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ABSTRACT 

The definition of the connecting edge(s) between two ver-
tices in a geography type is the great elliptic minor arc in 
Microsoft SQL Server’s Geography Type.  Similar to the way 
an edge is defined by Microsoft SQL Server, an edge in 
Geodyssey’s Hipparchus library is also defined as a great 
circle arc on a reference sphere.  Using Hipparchus for their 
computations, IBM’s DB2 Geodetic Extender and Informix 
Geodetic Datablade share this definition.  Compact formulae 
are given for the great elliptic sailing on a spheroid providing 
solutions to both the forward and inverse problems with ex-
ceptional accuracy, and latitude in terms of longitude.  The 
solution incorporates a closed form for the azimuth and the 
derivation of the algorithm is presented and illustrated.  In 
addition, the area of polygon bounded by the elliptic arcs is 
treated.  This paper also shows that a computer algebra system 
is a powerful tool to solve mathematical derivations in navi-
gation, geodesy, and cartography. 

I. INTRODUCTION 

Lines, polygonal paths and polygons are widely used in the 
description of geospatial data, and they are usually defined in 
terms of their endpoints and vertices.  The definition of the 
connecting edge between two vertices is the shorter great el- 
liptic arc in Microsoft SQL Server’s Geography Type (Kallay, 
2007; Microsoft, 2013).  Similar to the way an edge is defined 
by Microsoft SQL Server, an edge in Geodyssey’s Hipparchus 
library is also defined as a great circle arc on a reference sphere 
(Geodyssey, 2013).  Using Hipparchus for their computations, 
IBM’s DB2 Geodetic Extender and Informix Geodetic Datab-
lade share this definition (IBM, 2013). 

The result of any computation, e.g. the length of a path or 
the intersection of polygons, depends on the definition of the 
edges that connect these points.  On a planar map, the edge 
between two points is obviously the line segment that connects 
them, but on an ellipsoidal earth model the choice is not ob-
vious, and it varies between different software products.  While 
differences in accuracy and performance are to be expected, it 
is a sad state of affairs when different software packages dis-
agree on the theoretical results of their computations.  The 
paper (Kallay, 2007) presents the definition of edges in Mi-
crosoft’s SQL Server’s Geography Type, proposing it as an 
industry standard.  It stands to reason that a round earth edge 
should satisfy the following requirements: 

 
1. Locally, an edge should be experienced as straight. 
2. A pair of points should define a unique edge between them. 
3. An edge should admit a differentiable parameterization, 

which assigns a point on the edge to every real number 
between 0 and 1. 
 
The geodesic is the curve on the surface of an ellipsoid de-

fining the shortest distance between two points.  Kallay (2007) 
points out that geodesic curves score poorly on the require-
ment 2, 3, and even on 1 they are not the obvious choice: 

 
1. While the geodesic curve is the shortest path that is con-

fined to the surface, most human activities take us beyond 
the surface, for example, surveyors measure along straight 
lines of sight and airplanes fly miles above the surface of 
the globe. 

2. There are numerous (not necessarily antipodal) pairs of 
points on an ellipsoid between which there are more than 
one short geodesic (Rapp, 1991). 

3. Computing points along geodesic curves is notoriously 
difficult and expensive.  An exact differentiable parame- 
terization is not known, and approximate ones are also dif-
ficult and expensive to compute. 
 
Classical surveying suggests the definition of an edge as a 

normal section (Rapp, 1991), which is a plane curve created  
by intersecting a plane containing the normal to the spheroid  
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Fig. 1.  A great ellipse on a spheroid. 

 
 

with the surface of the spheroid.  Alas, this definition is rarely 
unique.  The surveyor’s plane at the other endpoint may define 
a different normal section. 

The paper (Kallay, 2007) evaluates the definition of the 
great elliptic arc against the above stated requirements: 

 
1. Edges are experienced as straight or approximately straight 

in several senses: As a great elliptic arc, an edge is planar.  
The angular deviation of its plane from a surveyor’s planes 
at either endpoint is no more than 12’.  This translates to 
about 2.8 cm for an edge whose length is 10 km.  An edge is 
approximately the shortest path between its endpoints – the 
length of no edge exceeds the geodesic distance by more 
than 0.02%.  In the space of direction, the edge is a line 
segment, and so are its gnomonic projections. 

2. Every pair of non-antipodal points defines a unique edge. 
3. The parameterization is simple and differentiable.  The 

parameterization as a quadratic rational Bezier curve may 
be slightly more expensive to set up but very efficient for 
generating multiple points along the edge. 
 
The great elliptic arc on spheroid has been investigated in 

(Bowring, 1984; Walwyn, 1990; Williams, 1998; Earle, 2000, 
2008; Kally, 2007; Tseng and Lee 2010), but is rarely men-
tioned elsewhere.  The great elliptic arc between two points P1 
and P2 on a spheroid, centered at O, is the minor arc of the 
ellipse of the intersection between the spheroid and the plane 
OP1P2 (Fig. 1).  If the two points are antipodal, the collinear 
points P1, O, and P2 do not determine a unique plane, in such a 
case it would be reasonable to choose the route passing through 
the two poles of the spheroid.  The azimuth at the point P1 is 
the angle that the tangent at P1 to great ellipse P1P2 makes with 
the meridian through P1, and is measured from the clockwise 
direction northerly.  The azimuth at arbitrary points on the 
great ellipse would be similarly defined (Bowring, 1984). 

Some approximate formulae, the great elliptic equation and 
great circle equations have been provided in a number of pa-
pers (Earle, 2000; Pallikaris and Latsas, 2009; Tseng and Lee 
2007a, 2007b, 2010, 2012, 2013) that have studied this prob-
lem of the great ellipse sailing and achieved remarkable results.  

However, the existed formulae need cumbersome algorithms 
and their accuracies are not very high.  In addition, the mathe-
matical derivations in those literatures are a bit tedious, and 
abstruse, hardly suited for coding (Bowring, 1984; Pallikaris 
and Latsas, 2009).  The direct solution was also not completely 
provided in those articles (Earle, 2011).  For these reasons, in 
this paper we revisit the solution for the great elliptic arc and 
provide a more straightforward and compact mathematical 
derivation of the spherical trigonometric solutions.  This paper 
also gives a general inverse and direct solution attaining any 
accuracy requirement for the calculation of the great ellipse 
sailing. 

In the mathematical derivation, we consider the direct and 
inverse scenarios to produce solutions determining the great 
ellipse from one point and its azimuth or between two points.  
Furthermore, the interpolation for latitude in terms of longi-
tude between end points of a great ellipse on the spheroid has 
not yet been found in the literature.  As a consequence of these 
observations, the complete solution to the great ellipse pre-
sented here will include a method to determine latitude for any 
specified longitude along the ellipse.  Because the calculation 
of the area of polygon bounded by the geodesics needs cum-
bersome algorithms (Sjöberg, 2006), the alternative calcula-
tion of the area of polygon bounded by the great elliptic arc is 
also provided here.  The accuracies attained can satisfy the 
requirement of ECDIS and GIS environments.  Finally, we 
give the full formulae of spherical trigonometry that can easily 
be coded in a programming language so that readers should 
comprehensively grasp the meaning of the geometry. 

II. PARAMETERS OF THE GREAT ELLIPSE 

Using geodetic and geocentric latitudes, a point P on the 
surface of a spheroid such as Earth can be represented as a 
vector function of longitude , geodetic latitude , or geo-
centric latitude . 

 ( , )P x y z  


 

 2( ) cos cos , cos sin , (1 )sinN e        (1) 

and 

   ( , ) ( ) cos cos , cos sin , sinP x y z R        


 

  (2) 

where e is the eccentricity, and 2 2 1/ 2( ) /(1 sin )N a e    is 
the radius of curvature of the prime vertical, and 

 
1/ 22 2 2( ) (1 ) /(1 cos )R a e e      . (3) 

The following equation can transform Cartesian coordi-
nates of a point on the spheroid to geodetic coordinates. 
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Fig. 2.  The azimuths along a great ellipse on spheroid. 

 
 

2 2 2( , , ) atan2( , (1 ) )x y z z e x y      

( , , ) atan2( , )x y z y x   (4) 

where atan2(y, x) is the four quadrant arctangent of the ele-
ments of x and y supporting to the interval    . 

The geodetic and geocentric latitudes are related by 

 2atan2 (1 )sin , cose       (5) 

The azimuth at point P is the angle that the tangent at P to 
the great ellipse makes with the meridian through P, and it is 
measured in the clockwise direction northerly.  The azimuth is 
also the angle between the meridian plane and the normal 
plane containing the velocity vector at point P.  The normal 
plane usually is slightly different from the great elliptic plane 
at point P. 

From the above definition, the azimuth can be obtained 
from the inner product of the velocity vector and the unit 
parallel tangent vector dividing by the inner product of the 
velocity vector and the unit meridian tangent vector at point P, 
as follows (Tseng and Lee, 2010). 

 atan2( , ),V E V NT T T T   
   

 (6) 

where the vectors VT


, NT


, and ET


 are the unit velocity vector, 

the unit meridian tangent vector, and the unit parallel tangent 
vector respectively (Fig. 2). 

The auxiliary spherical azimuth also can be represented in 
the similar equation: 

 'atan2( , )V E V NT T T T   
   

 (7) 

The spherical unit meridional tangent vector is the linear 
combination of the geodetic meridional tangent vector and the 
unit normal PN


 to the spheroid at point P: 

 ' cos( ) sin( )N N PT T N        
  

 (8) 

The normal to spheroid at point P and the unit velocity 
vector at point P are orthogonal, so the inner product of the 
two vectors equals to 0.  Substitute Eq. (8) into Eq. (7) to 
obtain (Bowring, 1984; Earle, 2008): 

 atan2 , cos( )V E V NT T T T        
   

 (9) 

Therefore the following relations exist: 

  atan2 cos( ) sin , cos        (10) 

and 

  atan2 sin , cos( ) cos        (11) 

Application of the spherical trigonometric formula gives 
the azimuth at point P1 on the sphere. 

1 2 12 1 2 1 2 12atan2(cos sin , cos sin sin cos cos )          (12) 

Use Napier’s mnemonic and spherical trigonometric for-
mulae to find the longitude of the node which is the intersec-
tion between the great ellipse and the Equator. 

 1 1 1 1atan2( sin sin ,cos )e        (13) 

or 

1 1 2 12 1 2 12atan2(sin cos sin , sin cos cose          

1 2cos sin )  .  (14) 

where 12 = 2  1 is the longitude difference. 
The above and following subscripts 1 and 2 denote the cor-

responding value of departure and destination and subscript  
12 is the corresponding different value from destination to 
departure.  The distance on the great elliptic arc is measured 
from the node because the node is the initial point in the dis-
tance integral.  Using the spherical trigonometric formula 
gives the formulae of angle between two points (Fig. 3): 

 12 1 2 1 2 12cos sin sin cos cos cos        (15) 

and 

2 2 2
12 2 12 1 2 1 2 12sin cos sin (cos sin sin cos cos )          . 

  (16) 

This arccosine formula using Formula (15) in above equa-
tion has large rounding errors if the angle is small and the  
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value of arcsine formula is the interval  / 2 / 2  .  The 

following formula is accurate for the most angles and has 
intervals between    . 

 12 12 12atan2(sin , cos )   . (17) 

The latitude of the vertex along a great ellipse is: 

 1 2 12 12cos cos cos sin / sinV     , (18) 

or 

 1 1cos cos sinV     (19) 

where 1 is the initial azimuth of departure on the auxiliary 
sphere. 

The geocentric latitude of vertex on a great ellipse is the 
angle that the plane of the great ellipse makes with the plane  
of the Equator.  The minor axis of a great ellipse is from the 
origin O to the vertex, therefore the eccentricity of the great 
ellipse is: 

 
2 2

2 2 2

( ) sin

1 cos

v v

v

a R e

a e

 





 


 (20) 

III. THE GENERAL FORMULA OF THE 
LENGTH OF A GREAT ELLIPTIC ARC 

Using Napier’s rule gives the geocentric angle along a great 
ellipse from node. 

 atan2 sin( )sec , cos ( )e V e          (21) 

Using Eq. (5) gives the relationships between the geodetic 
and geocentric angles along a great ellipse. 

 2atan2 sin , (1 )cos        (22) 

and 

 2atan2 (1 )sin , cos        (23) 

The distance from the node of the equator to one point 
( , )P  


 on a great ellipse is given by standard oft-studied 
meridional arc-length formula (24). 

 
0

( ) ( )L d


      (24) 

where 3
2

2

2 2

(1 )
( )

(1 sin )

a  
 





 is the radius of curvature for 

the great ellipse. 
The integral of arc length lacks convenient anti-derivatives.  

The binomial expansion series of integrant can discover the 
analytic solution term by term.  The closed form of the general 
differential equation is usually unavailable.  But the power 
series representation is always a welcome solution.  Expand-
ing the RHS of the Eq. (24) by binomial theorem as a rapidly 
convergent series yields Eq. (25). 

 2 2 2

0
0

3
( ) (1 ) ( 1) ( sin )2i i

i

L a d
i


    





            
 . 

  (25) 

Using power-reduction formulas (26) expands the powers 
of sine in RHS of Eq. (25). 

 
2

1

1 2
sin ( 1) cos(2 )

/ 22 2
2

n

n k
n n

k

n
n

kn
n k

 


             
 . (26) 

Evaluating the integral of powers of sine gives:  

2

0
1

( 1) sin(2 )

1 2sin
/ 22 2

k
n

n
n n n

k

n
kn

kn
J d

n k





  


 
          

 
 . 

  (27) 

Substitute Eq. (27) into Eq. (25) and expand it to obtain the 
follows: 

 2 2
2

0

3
( ) (1 ) ( 1) 2i i

i
i

L a J
i

  




      
 

  (28) 

Expanding Eq. (28) yields Eq. (29).  The general solution of 
integral (28) can be represented in terms of sine of multiple 
angles as the following. 
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2 2
2 2

0 1

2
( 1) sin(2 )3

21
( ) (1 ) ( 1) 2

2 2

k

i
i i

i i
i k

i
k

i i k
L a

i ki


   



 

  
                     

  

   

  (29) 

Rearrange (29) to obtain general solution (30). 

 2
0 2

1

( ) (1 ) sin(2 )i
i

L a M M i   




 
   

 
  (30) 

where  

 2
0 2

0

3
2( 1)

2
2

k
k

k
k

k
M

k
k






           
  

and  

 2
2 2

3
2( 1)

2
2

i k
k

i k
k i

k
M

k ii k






            
 . 

The following matrix (31) (Bian and Chen, 2006) tabulates 
the coefficients of sine function of Eq. (30) obtained by trun-
cating the expansion at order ε12 and M12 up to ε10 and M10.  
The users can choose any expression of higher order to attain 
the high accuracy of calculation of the great elliptic arc lengths.  
Eq. (29) is the general geodetic formula for the accurate cal-
culation of meridian arc length.  Since the integral (30) is ver-
satile, applying this integral can attain any accurate require-
ment for geodetic and sailing calculation. 

0

2

4

6

8

10

3 45 175 11025 43659
1

4 64 256 16384 65536

3 15 525 2205 72765
0

8 32 1024 4096 131072

15 105 2205 10395
0 0

256 1024 16384 65536

35 105 10395
0 0 0

3072 4096 262144

315 3465
0 0 0 0

131072 524288

0 0 0 0 0

M

M

M
M

M

M

M

     
 
 
 
 

  
    
 
 
 
 

2

4

6

8

10

1

693

1310720











 
 
 
 

  
  
  
  
  
  
  
  
  
     

 
   

 

  (31) 

If point P is located on the same semi-sphere of the de-
parture, then the length of elliptic arc can be computed as the 
following. 

 1Dist( ) ( ) ( )L L     (32) 

If the point P is located on the opposite semi-sphere of the 
departure, then the distance can be computed by 

 1Dist( ) ( ) ( )L L     (33) 

There is an inversion series to Eq. (24), described by Syn-
der (1987) and attributed to earlier work (Adam, 1921) that 
used the Lagrange Inversion Theorem to construct the inver-
sion series of geodetic latitude in terms of elliptic arc length.  
Here, apply Hermite Interpolation Schemes (Bian and Chen, 
2006) to derive a different kind of inversion series in terms of 
the first eccentricity.  The rectifying latitude  is the meridian 
distance scaled so that its value at the poles  is equal 90 de-
grees or  /2 radians.  It is denoted  and is given by  

 
( )

2 ( / 2)

L

L

 


  (34) 

where 2
0( / 2) (1 )

2
L a e M

   . 

Substituting Eq. (24) into the above Eq. (34) yields 

 
3

22 20

0

(1 sin )

d

M

 
  




 (35) 

Set up the expression of geodetic latitude in terms of rec-
tifying latitude using up to sin(8) terms. 

 1
2( ) sin 2L C        

 4 6 8sin 4 sin 6 sin 8C C C     (36) 

Applying Hermite Interpolation Schemes can derive the 
four coefficients of Eq. (36).  We must impose 4 constraint 
equations by interpolation condition.  Develop a data of points 
of Hermite interpolation function which passes through the 
function and its first, third, fifth, and seventh derivatives for 
the point 0. 

From Eq. (35), the first derivative of geodetic latitude with 
respect to rectifying latitude can be yielded. 

 
3

2(1) 2 2
0 (1 sin )

d
M

d

  


    (37) 

Making use of the chain rule of differentiation obtains the 
recursive relation of high order derivative. 

 
( 1)

( )
n

n d d

d d

 
 



  (38) 

It is very difficult and even impossible to derive the high 
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order derivatives in Eq. (38) by hand.  Fortunately, these de-
rivatives can be easily computed with any computer algebra 
system (such as Mathematica®, Maple®, MATLAB®, or 
Maxima®).  If the rectifying latitude is equal to 0 ( = 0), then 
the geodetic latitude will be equal to 0 ( = 0).  Differentiate 
continuously Eq. (35) with respect to rectifying latitude to  
get its first, third, fifth, and seventh derivatives (the second, 
fourth, and sixth derivatives cannot satisfy conditions of in-
terpolation because their values are equal to 0).  Constraint 
equations may be written in matrix form 

 AC B  (39) 

where 

2

4

6

8

2 4 6 8

8 64 216 512
,

32 1024 7776 32768

128 16384 279936 2097152

C

C
A C

C

C

  
         
  
  

      

 (40) 

and 

 
0

0

0

1
0

3 2
3

5 4 25

7 7 6 4 2

1(0) 1
( 3 )(0)

(45 +12 )(0)

(0) (-1575 -1116 -48 )

M

M
B

M

M




 
   

  
         
  
     

. (41) 

Apply the symbolic expression solves the inverse and so-
lution of the symbolic system (39). 

2

4 1

6

8

C

C
C A B

C

C



 
 
  
 
 
 

 

2

4

6

8

3 / 8 3/16 213/ 2048 255 / 4096

0 21/ 256 21/ 256 533/ 8192

0 0 151/ 6144 151/ 4096

0 0 0 1097 /131072






  
  
      
  
    

. (42) 

Rearrange a subset of the resulting equations into nested 
forms is more suitable for computation. 

 

 2 2 2 2

2

2 2 4
4

2 66

88

1/4096 1536 + 768 + (426 + 255 )

1/8192 672 + (672 + 533 )

1/12288(302 + 453 )

1097/131072

C

C

C

C

   

  

 


                         

 

  (43) 

Table 1.  The inverse solution. 

Input: Two points, Pi = (i, i), i = 1, 2  

Find i from Eq. (5). 
Find 1, e from Eqs. (12), (13), or (14). 
Find v from Eqs. (18) or (19). 
Find , i from Eqs. (20) and (21). 
Find i from Eq. (22). 
Output: GE arc-length and azimuths 

Find 2 1 1 2

2 1 1 2

( ) ( ) , sgn( ) sgn( )

( ) ( ) , sgn( ) sgn( )

L L
L

L L

   
   

     
from Eq. (30). 

Find 1 1 1 1 1atan2(cos( )sin cos ,       from Eq. (10). 

Find 2 2 2 2 12

1 2 1 2 12

atan2(cos( )cos sin ,

sin cos cos sin cos )

    
    

 
 

 from Eq. (10) or using 

spherical trigonometric azimuth formula. 
 
 

Table 2.  The direct solution. 

Input: P1 = (1, 1), initial azimuth (1), distance to a second point (s)

Find 1 from Eq. (5). 
Find 1, e from Eqs. (11) and (13). 
Find v from Eq. (18). 
Find , 1 from Eqs. (20) and (21). 
Find 1 from Eq. (35). 

Let 1
2 1 2

0

( )

(1 )

sign s

a e M

  
 


. 

Find 2 from Eq. (36). 
Find 2 from Eq. (23). 
Set 12 = 2  1 
Use spherical trigonometric function to find 

2 1 12 1 12 1asin(sin cos cos sin cos )        

Output: the final position and azimuth. 

Find  2
2 2 2atan2 sin , cos (1 )e      from Eq. (5). 

Use spherical trigonometric function to find 

2 1 12 1

1 12 1 12 1

atan2(sin sin ,

cos cos sin sin cos )

   

    

 


 

2 2 2 1 1

1 12 1 12 1

atan2(cos( )cos sin ,

sin sin cos cos cos )

    
    

 
 

 

 

IV. THE SOLUTIONS OF GREAT ELLIPTIC 
SAILING 

Summarizing the above equations gives the inverse solu-
tion in Table 1. 

Summarizing the above equations gives the direct solution 
in Table 2. 

The solutions provided here give concise and logical pro-
cedures of calculation.  The two-argument function atan2 
gives a great advantage for calculating the azimuth and lon-
gitude which avoids the ambiguities between the first and third 
quadrants, and between the second and fourth quadrants.  The  
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Fig. 4.  Great ellipse on spheroid. 
 
 

algorithms provided here are suitable for the programming 
implementation and can be applied in the areas of sailing line 
design and cartographical computation in GIS and ECDIS 
environments. 

V. LATITUDE IN TERMS OF LONGITUDE 
ALONG GREAT ELLIPSE. 

The vector P is the cross product of normal to a great ellipse 
and normal to meridian of known longitude (Fig. 4). 

  , , eP x y z N N  
  

 (44) 

where 1 2eN P P 
 

 and ( sin , cos , 0).N   


 

Substituting Formula (1) into the above equation and ex-
panding the equation in terms of trigonometric function gives 
the latitude function of known longitude. 

 2 1
1 2

2 1 2 1

sin( ) sin( )
tan tan( ) tan( )

sin( ) sin( )

   
  

   
 

 
 

 (45) 

or 

 tan tan( )sin( )V e      (46) 

Eqs. (45) and (46) is not suitable for computing the distance 
along a great elliptic arc, nor it is suitable for computing the 
azimuth of the curve, but by certain re-arrangements it is 
possible to solve (directly) for the latitude of a point on the 
curve given a longitude somewhere between the longitudes of 
the terminal points of the curve.  Or alternatively, using Eq. 
(47) solves for the longitude of a point given latitude. 

 
tan

asin
tane

V

 


 
   

 
 (47) 

VI. COMPUTING THE AREA OF A POLYGON 

The area dA of an infinitesimal slice bounded by two almost 
coinciding parallels from a meridian of longitude 0 and a  

Eλ

ϕρ d⋅

λϕ ⋅⋅ cosN

0°

11 ),( λϕ

ω
),( 22 λϕ

 
Fig. 5.  Area of an infinitesimal slice on the spheroid. 

 
 

meridian of longitude  can be written (Sjöberg, 2006; Deakin, 
2010) (Fig. 5): 

 ( ) cos ( )dA N d          (48) 

where  

 
3

22 2 2( ) (1 )(1 sin )a e e       (49) 

is the radius of curvature for meridian and 

 2 2 1/ 2( ) /(1 sin )N a e    (50) 

is the radius of curvature of the prime vertical. 
Differentiating Eq. (46) yields: 

 
2

tan( )
cos

sec
Vd d


  


  (51) 

where  =   e. 
Substituting Eqs. (46) and (51) into Eq. (48) and rearrang-

ing the results gives: 

 
2

1

2 2
2

2 2 2

1 tan sin
tan cos ( )

(1 tan sin )

e

e

V
V e

V

A a d
 

 

 
     

  






 

  

  (52) 

where   = 1  e2. 
If the longitudes of the two endpoints are on the identical 

meridian, the above equation can be transformed the following 
integral of latitudes. 

 
2

1

2
2 2 2

cos

(1 sin )
A a d

e





  



  (53) 

Separating the above integral into partial fractions and in-
tegrating the result gives the formula of the area bounded by 
two parallels from a meridian of longitude 0 and a meridian of 
longitude . 

 
2

1

2
2 2

sin 1 1 sin
ln

4 1 sin2(1 sin )

e
A a

e ee





  


 
   

 (54) 
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Fig. 6.  The signs of area on the spheroid bounded by a great elliptic and equator. 
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Fig. 7.  Great elliptic arc from Tokyo to San Francisco. 

 
 
The integral of the area is computed numerically with an 

adaptive Simpson’s method.  The area of a polygon is com-
puted numerically as a sum of integral over edges.  A general 
polygon can be partitioned into slices that are bounded by 
edges at their ends.  The area of each slice is the difference 
between the area integrals (52) along these bounding edges.  
So the area is a sum of area integrals along edges with ap-
propriate signs: negative when the edge goes south and posi-
tive when it goes north when the vertices are ordered to posi-
tive orientation (counterclockwise).  The cosine of longitude 
in the RHS of Eq. (52) captures the needed sign, and the total 
area is therefore the sum of the integral (52) or (53) over all the 
polygon’s edges. 

 , 1 , 1 ,1,
n

t i i n n n
i

A A A A    (55) 

Fig. 6 and the following equation depict the computation of 
the area and the signs of area integral bounded by the three 
great elliptic arcs. 

 ' ' ' ' ' 'Area ABC A ABB A ACC C CBB       (56) 

VII. NUMERICAL TESTS 

An airplane flies from NRT Airport, Tokyo (3545'55"N 
14023'08"E) to SFO Airport, San Francisco (3737'08"N 
12222'30"W) along the great elliptic arc on the WGS84 Earth 
(Fig. 7).  The latitudes of waypoints differing in longitude 
from F by 150E, 160E, … , 120W , 130W are found after  

Table 3. Latitude, distance, initial azimuth and final azi-
muth in terms of known longitude. 

Lat Long Range Az1 Az2 

35.765 140.386 536.967 54.952 60.880 

40.537 150.000 493.915 60.880 67.602 
44.127 160.000 446.981 67.602 74.702 
46.541 170.000 417.094 74.702 82.031 

47.947 -180.000 402.240 82.031 89.471 
48.445 -170.000 401.272 89.471 96.919 
48.071 -160.000 414.111 96.919 104.270 

46.799 -150.000 441.761 104.270 111.410 
44.536 -140.000 486.137 111.410 118.196 
41.126 -130.000 412.159 118.196 123.021 

37.619 -122.375 Null Null Null 
 
 

using Eq. (45) and are shown in the following Table 3. 
We use the eccentricity e = 0.08181919 and semi-major axis 

a = 6378.137 km same as the WGS84 model.  Using the inverse 
solution in Table 1 obtains the initial and final azimuths, and 
distance between each segment (Table 3).  Applying Vincenty’s 
method (Vincenty, 1975) or other methods (Sjöberg, 2008) 
calculates the length and initial azimuth of the geodesic: 
azimuth 54.8178088 and distance 8246275.05775 m 
(4452.6323206 nm).  Using the inverse solution provided here 
(Table 1) gives Distance: 8246282.09626 m (4452.63612109 
nm).  The difference between the great ellipse and geodesic is 
about 7.03851 m.  It satisfies the requirements of accuracy for 
the most purposes of navigation and GIS Environments.  The 
Az1 and Az2 express the initial and final azimuths. 
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Table 4.  Reverted dataset from Table 3. 

Lat* Error Long* Error Az2* Error 

35.765 0.00E+00 140.386 0.00E+00 60.880 -2.09E-11
40.537 -1.37E-11 150.000 -3.20E-11 67.602 -2.62E-11
44.127 -1.12E-11 160.000 -3.80E-11 74.702 -2.75E-11

46.541 -7.20E-12 170.000 -3.80E-11 82.031 -2.36E-11
47.947 -3.00E-12 -180.000 -3.20E-11 89.471 -1.51E-11
48.445 -9.95E-14 -170.000 -2.00E-11 96.919 -4.39E-12

48.071 4.97E-13 -160.000 -6.00E-12 104.270 6.01E-12
46.799 -1.40E-12 -150.000 7.99E-12 111.410 1.20E-11
44.536 -5.00E-12 -140.000 1.80E-11 118.196 1.40E-11

41.126 -9.00E-12 -130.000 2.20E-11 123.021 1.40E-11
37.619 -1.21E-11 -122.375 2.30E-11 Null Null 

 
 

25.1188°N121.2759°E

25.283°N121.5537°E

25.1202°N121.806°E

25.0002°N122.0011°E

 
Fig. 8.  Polygon bounded by great elliptic arcs nearby north Taiwan. 
 
 
Use the direct solution as shown in Table 2 to restore the 

original latitude, longitude, and final azimuth from dataset in 
Table 3.  The errors between original dataset and reverted 
dataset are very small and almost negligible Table 4. 

The area of polygon bounded by four great elliptic arcs 
connected by the four polygon vertices is computed as the 
following table and displayed in Fig. 8 (in northern Taiwan).  
When eccentricity e = 0 and semi-major axis a = 6378.137 km 
are applied to calculate the area, lengths and azimuths of the 
polygon bounded four great circles on the spherical model. 

A spherical polygon is a closed surface, whose sides are 
formed by great circles.  By adding the surfaces of several 
spherical triangles, one obtains an area of polygon with n 
edges: 

 2 1 2
, 1 , 1 , 1 ,1

1

( ), , 1, 2
n

j j
i i i i n n n

i

A a j     


    , (57)  

where 1
, 1i i   and 2

, 1i i   are the initial and the final azimuths 

from vertex i to vertex i + 1. 

Table 5. The length and area of a polygon bounded by four 
great circles and great elliptic arcs.  (Unit: km, km2) 

Lat Long Rang* Area* Range Area 

25.1188 121.2759 33.4278 223644.30 33.393 222687.37

25.2830 121.5537 31.2123 -222130.25 31.174 -221179.82

25.1202 121.8060 23.7776 -164186.57 23.751 -163479.91

25.0002 122.0011 74.3074 161829.96 74.339 161133.41

 Total 162.7250 -842.5600 162.657 -838.94

*: great circle 

 
 

Table 6. The area of the polygon on a sphere given by the 
spherical excesses. 

Lat Long Az1 Az2 (Az1-Az2)*a2

25.1188 121.2759 56.7744 56.8927 -0.1183 

25.2830 121.5537 125.4442 125.5516 -0.1074 

25.1202 121.8060 124.1334 124.2160 -0.0826 

25.0002 122.0011 -79.6197 -79.9268  0.3072 

 Total 226.7323 226.7335 -842.5600 km2

 
 
Applying Eq. (57) gives the area of polygon on a sphere 

which is identical with the area as calculated in Table 5. 
The polygon vertices are ordered to negative orientations 

(clockwise orientation), so the signs of the area are negative 
respectively in Table 5 and Table 6.  In Table 6, the area 
-842.5600 km2 of the last entry in column 5 is obtained by the 
sum of radian angle (Az1-Az2) times the major axis radius km  
a = 6378.137 km. 

VIII. CONCLUSIONS 

The general direct and inverse solutions of the great ellipse 
have been described and demonstrated.  It is found that the two 
solutions are useful alternatives to establish integral expan-
sions for direct and inverse solutions of the great elliptic arc 
and provide latitude function in terms of specified longitude.  
The results of numerical tests also are very accurate.  The 
solution of latitude in terms of longitude also has been de-
scribed and demonstrated.  The area of polygon bounded by 
elliptic arcs is more easily calculated than the calculation of 
area bounded by geodesics.  The algorithms provided here are 
suitable for the programming implementation and can be ap-
plied in the area and cartographical computations in GIS and 
ECDIS environments. 
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