ANALYSIS OF ELECTROMAGNETIC FORCE OF THE LINEAR GENERATOR IN POINT ABSORBER WAVE ENERGY CONVERTERS

Zhong-Qiang Zheng
Department of Mechanical Engineering, College of Engineering, Ocean University of China, Qingdao, Shandong Province, P. R. China. Key Ocean Engineering Lab of Shandong Province, Qingdao, Shandong Province, P. R. China.

Peng Huang
Department of Mechanical Engineering, College of Engineering, Ocean University of China, Qingdao, Shandong Province, P. R. China.

Da-Xiao Gao
Department of Mechanical Engineering, College of Engineering, Ocean University of China, Qingdao, Shandong Province, P. R. China.

Zong-Yu Chang
Department of Mechanical Engineering, College of Engineering, Ocean University of China, Qingdao, Shandong Province, P. R. China. Key Ocean Engineering Lab of Shandong Province, Qingdao, Shandong Province, P. R. China., zongyuchang@ouc.edu.cn

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

Part of the Engineering Commons

Recommended Citation
DOI: 10.6119/JMST-015-0416-1
Available at: https://jmstt.ntou.edu.tw/journal/vol23/iss4/10

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and Technology.
ANALYSIS OF ELECTROMAGNETIC FORCE OF THE LINEAR GENERATOR IN POINT ABSORBER WAVE ENERGY CONVERTERS

Acknowledgements
The authors are grateful for the support of the Science Foundation of Shandong Province (ZR2012EM027), the Science Foundation of Qingdao City (12-1-4-1-17-(jch)) and the Program of New Century Excellent Talents of Minister of Education, China (NCET-12-0500).

This research article is available in Journal of Marine Science and Technology: https://jmsstt.ntou.edu.tw/journal/vol23/iss4/10
ANALYSIS OF ELECTROMAGNETIC FORCE OF THE LINEAR GENERATOR IN POINT ABSORBER WAVE ENERGY CONVERTERS

Zhong-Qiang Zheng1,2, Peng Huang1, Da-Xiao Gao1, and Zong-Yu Chang1,2

Key words: linear generator, electromagnetic force, point absorber wave energy converters, electromechanical coupling.

ABSTRACT

In recent decades energy shortage and environmental pollution have increasingly become challenges faced by the world. New innovation technology to harness renewable energy such as wave energy is considered to be the key to solve this problem. Point absorber wave energy converter (WEC) is one of the most effective means to utilize wave energy. Several different types of power take off (PTO) devices have been used in the design of point absorber WEC amongst which linear generator has the advantages of direct drive, structural simplicity, high-efficiency and so on. This paper studies the electromagnetic force of the linear generator, and the responses of point absorber WEC with line generators. An analytical model is built to simulate the electromagnetic force of a linear generator. Finite element method (FEM) and empirical equation are used to calculate the electromagnetic force, magnetic flux and vector field of magnetic induction. Comparison between the results from FEM and the analytical method shows great agreement. By using analytical model of electromagnetic force of linear generator, the motion equations of the WEC are developed and the dynamic responses of the whole WEC system are obtained. This work is helpful for designing WEC and understanding of the motion mechanism.

I. INTRODUCTION

Compared with other forms of renewable energy, such as wind or solar energy, ocean wave energy is more energy-concentrated and constant, therefore, it has high potential to be harnessed with proper technologies.
Permanent Magnetic Linear Generator (PMLG) for WECs. Cruz (2007), Scruggs and Jacob (2009) reviewed various types of PTOs used in WECs, and recommended the Linear Generator as a preferred choice of PTOs. Lockett (1996), Li and Yu (2012), Shi et al. (2014) reported dynamic models of point absorber wave energy converter in which the PTO was simplified to be a damping unit. Pirisi et al. (2009) and Parthasarathy (2012) studied the electrical and magnetic characteristics of Linear Generator by using FEM and simulated the flux density and voltage current of linear PM generator. In order to simplify the calculation and uncover the relationship between magnetic force and other parameters, analytical model was presented by Thorburn (2006) and Ekströma et al. (2015). The empirical equations to calculate the magnetic force were obtained in linear generators of WECs (Eriksson et al., 2004; Polinder et al., 2004; Leijon et al., 2006). Bozzi et al. (2013) modeled a point absorber for energy conversion in Italian seas with linear generator. Antonio (2008) employed phase control method for higher energy absorbing efficiency.

In this paper an analytical model is derived to describe the linear generator used for point absorber of wave energy converters. The electromagnetic forces in the linear generator are calculated by empirical equations. To verify the validity of the calculation, finite element analysis is performed by using software Ansys Maxwell. Based on the analytical model, the whole dynamic model of point absorber WEC with linear generator is obtained, and coupling between point absorber and linear generator is also analyzed.

II. LINEAR GENERATOR FOR POINT ABSORBER OF WAVE ENERGY CONVERTER

1. Linear Generator as Power Take-off

The point absorber wave energy converter is modeled as a single body system with one degree of freedom (DOF) along the heave direction. Its scheme is illustrated in Fig. 2. It mainly includes a buoy, a cable and a linear generator PTO device. As mentioned before, this direct PTO can reduce the complexity of the mechanical system and help to convert the kinetic energy into electrical energy efficiently, reliably and commercially. Basically, the PTO is contained in a cylindrical air-filled chamber. The waves move the buoy and the lid of this chamber in vertical direction relative to the bottom part, which is fixed to the sea-bottom. The details of a typical linear generator is shown in Fig. 3. In this system, the buoy heaves with the wave motion and pulls the translator back and forth so that electrical current will be generated in the coil of the stator. In this process, the kinetic energy is transferred to useful electrical energy while the electromagnetic force will be generated to resist the motion of the translator.

In general, the electromagnetic force can be considered as a damping force and usually calculated by:

\[F_M(t) = c \dot{z}(t) \]

where \(c \) is the generator damping coefficient.

Eq. (1) is a simplified model for electromagnetic force of linear generator and represents the basic relationship between the electromagnetic force and the moving velocity of the translator. However, this representation is deemed too rough, and a more comprehensive description is needed in order to design and analyze a more efficient linear generator to be used in a point absorber.

2. The Electromagnetic Force by FEM

According to the scheme given in Fig. 3, a 3D FEM model of the linear generator is developed as shown in Fig. 4. In this model, the magnet is considered as permanent magnet, and the frame of the translator as aluminum. Silicon steel sheet combines the stator, and the coil material is set to be copper. The main parameters used in the simulation are listed in Table 1. It is assumed that the motion of translator is reciprocal with a velocity of 0.5 m/s and a period of 0.05 s.

The model is built using Ansys Maxwell and its meshes are shown in Fig. 5. The vector field of the magnetic induction is shown in Fig. 6.

The electromagnetic force obtained from the FEM simulation is shown in Fig. 7. It can be clearly seen that the maximum electromagnetic force is about 14.81N (see Fig. 7), and the curve looks like a sinusoid. The electromagnetic force
Table 1. Main structural parameters of linear generator.

<table>
<thead>
<tr>
<th>Name of Parameters</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pole width (w_p)</td>
<td>mm</td>
<td>50</td>
</tr>
<tr>
<td>magnetic field in a tooth (B_t)</td>
<td>T</td>
<td>0.75</td>
</tr>
<tr>
<td>width of a stator tooth (w_t)</td>
<td>mm</td>
<td>10</td>
</tr>
<tr>
<td>width of the stator stack (d)</td>
<td>mm</td>
<td>50</td>
</tr>
<tr>
<td>outer resistance (R_{out})</td>
<td>(\Omega)</td>
<td>30</td>
</tr>
<tr>
<td>air gap</td>
<td>mm</td>
<td>1</td>
</tr>
<tr>
<td>load angle (\delta)</td>
<td>rad</td>
<td>0</td>
</tr>
<tr>
<td>number of poles (p)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>number of cables in slot (c)</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>number of slots per pole and phase (q)</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

resists the motion of transition, and its direction is opposite to the moving direction of the translator.

3. The Electromagnetic Force from Analytical Model

The electromagnetic force can also be obtained by the analytical model based on Faraday’s Law and Maxwell’s equations which govern the magnetic induction in the stator-translator structure. The simplified analytical model presented by Thorburn and Leijon (2007) is used to calculate the voltage generated in the stator \(e(t) \). The empirical equation for \(e(t) \) is given as

\[
e(t) = \frac{2\pi \cdot B_t \cdot w_t \cdot d \cdot q \cdot c}{w_p} \cdot z(t) \cdot \sin \left(\frac{2\pi}{w_p} \cdot z(t) - \delta \right)
\]

where \(w_p \) is the pole width, \(B_t \) is the magnetic field in a tooth, \(w_t \) is the width of a stator tooth, \(d \) is the width of the \(w_p \) stator stack, \(p \) is the total number of poles, \(q \) is the number of slots per pole and phase, \(c \) is the number of cables in a slot and \(\delta \) is the load angle.

Through the equivalent electric circuit (see Fig. 8), the voltage \(U(t) \) at the terminals for a single phase is

\[
U(t) = e(t) - RI(t) - L \frac{dI(t)}{dt}
\]

Fig. 4. The 3D model of linear generator.

Fig. 5. Meshes of linear generator model.

Fig. 6. Magnetic flux of magnetic induction. The arrows present the direction of magnetic vectors.

Fig. 7. The electromagnetic force in linear generator by FEM.

Fig. 8. Equivalent circuit of for linear generator.
The electromagnetic force (N)

<table>
<thead>
<tr>
<th>N</th>
<th>14</th>
<th>12</th>
<th>10</th>
<th>8</th>
<th>6</th>
<th>4</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (s)</td>
<td>0.005</td>
<td>0.01</td>
<td>0.015</td>
<td>0.02</td>
<td>0.025</td>
<td>0.03</td>
<td>0.035</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Fig. 9. Electromagnetic force in line generator by analytical model.

where \(R \) is the circuit resistance, \(L \) is the circuit inductance. The relationship between the current \(U(t) \) and \(I(t) \) at the terminals of a single phase generator is

\[
I(t) = \frac{U(t)}{R_{\text{load}}}
\]

where \(R_{\text{load}} \) is the load resistance.

The output power of the linear generator \(P(t) \) is calculated by:

\[
P(t) = U(t)I(t)
\]

According to Eqs. (3) and (4), the electromagnetic force can be written as:

\[
F_M(t) = \frac{U(t) - I(t)}{z(t) \mu}
\]

where \(\mu \) is the generator efficiency.

For linear generator with multiple-phase, the whole electromagnetic force \(F_{MA} \) is given by

\[
F_{MA}(t) = \sum_{i=1}^{n} F_M(t)
\]

where \(n \) is the number of phases of the linear generator.

We find that the difference between \(U(t) \) and \(e(t) \) is quite small in our model. In order to simplify the calculation, \(U(t) \) is approximated with \(e(t) \) in subsequent analysis.

The excitation force on the heaving buoy can be calculated by

\[
F_e(t) = A F_1 \sin(\omega_0 t + \phi_0)
\]

where \(A \) is the amplitude of wave, \(F_1 \) is the wave force coefficient, \(\omega_0 \) is the frequency of regular wave, \(\phi_0 \) is the phase of the regular wave.

The restore force of the spring system \(F_k(t) \) is modeled as:

\[
F_k(t) = k z(t) = \rho g A_w z(t)
\]

where \(k \) is the stiffness of the spring, \(\rho \) is the density of the water, \(A_w \) is the main mass water plane area, \(g \) is the gravity acceleration.

III. ELECTROMECHANICAL COUPLING MODEL OF POINT ABSORBER WAVE ENERGY CONVERTER

The point absorber wave energy converter with a linear generator can be modeled as a vibration system as shown in Fig. 10. There is relative motion between buoy and the fixed component in the vertical direction (heave mode). The model of this system can be described as (Lockett, 1996)

\[
(M + m)\ddot{z}(t) + C\dot{z}(t) + F_k(t) + F_M(t) = F_e(t)
\]

where \(z(t) \), \(\dot{z}(t) \) and \(\ddot{z}(t) \) are the displacement, velocity and acceleration of buoy in the vertical direction respectively. \(M \) is the mass of the buoy, \(m \) is the added mass of the buoy. \(C \) is the damping coefficient, \(F_k(t) \) is electromagnetic force, \(F_M(t) \) is restore force on buoy, \(F_e(t) \) is the excitation force and considered as a harmonic rules.

The excitation force on the heaving buoy can be calculated by

\[
F_e(t) = A F_1 \sin(\omega_0 t + \phi_0)
\]

The restore force of the spring system \(F_k(t) \) is modeled as:

\[
F_k(t) = k z(t) = \rho g A_w z(t)
\]
Table 2. The parameters of cylindrical buoy.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Units</th>
<th>Numerical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius (r)</td>
<td>m</td>
<td>1.5</td>
</tr>
<tr>
<td>High (b_h)</td>
<td>m</td>
<td>3.0</td>
</tr>
<tr>
<td>Density (\rho)</td>
<td>kg/m³</td>
<td>1025</td>
</tr>
<tr>
<td>Wave period</td>
<td>s</td>
<td>8.0</td>
</tr>
<tr>
<td>Wave height</td>
<td>m</td>
<td>1.0</td>
</tr>
<tr>
<td>Mass (M)</td>
<td>kg</td>
<td>2700</td>
</tr>
</tbody>
</table>

The electromagnetic force can be obtained by Eq. (8). By substituting Eq. (8) into (9), the dynamic model of a point absorber WEC system with linear generator as the PTO can be described as:

\[
(M + m)\ddot{z}(t) + C\dot{z}(t) + F_e(t) + \left(\frac{2\pi B_e w_r d \cdot p \cdot q \cdot c}{w_p} \right)^2 \cdot \dot{z}(t)^2 \cdot \sin^2 \left(\frac{2\pi}{w_p} \cdot z(t) - \delta\right) - R_{v_t} \cdot \dot{\mu} = F_e(t)
\]

Fig. 11. The response of floater of point absorber WEC.

The electromagnetic force can be obtained by Eq. (8). By substituting Eq. (8) into (9), the dynamic model of a point absorber WEC system with linear generator as the PTO can be described as:

\[
(M + m)\ddot{z}(t) + C\dot{z}(t) + F_e(t) + \left(\frac{2\pi B_e w_r d \cdot p \cdot q \cdot c}{w_p} \right)^2 \cdot \dot{z}(t)^2 \cdot \sin^2 \left(\frac{2\pi}{w_p} \cdot z(t) - \delta\right) - R_{v_t} \cdot \dot{\mu} = F_e(t)
\]

Eq. (12) is a nonlinear equation. In this model, the shape of buoy is considered to be cylindrical. The main parameters of the point absorber are shown in Table 2. The added mass, damping coefficient and wave force coefficient can be obtained by the AQWA software.

The simulation results of the dynamic equation of point absorber WEC with linear generator as shown in Fig. 11(a) and Fig. 11(b). It can be observed through Fig. 11(a), the amplitude of the buoy is about 0.5 m and the oscillation period of buoy is about 7.3 s. The amplitude of the buoy will be almost as large as that of the wave amplitude. From Fig. 11(b), the velocity curve of buoy is similar to sinusoid with a period of 7.3 s and a magnitude of 0.4 m/s.

Following Eq. (12), the electromagnetic force is calculated by the dynamics analysis of point absorber system and shown in Fig. 12.

In Fig. 12 the maximum value of electromagnetic force is about 103N and the force curve is not as regular as the response of the buoy. To some degree it depends on the property of nonlinearity of Eq. (12).

Once the electromagnetic force is obtained, the power of the linear generator can be estimated, as shown in Fig. 13.

From Fig. 13, it can be seen that the maximum power of the linear generator is about 47.9W with an average power of about 20W. It can be seen the power is not continuous when only a single-phase of linear generator is considered.

IV. CONCLUSION

This paper studied the electromagnetic force of linear generator and the dynamic response of a whole model of point absorber WEC with a linear generator PTO. With an analytical model of the electromagnetic force is obtained. By comparing against results from FEM, great agreement is observed. The responses of the system are obtained as well by numerically solving the dynamic equation. Further with the dynamic simulation, the kinematic parameters, electromagnetic force and the power can be obtained. The model and method developed in this paper are useful for estimating the performance of WEC with a linear generator PTO.
ACKNOWLEDGMENTS

The authors are grateful for the support of the Science Foundation of Shandong Province (ZR2012EM027), the Science Foundation of Qingdao City (12-1-4-1-17-(jch)) and the Program of New Century Excellent Talents of Minister of Education, China (NCET-12-0500).

REFERENCES

