of ba-
saltic magma than were actually present; the issue of granitic 
rocks in regionally metamorphosed areas seem to be of meta-
morphic origin; the lack of differentiation in oceanic basalts 
(Sharma and Pandit, 2003; Bedard, 2006; Foley, 2008; Shen et 
al., 2009), etc. 
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Table 1. Various hypothetical models. 

Hypothetical models References 

Partial melting of subducted 
plates 

Foley et al., 2003; Lopez et al., 2006; 
Smithies et al., 2003. 

Intracrustal melting Bowring and Housh, 1995. 

Arc magmatism and/or  
rising plumes 

Bedard, 2006; Campbell, 2003;  
Draut et al., 2009; Kroner and Layer, 
1992; Sharma and Pandit, 2003. 

A few others  

 
 
Based on laboratory experiments, there are three ways to 

induce intermediate to acidic melts: differentiation of basaltic 
magma through fractional crystallization, chemical differen-
tiation by wet partial melting, and the anatexis of sediments.  
Among these, the first two processes lead to the mass balance 
problem mentioned previously.  Therefore, the anatexis proc-
ess must be the most probable solution.  Even so, accepting 
this hypothesis raises further questions: is there any evidence 
supporting the anatectic origin of plutonic granitoids which 
are present in plate-convergence zones?  When and how were 
the water-bearing quartzose sediments or sedimentary rocks 
generated?  Where and how did these sediments and rocks 
accumulate in quantity?  What is the course of continent for-
mation within the scope of the anatexis process?  In solving 
these questions, this study integrates the results of interdisci-
plinary geoscience studies in order to explore the critical role 
which the anatexis process plays in Earth’s early history. 

II. DISCUSSION 

There is increased geochemical evidence, trace elements 
ratio (Ce/Pb, Th/La, Th/Nb ), REE, Sr-Nd and Sr isotopic data, 
indicating that continental sediment was involved in the for-
mation of many of the granitic plutons (Kusky and Polat, 1999; 
Plank, 2005; Windley and Garde, 2009; Tani et al., 2010; Bento 
dos Santos et al., 2011).  Meanwhile, the melting of formerly 
near-surface hydrothermally altered basalts, along with the 
melting of some combination of sediments, igneous rocks, and 
metamorphic rocks has also been found to give a melt of 
granitic composition, thus demonstrating the unequivocal and 
indispensable role of chemical weathering in crust formation 
(Foley, 2008; Shen et al., 2009).  Additionally, large granitic 
bodies found within plate-convergence zones worldwide have 
been interpreted as a result of anatexis (Hutton and Reavy, 
1992; Plank, 2005; Tani et al., 2010; King et al., 2011; Macera 
et al., 2011; Wang et al., 2011; Zheng et al., 2011; Adam et al., 
2012).  In other words, there is sufficient evidence to support 
the anatexis origin of plutonic granitoids in plate-convergence 
zones. 

The hot, acidic and reducing primitive Hadean Ocean is 
unique in geologic history.  Under such conditions, cation de-
pletion was much greater, a condition which favored the 
chemical weathering of basaltic rocks (Morse and Mackenzie, 

1998).  Through the decomposition of basaltic crust, soluble 
ions (Fe+2, Mg+2, Na+1, Ca+2) and amorphous quartz were 
continuously released in the primitive ocean.  This increased 
ion and amorphous quartz content led to the deposition of 
quartzose and iron-rich sediments, carbonate and evaporates 
(McGreevy, 1982; Morse and Mackenzie, 1998; Papineau, 
2010).  As a result, significant generation and accumulation of 
higher proportions of clay minerals and quartzose sediments 
occurred worldwide at the expense of the basalt in Hadean and 
early Archean oceans.  It worth noting that the increase of 
amorphous silica and iron ions was the crucial requirement 
needed in forming the unique banded iron formation at that 
early stage. 

The formation of the juvenile basaltic island arcs and pla-
teaus gradually increased the basalt-weathering products pre-
sent.  In particular, clays and quartz-enriched sediments were 
deposited across the seafloor, accumulating at the marginal 
shelves and slopes of island arcs and plateaus.  Since the ju-
venile basaltic island arcs and plateaus were fated to collide 
with each other, these unique sediments were scraped off, 
thrust-faulted, deformed, and coalesced into a larger land-
mass -- what we term a juvenile continent.  Along the course 
of collision, under strong compressional and shear stress, as 
well as higher temperatures within the elevated and thickened 
convergent zones, the clays and quartz enriched accretionary 
sedimentary deposits underwent complex deformation, meta-
morphism, and then syn- or post-tectonic intracrustal anatexis 
to form tonalite-trondhjemite-granodiorite plutons (Fig. 1). 

Once a juvenile continent had been formed, marginal ac-
cretionary terrains proceeded to develop, creating further com-
plex orogenic deformation, metamorphism, and magmatism 
responsible for the further growth of a continent.  It is believed 
that the formation, emplacement and/or intrusion of anatectic 
rhyolitic melt played the role of cement, fusing the juxtaposed 
tectonic terrains to assemble and stabilize the continents.  The 
convergence and amalgamation of various tectonic terrains 
and voluminous sedimentary deposits led to a thick, rigid cra-
tonic lithosphere, while the anatexis-induced plutonic grani-
toids lightened the lithosphere and prevented it from sinking 
into the asthenosphere.  This lighter rigid lithosphere was also 
classified as buoyant tectosphere or relatively high-velocity 
mantle root (Abbott et al., 1997; Schoene et al., 2008). 

As a whole, a newly formed juvenile continent may be 
composed of juvenile mafic island arcs, plateaus, and obducted 
fragments of oceanic crust, as well as accretionary sedimen-
tary wedges, including shallow peripheral shelf, trench and 
deep sea sedimentary deposits.  These different tectonic ter-
rains were thrust-faulted and coalesced through complex ac-
cretionary orogenic deformation, metamorphism and magma-
tism, comprising sedimentary, mafic to felsic volcanic and 
plutonic rocks as well as various metamorphic grade of said 
rocks.  These unique heterogeneous rock assemblages have 
been shown to have close similarities to those reported at 
Archean granite-greenstone terranes (Kusky and Polat, 1999; 
Windley and Garde, 2009; Adam et al., 2012). 
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Fig. 1. The conceptual model of forming a primitive continent.  (A) For the 

first time, plate tectonics proceeded below sea level, earlier in the 
Archaean.  Meanwhile, through subduction the juvenile basaltic 
arcs, plateaus were formed. Besides, clays and quartz-enriched 
sediments were gradually accumulated at the accretionary wedges 
(denoted by arrow).  MOR means middle ocean ridge.  (B) The ju-
venile basaltic island arcs and plateaus were fated to collide with 
each other.  (C) These unique sediments were scraped off, thrust- 
faulted, deformed, and coalesced with arcs/plateaus into a juvenile 
micro-continent (MC). Tonalite-trondhjemite-granodiorite plutons 
were formed through syn- or post-tectonic intracrustal anatexis of 
the crucial sediments.  (D) A primitive granitic-batholiths-bearing 
continent was formed through secular convergent tectonics and the 
anatexis of voluminous weathering-induced amorphous quartz and 
clay minerals. 

 
 
As plate tectonics proceeded, accretionary growth contin-

ued, alongside the rifting, consumption, and reworking on 
Earth’s continents.  However, the gradual cooling of the man-
tle and the emergence of thriving life in the ocean -- likely 
commenced during Hadean or Archean time -- caused irre-
versible evolutionary global changes in all four inter-reaction 
earth systems.  These changes included the vast increase of  
the mineral inventory (Card, 1990; Hazen and Ferry, 2010; 
Papineau, 2010).  As a result, the compositional and kinematic 
complexity of the juvenile continent and other tectonic terrains 
within the Hadean and early Archean is significantly unlike 
those of their counterparts in later periods of Earth’s history 
(Card, 1990; de Wit, 1998). 

III. CONCLUSION 

In summary, there is a wide consensus that secular collision 
under plate tectonics is the main driving force which incor-

porates different juvenile arcs and plateaus to form continents.  
However, the presence of the hot, acidic and reducing Hadean 
Ocean is critical to our theory.  By chemically weathering ba-
saltic rocks in order to produce amorphous quartz and clay 
minerals, the ocean directly catalyzed the anatexis of accre-
tionary sedimentary rock wedges, creating the cement neces-
sary to form and stabilize the cratonic core of our primitive 
continents. 
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