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ABSTRACT 

Spatial information surveyed by photogrammetry, airborne 
LiDAR and Mobile Measurement System (MMS) above 
ground level can be analyzed by scientists using standard 
geostatistical methodologies such as ordinary Kriging and 
sequential Gaussian simulation to interpolate heterogeneities 
of profiles from sparse sample data.  Proven effective by re-
searchers, the Kriging algorithm model is used by commercial 
data analysis packages for instant interpolation.  However, 
meaningful and reliable results only come with a comprehen-
sive understanding of the variogram associated with valid 
mathematical functions.  To capture spatial landscape varia-
tions from massive sample grids of satellite images, this paper 
presents a cloud computing-based automation approach to im-
prove topography interpolation by taking advantage of rapid 
computation speed through an open-source cross platform to 
enrich internet applications.  The research team conducted  
a pilot test on sand beaches, developed the Kriging Cloud 
Computing Framework, streamlined the Kriging algorithm, 
developed Kriging Variogram Data Bank and Parameter 
Management System, derived cross validation procedures and 
built in Application Programming Interface, API.  This new 
technology can benefit end users around the world in acquir-
ing of ground profiles and production of Digital Elevation 
Models (DEMs) while requiring only minimal knowledge of 
the Kriging Method.  This cloud computing system facilitates 
user data input, parameter selection, fast data analysis and 
model output.  The application of this new framework im-
proves remote sensing technology and GIS applications in a 

variety of unreachable terrains, such as deserts, swamps, and 
dense forests. 

I. INTRODUCTION 

A proliferation of new topographic sensing technologies has 
complicated the interpolation of data from disparate sources.  
Acoustic and light detection and ranging radar (LiDAR) is 
commonly used in conventional surveying above ground level, 
while single-beam echo sounder (SBES) and multi-beam echo 
sounder (MBES) are used below water or sea level.  Depth 
values depending on X and Y horizontal coordinates are meas-
ured by the above methods.  During the post-processing of the 
elevation profile, the integration of multiple methods requires 
significant experience.  Also, data with different densities 
must be interpolated and modeled to produce proper resolution 
and a reliable cross section using different interpolation tech-
niques.  In addition, researchers would like to be able to in-
corporate data acquired through geostatistics, remote sensing 
(RS), and geographic information systems (GIS) technologies 
made possible by the development of satellite technologies in 
recent years.  The demand for acquiring rapid and economic 
spatial information has exceeded the limits of conventional 
survey methods, driving the interest in new technologies. 

Additionally, a challenge of down-scaling spatial informa-
tion is to identify the coherence between images when using 
limited high-resolution information to produce a downscaled 
series of images (Atkinson, 2013).  Engineers require a reli-
able method to distinguish real changes in signal from noise.  
Researchers have developed complex models to simulate 
higher spatial resolution images, automatically identifying  
and locating land cover targets at subpixel scales (Dai et al., 
2009).  However, engineers often work on lower resolution 
images to achieve their goals.  Finally, the issue of climate 
change has created great demand for real-time applications 
that estimate and model areas with complex topography in 
large-scale 3D environments (Herzfeld et al., 2011; Wang et 
al., 2012; Rogelis and Werner, 2013).  This paper presents an 
open source, automation interpolation system based on the  
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Fig. 1.  Comparison between the Kriging method and linear interpolation. 

 
 

Kriging algorithm using cloud computing on the internet. 
Developed by the French mathematician, Georges Matheron 

in 1970, the Kriging algorithm offers optimal interpolation 
based on regression against observed z values of surrounding 
data points, weighted according to spatial covariance values.  
Although the Kriging method originated from seeking to es-
timate the most likely distribution of gold ore, based on sam-
ples from a few boreholes, it became a general method of sta-
tistical interpolation that can be applied within any discipline 
to sample data from random fields that satisfy the appropriate 
mathematical assumptions.  Competing modeling techniques 
include inverse distance, local polynomial, minimum curva-
ture, moving average, nearest-neighbor, Delaunay interpola-
tion methods, Polynomial Regression (PR), and Radial Basis 
Functions (RBF) etc.  A number of researchers have concluded 
that the Kriging Method offers the most satisfactory result 
overall (Karl, 2010; Aykut et al., 2013).  A simple illustration 
of Kriging approach compared with linear interpolation is 
shown in Fig. 1.  In addition to its mining and natural resources 
identification applications, Kriging has been widely used in a 
variety of disciplines, including: agricultural management 
(Johnson et al., 2012; Adjorloloa and Mutanga, 2013), water 
resources and hydrogeology (Coskun et al., 2010; Ma et al., 
2012; Schilling and Jacobson, 2012), environmental moni-
toring (Lin et al., 2009; Kumar et al., 2011; Lee et al., 2012), 
urban planning and real estate appraisal (Emadi et al., 2010; 
Liu et al., 2013), and quantifying environmental indicators 
(Shamsudduh et al., 2009; Jun and Ghosh, 2011; Atkinson, 
2013).  Another important and rapidly growing field of engi-
neering application of Kriging is the interpolation of response 
variable data from deterministic computer simulations, e.g. 
finite element method (FEM) simulations. 

Ordinary Kriging follows straightforwardly from the model, 
but small changes in the model function and its parameters can 
affect the Kriging error variances.  The Kriging method can 
only be advantageous if one thoroughly understands the theory 
behind it.  To enable users to skip the learning curve and ease 
the applicability of Kriging method, the research team stream-
lined the automation process by minimizing human error and 
optimizing all possible alternatives.  The Kriging method, 

combined with other technology, is producing rapid growth of 
advanced technology with many applications (Liao et al., 
2013).  The research team took advantage of rapid internet 
growth to develop a network of interconnected objects called 
the Internet of Things (IoT) (Ma et al., 2012).  This automa-
tion-in-processing approach enables end users to integrate 
scattered field point data and high-resolution remote-sensing 
images, providing a new basis to map unreachable terrain and 
allowing its future application in agricultural management, 
environmental habitat protection, conservation assessment 
and long-term ecological monitoring in various landscapes on 
the Earth’s surface. 

II. MAJOR RESEARCH ACTIVITIES 

1. Pilot Study 

It is prudent to exhaust the most current technology avail-
able today to validate the results of a pilot test.  Similar to a 
study that compared radar tomography (RT) results with those 
from a radar-sounding profiler using the principles of mass 
conservation (Morlighem et al., 2012), the research team 
constructed various variogram models in different directions 
and grid sizes, followed the ordinary Kriging method using 
software package EasyKriging 3.0, and then compared the 
model data with the actual field data obtained from LiDAR 
and Total Station on a sandy beach in Yen-Liao, Taiwan.  Table 
1 and Table 2 show the detail specification of the LiDAR 
LAMS 420i and Total Station LEICA 703 Model used in the 
pilot study, respectively.  As shown in Fig. 2, the size of the  
red block on the right is 160 m  80 m.  The pilot study also 
fine-tuned the standard operation procedure, derived coordi-
nate transformation, and identified the minimal precision 
when applying ordinary Kriging in local roughness on fracture 
surface topography compared to sequential Gaussian simula-
tion (Hirotaka and Giovanni, 2010).  The pilot study con-
firmed that the Kriging method is an adequate approach in 
interpolating ground profile within +/- 25 cm marginal accu-
racy.  A maximum 20 m distance between cross sections and 
no more than 10 m between data points are preferable. 

Prior to the pilot study, one must start a lengthy process 
constructing an adequate data variogram model to obtain 
meaningful output.  In the pilot study an initial aerial topog-
raphy collected by LiDAR compared with results from topog-
raphy estimated by Kriging estimation.  The results converge 
well and are agreeable with Gaussian model.  Also, the pilot 
study confirmed the need for the development of a mechanism 
simplifying the Kriging algorithm.  For the number of points 
and distribution data governs the Kriging estimate substan-
tially. 

2. Streamlining the Kriging Algorithm 

In the second stage of the research program, instead of 
adopting commercially available software, the team developed 
a comprehensive geostatistical methodology that accounts for 
roughness characteristics in fracture surface topography.  The  
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Table 1.  Detail model specification of LiDAR. 

Model LMS Z420i 

Distance Range 
Up to 1,000 m (80% refection); 
350 m + 10 (reflection) 

Distance Accuracy 8 mm (single); 4 mm (average) 

Light Beam Parameter 0.25 mrad = 0.014 

Built-in Program 
Setout/Surveying/Free Station/Area/Tie 
distance 

Speed 11,000 points/sec 

Scan Range 0 to 80 in vertical; 0 to 360 horizontal 

Scan Resolution 314 in. 

 
 
Table 2.  Detail model specification of total station. 

Model LEICA 703 

Angle Measurement 3”, 1 mgon 

Distance Measurement 
3,000 m (with reflector); 2 mm + 2 ppm 
170 m (w/o reflector); 3 mm  2 ppm 

Measuring Time 
< 1 sec (with reflector) 
3 sec (w/o reflector up to 30 m) 

Built-in Program 
Setout/Surveying/Free Station/Area/Tie 
distance 

Recording 
4,500 measurements and 7,000 fix points
RS232 interface for external connection 

Magnification 30X 

Plummet 
Laser: located in alidade, turn with in-
strument, accuracy 0.8 mm at 1.5 m 

 
 

 
Fig. 2.  Scanned Point Cloud of Sandy Beach in the Pilot Study. 

 
 

proposed approach requires characterizing small-scale frac-
ture surface roughness into numerous “locally defined pat-
terns” that recognize the relative height of a location compared 
to its surrounding locations.  The research team established  
the Kriging Variogram Data Bank from a massive 20 m grid 
1/5,000 DEM library sponsored by the Ministry of Interior of 
Taiwan.  Through minimization of local error variance and 
reproduction of local roughness characteristics into an objec-
tive function of simulated annealing, the fracture surface to-
pography process is improved by cross validation cycling.  
Research clearly indicated that the function for the spatial 
covariance, or more widely, of the variogram is crucial for a 
sound Kriging interpolation.  The variogram must be esti-
mated reliably and then modeled with valid mathematical  

Data Acquisition 

Select Kriging Method and Parameters 

Upload Data 

Calculate Kriging Variances 

Construct Initial Profile Model 

Identify Grid Information 

Down load Grid Information 

Yes 

No Cross Validation
SKAE     0 & SKV     1  

 
Fig. 3.  Flowchart of ordinary data processing. 

 
 
functions (Oliver and Webster, 2014).  The research team 
streamlined the flow chart of ordinary data processing as shown 
in Fig. 3. 

3. Cross Validation 

Researchers conducted cross validation procedures and 
Monte Carlo simulations to quantify the uncertainty in the 
resulting map (Arieira et al., 2011).  Cross validation showed 
that accuracy in classification varies with the targeted object 
type, as a result of sampling density and configuration.  A map 
of uncertainty derived from Monte Carlo simulations revealed 
significant spatial variation in classification, but this had little 
impact on the proportion and arrangement of the targeted 
objects observed.  These results suggested that mapping im-
provement could be achieved by increasing the number of 
field observations of those objects with a scattered and small 
patch size distribution; or by including a larger number of 
digital images as explanatory variables in the model. 

The objective of cross validation is to minimize the Stan-
dardized Kriging Average Error, SKAE.  In other words, the 
deviation between the projected values and the actual values 
should be minimized.  The formula of Standardized Kriging 
Average Error is: 

 
*

1

1
0

i

n i i

i
Z

Z Z
SKAE

n 

 
  

  
  (1) 

where n is the number of actual data points, *
iZ  is projected 

Covariance, Zi is an actual value, and 
iZ is the Kriging 

Variance. 
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Fig. 4.  Models used in the Experimental Variogram. 

 
 
The second objective of cross validation is to push the 

Standardized Kriging Variance, SKV, toward unity, indicating 
consistency between projected values and actual values.  The 
formula of Standardized Kriging Variance, SKV is: 

 
* 2

21
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where 2

iZ is the Kriging Variance Coefficient, is calculated as: 

  2 *

0i

n

z i i ii
Z Z   


    (3) 

 is a constant and  represents weighing factors.   (h) is the 
Experimental Variogram which incorporates four different 
models, including Model in Nugget Effect, Spherical, Expo-
nential, and Gaussian Models as shown in Fig. 4.  This re-
search program used the Spherical Model where the curve 
value reaches the constant, Sill.  Sill is the combination of the 
Scale and Nugget Effect, C0.  The model dictates the effect of 
variations from points within a specific distance range.  The 
formulas of the Spherical Models are: 

 
3

0 1 1.5 0.5 ,
h h

h C C if h a
a a


           

     
 

  0 1 ,h C C if h a     (4) 

The cross validation procedure includes the following steps: 
(a) Construct an initial variogram model and its parameters in 
accordance with the variogram function obtained from sample 
data; (b) Remove the first observed value Z(X1) as unknown;  
(c) Establish Kriging variance by using the rest of the data 
observed and estimate the Z *(X1) value at point X1; (d) Reas-
sign the original Z(X1) value back to the data series.  Repeat 
steps (a) to (d) at all points until all values are estimated.  (e) 
Analyze the original data and estimated values using proper 
statistics, such as SKV.  (f) Justify the adequacy of the model 
based on previous step; (g) Repeat steps (a) to (f) adjusting  

Kriging
Service API 

Glassfish 

Supporting
System 

Kriging
Variogram
Data Bank 

Parameter
Management

System 
Kriging

Estimator 
 

Fig. 5.  The Kriging cloud computing framework. 
 
 

parameters or selecting other models until satisfactory results 
are obtained. 

4. User Friendly Cloud Computing System 

The overall Kriging cloud computing framework features 
several key components written in a common server-side pro-
gramming language, JavaScript on Java 2 Platform Enterprise 
Edition (J2EE).  As shown in Fig. 5, an open-source applica-
tion server sponsored by the Oracle Corporation called Glass-
fish hosts two of the main framework components: the Kriging 
Algorithm Chamber and the Kriging Variogram Data Bank 
supported by the Google Web Tool (GWT).  The Kriging Al-
gorithm Chamber contains formulae and constants of Simple 
Kriging, Ordinary Kriging and Universal Kriging.  The Kriging 
Variogram Data Bank consists of various local variograms 
characterized from massive DEMs.  The information exchange 
mechanism adopts JSON-RPC, a lightweight remote proce-
dure call protocol to invoke systems.  The application pro-
gramming interface (API) developed by the research team 
specifies the details from initiation of a notification to re-
ceiving responses from the Kriging Parameter Management 
System, Kriging Estimator and other associated systems. 

III. RESULTS AND ANALYSIS 

1. Cloud Computing System 

The system is secured at the server of the Ocean Surveying 
Laboratory, Department of Harbor and River Engineering, Na-
tional Taiwan Ocean University (http://140.121.145.85/osl- 
Krige-war).  End users may upload a profile data file and assign 
the targeted grid to start the Kriging Analyzer process.  The 
Kriging Analyzer follows the flowchart shown in Fig. 6 while 
the Kriging Estimator will process data specified by the API 
following the flowchart shown in Fig. 7.  After data entry, the 
interactive system allows end users to specify all parameters to 
start model construction at the targeted area of interest as 
shown in Fig. 8.  A typical output shows the selection of a 
proper variogram in two directions, x and y by the cloud 
computing system as shown in Fig. 9.  Several sample results  
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Fig. 6.  Flowchart of the Kriging Analyzer. 
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Fig. 7.  Flowchart of the Kriging Estimator. 

 
 

 
Fig. 8.  Defining the area of interest in the Kriging Analyzer. 

 
 

 
Fig. 9.  Selecting a proper variogram in two directions, X and Y. 

Table 3.  Sample results of Kriging modeling. 

Model  
Parameters Photo Series 

No. 
Longitude Latitude 

Key Axis 
Isotropy 

a C0 C1

94171005 120.383 22.49102 45 30 0.04 0.25

94171006 120.3831 22.49824 0 40 0 0.23

94171028 120.4578 22.44451 0 40 0 0.29

94171029 120.4582 22.44668 57 50 0.008 0.29

94182051 120.2583 22.62216 0 30 0.009 0.09

94182061 120.2829 22.5894 60 40 0.009 0.09

94182072 120.2959 22.57321 32 60 0.009 0.11

94182083 120.3081 22.54526 45 60 0.004 0.13

94182094 120.3395 22.52318 45 60 0.009 0.05

94183010 120.2412 22.74815 0 30 0.004 0.27

94183020 120.2534 22.7231 0 40 0 0.27

94183030 120.2534 22.69511 49 50 0.001 0.23

94183040 120.2499 22.65626 0 60 0.001 0.29

94183050 120.2507 22.64669 0 40 0.001 0.29

94184006 120.1361 22.99812 45 30 0.001 0.29

94184017 120.1581 22.96428 0 30 0.003 0.29

94184027 120.1734 22.94775 0 30 0.001 0.27

94184037 120.1738 22.92084 0 30 0.003 0.29

94184047 120.1798 22.89812 0 40 0.004 0.27

94184058 120.1904 22.87325 10 50 0.002 0.29

94184068 120.1927 22.84815 0 30 0.009 0.09

94184078 120.1898 22.814 0 40 0.001 0.27

94184089 120.2176 22.7968 26 60 0.004 0.15

94184099 120.229 22.7732 0 40 0.009 0.25

94193013 120.0769 23.19861 0 40 0.001 0.25

94193023 120.0648 23.17416 0 40 0.001 0.25

94193033 120.0581 23.15696 0 40 0 0.23

94193042 120.0572 23.14522 0 40 0.003 0.27

94193043 120.0581 23.14811 0 30 0.002 0.13

94193052 120.0349 23.09885 0 40 0.009 0.27

94193062 120.0332 23.0853 0 40 0 0.27

94193072 120.0374 23.07105 0 30 0 0.19

94193082 120.0581 23.04788 0 50 0.002 0.03

94193083 120.0581 23.0477 0 60 0 0.29

94193094 120.108 23.02307 90 40 0.001 0.27

94193095 120.1082 23.02325 0 40 0.002 0.29

Note: Key Axis Isotropy defines the covariance in length and angle 
between two data. 

 
 

of Kriging Modeling followed by cross validation are listed in 
Table 3.  Currently, the overall input-output interfaces are in the 
Chinese language.  An English user manual is in development 
to prepare for conversion to an English version interface. 

2. Future Development of the Study 

As indicated by Hession and Moore, Kriging and spline- 



 C.-T. Lai et al.: The Kriging Cloud Computing Framework: Interpolation of Topography by Cloud Computing 539 

 

 
Fig. 10.  Divisions of aerial photos of Taiwan. 

 
 

based studies often focus on providing improved predictions 
rather than understanding.  (Hession and Moore, 2011) It is 
recommendable to all users to familiarize with the bases of 
Kriging algorithm.  This research developed the Kriging cloud 
computing framework and facilitates a self-learning tool by 
integrating multidisciplinary technology.  A pilot study at a 
Yen-Liao sandy beach laid the fundamental foundation of the 
system.  More detailed iterations and complicated modeling of 
the majority of rocky and hilly areas on the east coast of Tai-
wan strengthened the knowledge gained and showed the need 
for further research.  Taiwan is an island with a length of four 
hundred kilometers and a width of one hundred kilometers.  
The total area is 36,000 km2.  Two-thirds of Taiwan’s land-
mass is covered by the Central Mountain Range where its  
peak, Yu Shan, is 3,952 meters in height.  Taiwan’s eastern 
two-thirds terrain is mostly rugged mountains; flat to gently 
rolling plains cover the west.  The mountainous area above 
1,000 meters occupies 32% of the island’s area, hills and pla-
teaus between 100 meters and 1,000 meters cover 31%, and 
the rest is plains with elevation below 100 meters.  The re-
search team continues the effort in an attempt to cover every 
possible landscape around the island as shown in Fig. 10.  
Since natural disasters usually result in widespread destruction 
of property or loss of life, and more than 75 percent of Taiwan 
is urbanized, hazard prevention and emergency response is 
imperative today.  Once completed, the Kriging cloud com-
puting framework provides a comprehensive data process 
engine applicable to urban planning, disaster mitigation, and 
long term earth surface observation, even in unreachable  
terrain.  Finally, as the global warming continues to melt  
Antarctica’s ice and threatening the oceanic and near shore 
wildlife, the research may further develop an instantaneous, 
interactive tool for marine time research on the impact as-
sessment of climate change. 

IV. CONLCUSION 

There have been several reliability and cost issues related to 

the interpolation of topography surveyed by satellite images 
with differing resolution or acoustic and LiDAR from human 
operation.  Fusion of multi-technologies and obstacles in re-
mote areas frequently raise concerns about the proper training 
and personal safety of field investigators.  To produce thor-
ough ground profiles in a conventional manner, surveying 
crews sometimes must risk their lives to physically penetrate 
difficult areas to conduct surveying through direct contact.  
Moreover, timing is crucial and the data collected must be 
thorough for the decision maker to make a timely, compre-
hensive analysis.  It is desirable to measure the overall spatial 
information in a short period of time by adopting functions 
validated through a rich data bank and taking advantage of the 
speed of the internet.  The research program shortened the 
operational path, streamlined the process, and pushed the 
envelope of what cloud computing can offer.  This paper re-
ports the development of a cloud computing framework based 
on the Kriging algorithm and produced an example of the 
automatic interpolation of near-shore sea bed and beach pro-
file.  This framework should be widely applicable to an array 
of remote locations including deserts, swamps, dense forests, 
and rugged mountains or even aiding in the exploration of 
other planets in the universe. 
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