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ABSTRACT 

The steepest descent method (SDM), which can be traced 
back to Cauchy (1847), is the simplest gradient method for 
unconstrained optimization problem.  The SDM is effective 
for well-posed and low-dimensional nonlinear optimization 
problems without constraints; however, for a large-dimensional 
system, it converges very slowly.  Therefore, a modified steep- 
est decent method (MSDM) is developed to deal with these 
problems.  Under the MSDM framework, the original global 
minimization problem is transformed into a quadratic-form 
minimization based on the SDM and the current iterative 
point.  Our starting point is a manifold defined in terms of the 
quadratic function and a fictitious time variable.  Thereafter, 
we can derive an iterative algorithm by including a parameter 
in the final stage.  Through a Hopf bifurcation, this parameter 
indeed plays a major role to switch the situation of slow con-
vergence to a new situation that the new algorithm converges 
faster.  Several numerical examples are examined and com-
pared with exact solutions.  It is found that the new algorithm 
of the MSDM has better computational efficiency and accu-
racy, even for a large-dimensional non-convex minimization 
problem of the generalized Rosenbrock function. 

I. INTRODUCTION 

In this paper, we consider the following nonlinear optimi-

zation problem without constraints: 

 min ( ) 0f x , (1) 

where f : Rn  R is a C2 differentiable function. 
For solving (1), there are many approaches of iterative 

types.  If xk is the current iterative point, then we denote f(xk) 
by fk , f(xk) by gk and 2 f(xk) by Ak.  The second order Taylor 
expansion of function f(x) at the point xk is 

  TT 1
( )

2k k kf f     x g x x A x , (2) 

where x = x - xk.  The superscript T signifies the transpose. 
Letting x = xk  gk and inserting it into (2), we can obtain 

 
2

T T( )
2k k k k k k k kf f
    x g g g g A g . (3) 

Taking a minimization with respect to , we can solve 

 
2

T

k

k k k

 
g

g A g
. (4) 

Then the well-known steepest descent method (SDM) for 
solving (1) is obtained: 
(i) Give an initial x0, and then g0 = f(x0). 
(ii) For k = 0, 1, 2, ... we repeat the following calculations. 

If k g , then stop; otherwise, let k = k + 1 and find the 

next xk+1 by 

 
2

1 T
.k

k k k
k k k

  
g

x x g
g A g

 (5) 

Go to step (ii). 
Several modifications to the SDM have been addressed.  
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These modifications have led to a new interest in the SDM that 
the gradient vector itself is not a bad choice but rather that the 
original step-length leads to the slow convergence behavior.  
Barzilai and Browein (1988) were the first to present a new 
choice of step-length through two-point step-size.  Although 
their method did not guarantee descent of the minimum func-
tional values, it could produce a substantial improvement of 
the convergence speed for a two dimensional quadratic func-
tion.  According to their method, many researchers have pro-
posed some choices of the step-length for the gradient method, 
for example, Raydan (1993; 1997); Friedlander et al. (1999); 
Dai and Liao (2002); Dai et al. (2002); Raydan and Svaiter 
(2002); Dai and Yuan (2003); Fletcher (2005), and Yuan (2006).  
In this research, we will approach this problem from a quite 
different view of invariant manifold and bifurcation, and 
propose a new strategy to modify the step-length.  Besides the 
SDM related methods, there were many modifications of the 
conjugate gradient method for the unconstrained optimization 
problems, such as Birgin and Martinez (2001); Andrei (2007; 
2008; 2010); Shi and Guo (2009); Zhang (2009); Babaie- 
Kafaki et al. (2010), and references therein. 

II. THE BASIC FORMULATION 

From the derivation of SDM for solving (1), it is easy to see 
that the global minimization problem is transformed into a 
local minimization problem of 

 T T
0

1
( ) -

2
c  x x Ax b x , (6) 

where T T
0 2k k k k k kc f  g x x A x and b = Akxk  gk .  Note 

that the former is a constant scalar and the latter is a constant 
vector if the coefficient  in x = xk  gk is determined.  Here 
for the general purpose, we omit the subscript k, and then 
modify the SDM from this quadratic function. 

According to the modified SDM proposed by Liu (2012), 
we consider an evolutional behavior of x from the ODEs de-
fined on a manifold formed from (x) 

 ( , ) : ( ) ( )h t Q t C x x . (7) 

Here, we let x be a function of a fictitious time variable t.  
We do not need to specify the function Q(t) as a priori, of 
which ( )C Q t  is a measure of the decreasing of  in time.  

Hence, we expect that in our algorithm Q(t) > 0 is an in-
creasing function of t.  We let Q(0) = 1 and C is determined by 
the initial condition x(0) = x0 with 

 ( (0)) 0C  x . (8) 

We can suitably choose the constant c0 in (6) such that  
(x)  0. 

When C > 0 and Q > 0, the manifold defined by (7) is con-

tinuous.  Thus, the following differential operation carried out 
on the manifold makes sense.  For the requirement x = x(t), we 
have 

 ( ) ( ) ( )( - ) 0Q t Q t   x Ax b x  . (9) 

We suppose that x is governed by a gradient-flow: 

 ( - )
 

   


x Ax b
x

 , (10) 

where  is to be determined.  Inserting (10) into (9) we can 
solve 

 
2

( )q t  
g

, (11) 

where 

 : -g Ax b ,  (12) 

and 

 
( )

( ) :
( )

Q t
q t

Q t



. (13) 

Thus inserting (11) into (10), we can obtain an evolution 
equation for x defined by a gradient-flow: 

 
2

( )q t


 x g
g

 .  (14) 

Hence, in our algorithm, if Q(t) can be guaranteed to be an 
increasing function of t, we may have an absolutely conver-
gent property in solving the minimum of  through the fol-
lowing equation: 

 ( )
( )

C
t

Q t
  . (15) 

When t increases, the above equation can enforce the 
function  tending to its minimum. 

III. NUMERICAL METHODS 

1. Keeping x on the Manifold 

From the Euler method for (14), we can obtain the fol-
lowing algorithm: 

     2
t t t

   x x g
g

, (16) 
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where 

 ( )q t t   . (17) 

In order to keep x on the manifold defined by (15), we can 
insert the above x(t + t) into 

 T T
0

1
( ) ( ) - ( )

2 ( )

C
t t t t t t c

Q t t
       

 
x Ax b x  (18) 

to obtain 

T T
0

1
( ) )

)
-( ) (

( 2

C
c t t t

Q t t
 

 
x Ax b x  

 T T
2 2

2 4

( ) ( )

2

t t
  


 

b Ax g g Ag

g g
. (19) 

Thus by (12), (15) and (6) and through some manipulations, 
we have the following scalar equation: 

 0

1 ( )
1

2 ( )

Q t
a

Q t t
   

 
, (20) 

where 

 
T

0 4
:a



g Ag

g
. (21) 

2. A Trial Dynamic 

From the approximation of  

 ( ) ( ) ( )Q t t Q t Q t t     , (22) 

and by (13) and (17), we can derive 

 
( ) 1

( ) 1

Q t

Q t t 


  
. (23) 

Inserting it into (20), we come to a cubic equation for  : 

      2
0 1 2 1 2 1 2a           . (24) 

It allows a closed-form solution of  : 

 
0

2
1

a
   . (25) 

Inserting the above  into (16), we can obtain 

     2
0

2
1t t t

a

 
     

 
x x g

g
. (26) 

However, when a0 approaches to 2, this algorithm fails and 
stagnates at a point which is not necessarily a solution.  In the 
following, we should avoid adopting this algorithm, which is 
based on (20), and furthermore enforce the orbit of x being 
constrained by that manifold. 

The above derivation hints us that we must abandon the 
concept of keeping the orbit of x on the manifold and then 
solve  ; otherwise, we only have an algorithm which cannot 
work.  Let ( ) ( )s Q t Q t t   .  By (20) we can derive 

 2
0

1
1 0

2
a s     . (27) 

From (27), we can take the solution of  to be 

 0

0

1 1 2(1 )s a

a


  
 , if 01 2(1 ) 0s a   . (28) 

Let 

 2
01 2(1 ) 0s a     , 

2

0

1
1

2
s

a


  . (29) 

Thus we have 

 
0

1

a

 
 . (30) 

Here 0   < 1 is a parameter. 
It is know that in the SDM, we search the next solution  

x(t + t) from x(t) by minimizing the functional  along the 
direction -g(t), i.e., 

 min ( ( ) - ( ))t t

 x g . (31) 

Through some calculations, we can obtain 

 

2

T

( )

( ) ( )

t

t t
 

g

g Ag
. (32) 

Thus we have the following iteration formula: 

    
2

T

( )
( )

( ) ( )

t
t t t t

t t
   

g
x x g

g Ag
. (33) 

Similarly, from (27) we can choose , which minimizes s to 
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obtain 

 
0

1

a
  . (34) 

Inserting it into (16) and using (21), we can derive the SDM 
algorithm again as in (33).  Below we will demonstrate that 
this minimization is not the best choice. 

3. A Modified Steepest Descent Method (MSDM) 

Let xk denote the numerical value of x at the k-th step, and 
return g to gk and A to Ak.  Thus by inserting (30) for  into  
(16) and using (21), we can derive an iterative algorithm: 

 

2

1 T
k

k
k k k

k k

  
g

x x g
g A g

, (35) 

where 

 1   . (36) 

Therefore, we have the following algorithm: 
(i) Give an initial x0, and then g0 = f(x0). 
(ii) For k = 0, 1, 2 ... we repeat the following calculations. 

If k g  then stop; otherwise, let k = k + 1 and find the 

next xk+1 by 

 
2

1 T

( )
(1 )

k

k k k
k k

t
   

g
x x g

g A g
. (37) 

Go to step (ii).  0   < 1 is a parameter determined by the 
user.  If  = 0, the above algorithm is reduced to the steepest 
descent method (SDM). 

IV. NUMERICAL EXAMPLES 

In order to assess the performance of the newly developed 
method, let us investigate the following examples.  Some re-
sults are compared with those obtained from the steepest de-
scent method (SDM).  In order to emphasize the difference of 
our new algorithm from the SDM, we might call the present 
modification as a modified steepest descent method (MSDM). 

Example 1 

We will first consider a simple case: 

 3 2 2
1 1 2 2

1 1
min 3

3 2
f x x x x    . (38) 

The minimum of f is -4.5 occurring at (x1, x2) = (0, 3).  We 
apply the MSDM to this problem starting at (x1, x2) = (10, 10) 
under a convergence criterion  = 1015.  When  = 0, the  

3

2

1

a 0

(a)

(b)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

s

(c)1E+3
1E+2
1E+1
1E+0
1E-1
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7
1E-8
1E-9

1E-10
1E-11
1E-12
1E-13
1E-14
1E-15
1E-16

0 10 20 30 40 50
Number of Steps

γ = 0.006

γ = 0

R
es

id
ua

l E
rr

or

 
Fig. 1. For a simple case both the SDM and MSDM can converge very 

fast. 
 
 

MSDM is reduced to the SDM.  Under the above stopping 
criterion, the SDM is convergent with 50 steps as shown in  
Fig. 1 by solid lines for showing a0, s and residual error.  The 
SDM can reach a very accurate value of (x1, x2) = (3.25  1016, 
3).  At the same time, the MSDM with  = 0.006 converges 
very fast with only 22 steps, with a0, s and residual error 
shown in Fig. 1 by dashed lines.  The MSDM is 2 times faster 
than the SDM, and furthermore we can get (x1, x2) = (1.65  
1017, 3).  From Figs. 1(a) and (b), we can understand that the 
converging speed of the MSDM is faster than that of the SDM, 
because a0 and s of the MSDM are much smaller than those  
of the SDM. 

Example 2 

As a comparison with SDM, we use the following function 
given by Rosenbrock (1960): 

 2 2 2
2 1 1min 100( ) (1 )f x x x    . (39) 

In mathematical optimization, the Rosenbrock function is a 
non-convex function used as a performance test case for op-
timization algorithms.  It is also known as Rosenbrock’s valley  
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Fig. 2. For a Rosenbrock optimization problem the new algorithm is one 

hundred times faster than the classical steepest descent method. 
 
 

or Rosenbrock’s banana function.  The minimum is zero oc-
curring at (x1, x2) = (1, 1).  This function is difficult to mini-
mize because it has a steep sided valley following the para-

bolic curve 2
1 2x x .  Kuo et al. (2006) have used the particle 

swarm method to solve this problem; however, the numerical 
procedures are rather complex.  Liu and Atluri (2008) have 
applied a fictitious time integration method to solve the above 
problem under the constraints of x1  0 and x2  0, whose 
accuracy can reach to the fifth order. 

We apply the MSDM to this problem starting at (2, 0.5) 
under a convergence criterion  = 1010 or a maximum number 
10000 of iterations.  The SDM is run over 10000 steps without 
convergence as shown in Fig. 2 by solid lines for showing  
a0 and s, residual error and f.  The SDM can reach a very ac-
curate value of f with 4.95  1019.  The MSDM with  = 
0.0005 converges very fast only with 94 steps, with a0, s, 
residual error and f shown in Fig. 2 by dashed lines.  The  

SDM moving very slowly along the valley
MSDM moving very fast along the valley

1.0

0.9

0.8

0.7

0.6

0.5

0.8 1.2 1.6 2.0
x1

x 2

 
Fig. 3. For a Rosenbrock optimization problem comparing the iterative 

paths of the SDM and the MSDM. 

 
 

MSDM is 100 times faster than the SDM, and furthermore  
f can be reduced to 1.12  1023. 

In Fig. 3, we compare the iterative paths generated by the 
SDM and the MSDM.  It is found that both algorithms are fast 
approaching to the valley.  In addition, when the SDM is mov-
ing very slowly along the valley, the MSDM is moving very 
fast to the solution. 

Now, we can explain the parameter appeared in (37).  In 
Fig. 2(a), we compare a0 for  = 0 and  = 0.0005.  It can be 
seen that for the case with  = 0, the values of a0 tend to a 
constant and keep unchanged.  By (21) it means that there 
exists an attracting set for the iterative orbit of x described 
by the following manifold: 

 0 4
Constant

f
a  

Tg Ag

g
. (40) 

When the iterative orbit approaches to this manifold, the 
residual error is reduced slowly as shown in Fig. 2(c) by solid 
line, whereas the ratio of s is also keeping near to 1 as shown in 
Fig. 2(b) by the solid line.  Conversely, for the case  = 0.0005, 
a0 is no more tending to a constant as shown in Fig. 2(a) by the 
dashed line.  Because the iterative orbit is not attracted by a 
constant manifold, the values of f as shown in Fig. 2(d) by  
the dashed line can be reduced step by step, whereas the ratio 
of s is often leaving the value near to 1 as shown in Fig. 2(b) by 
the dashed line.  Thus, we can observe that when s varies from 
zero to a positive value, the iterative dynamics as given by (37) 
undergoes a Hopf bifurcation, like as the ODEs behavior ob-
served by Liu (2000; 2007).  The original stable manifold 
existent for  = 0 now becomes a ghost manifold for  = 0.0005,  
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Table 1.  Comparison of xi by different methods. 

xEX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
xGA 0.9942 0.9875 0.977 0.9604 0.9274 0.9056 0.8474 0.729 0.5308 0.2649 0.0756 

xLCGA 0.9937 1.0 1.0 1.0 0.9984 0.9969 0.9937 0.9906 0.9813 0.962 0.9254 

xMSDM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
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Fig. 4. For a generalized Rosenbrock optimization problem with n = 11 

showing (a) a0, (b) s, (c) residual error and (d) f calculated by 
using the MSDM. 

 
 
and thus the iterative orbit generated from the algorithm of the 
MSDM with  = 0.0005 is not attracted by that manifold again.  
Instead of the intermittency occupy, an irregularly jumping 
behavior of a0 and the residual error are shown respectively in 
Figs. 2(a) and 2(c) by dashed lines. 

Example 3 

Next we consider a generalization of the Rosenbrock func-
tion (Bouvry et al., 2000; Kok and Sandrock, 2009): 

 1

1
2 2 2

1

min 100( ) (1 )k

n

k k
k

f x x x





      . (41) 

This variant has been shown to have exactly one minimum 

for n = 3 at (x1, x2, x3) = (1, 1, 1) and exactly two minima for  
4  n  7.  The global minimum of all ones and a local mini-
mum are near (x1, x2, , xn) = (1, 1, , 1).  This result is 
obtained by setting the gradient of the function equal to zero.  
Note that the resulting equation is a rational function of xi. 

For small n, the polynomials can be determined exactly  
and Sturm's theorem can be used to determine the number of 
real roots, while the roots can be bounded in the region of 

2.4ix   (Kok and Sandrock, 2009).  For larger n, this method 

breaks down due to the size of the coefficients involved. 
In order to compare the results obtained by the MSDM with 

those calculated by the genetic algorithm (GA) and the loosely 
coupled genetic algorithm (LCGA) as reported by Bouvry  
et al. (2000), we take n = 11 and start from xi = 0.7 as those 
used in the above paper.  In Fig. 4, we show a0, s, residual error 
and f obtained by the MSDM with  = 0.2.  We found that the 
MSDM is convergent with 850 steps under a convergence 
criterion  = 103, of which the final f is very small with the 
value of 2.02  1010 as shown in Fig. 4(d).  We compare the 
values of xi with those calculated by the GA and the LCGA in 
Table 1, where the GA and the LCGA are run to 300 genera-
tions with f = 1.2019 for the GA and f = 0.0188 for the LCGA.  
Obviously, the MSDM is much more accurate than the GA and 
the LCGA. 

Then we apply the MSDM to this problem with n = 20 
starting at xi = 0 under a convergence criterion  = 108 or a 
maximum number 20000 of iterations.  Under the above 
stopping criterion, the SDM is run over 20000 steps without 
convergence as shown in Fig. 5 by solid lines for showing a0,  
s, residual error and f.  The SDM can reach a very accurate 
value of f = 4.97  1015.  The MSDM with  = 0.0008 con-
verges with 8663 steps, with a0, s, residual error and f shown  
in Fig. 5 by dashed lines.  The MSDM is 3 times faster than the 
SDM, and similarly f can be reduced to 1.3  1016. 

Example 4 

We consider a case due to Powell (1962): 

 1 3 2
2 2 4

2 4 3min ( 10 ) 5( 10 ) ( 2 )f x x x x x x       

4
1 410( 2 ) .x x   (42) 

The minimum of f is zero occurring at (x1, x2, x3, x4) = (0,  
0, 0, 0).  We apply the MSDM to this problem starting at (x1,  
x2, x3, x4) = (3, 1, 0, 1) under a convergence criterion of  =  
108.  The SDM is convergent very slowly with 49846 steps as 
shown in Fig. 6 by solid lines for showing a0, s, and f.  The  
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Fig. 5. For a generalized Rosenbrock optimization problem with n = 20 

the new algorithm is three times faster than the classical steepest 
descent method. 

 
 

SDM can reach a very accurate value of f = 107.  At the 
same time, the MSDM with  = 0.15 converges with 1301 
steps, with a0, s, and f shown in Fig. 6 by dashed lines.  The 
MSDM is 38 times faster than the SDM, and furthermore we 
can get a more accurate f = 9.96  109. 

Example 5 

In this example, we design an office block inside a structure 
with a curved roof given by x = 100  y2.  Suppose that the 
number of total cuboids is n and each cuboid can have dif-
ferent size.  We attempt to find the dimensions of all cuboids 
with maximum volume which would fit inside the given roof 
structure, that is, 

 2 2
1 1 2 1 2max  100 100 ( )f y y y y y              

2
1100 ( )  ,n ny y y       (43) 
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Fig. 6. For the Powell case comparing (a) a0, (b) s and (c) f obtained by 

the SDM and the MSDM. 

 
 
where y1 > 0 is the height of the i-th cuboid. 

The maximum of f is tending to 2000/3 when n is increasing.  
When n = 95, we apply the MSDM to this problem starting at 
yi = 0.05 under a convergence criterion of  = 105.  The SDM 
is convergent with 6868 steps as shown in Fig. 7 by solid lines 
for showing a0, s, residual error and f.  At the same time, the 
MSDM with  = 0.35 converges with 502 steps, with a0, s, 
residual error and f shown in Fig. 7 by dashed lines.  Both f  
of the SDM and the MSDM are tending to 661.9945.  The 
MSDM is 13 times faster than the SDM.  The heights and 
widths of the cuboids with respect to the number of floors are 
plotted in Fig. 8. 

Example 6 

In this example, we design an office block inside a structure 

with a circular roof given by 21296x y  .  Here we fix  

n = 95, and consider 

 2 2
1 2 1 2max 1296 1296 ( )f y y y y y       

2
11296 ( ) .n ny y y     (44) 

This problem is more difficult than that in Example 5. 
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Fig. 7. For the maximum area under a given curve comparing (a) a0, (b) s, 

(c) residual error and (d) f obtained by the SDM and the MSDM. 
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Fig. 8. Showing the heights and widths of the floors with respect to the 
number of floors 

 
 
The maximum of f is tending to 324 = 1017.88 when n is 

increasing.  We apply the MSDM to this problem starting at  
yi = 1 under a convergence criterion of  = 103.  The SDM is  
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Fig. 9. For the maximum area under a circular roof comparing (a) a0,  

(b) s, (c) residual error and (d) f obtained by the SDM and the 
MSDM. 

 
 

convergent with 2358 steps as shown in Fig. 9 by solid lines 
for showing a0, s, residual error and f.  At the same time, the 
MSDM with  = 0.3 converges with 356 steps, with a0, s, 
residual error and f shown in Fig. 9 by dashed lines.  Each f  
of the two methods is tending to 994.2315.  The MSDM is 7 
times faster than the SDM.  The heights and widths of the 
cuboids with respect to the number of floors are plotted in  
Fig. 10. 

Example 7 

In this example, we test the minimization of the Schwefel 
function with n = 100: 

 

2

1 1

min
n i

j
i j

f x
 

 
   

 
  . (45) 
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Fig. 10. Showing the heights and widths of the floors with respect to the 
number of floors for a circular roof. 

 
 

1E+3
1E+4

1E+2
1E+1
1E+0
1E-1

a 0

(a)

(b)

0.0
0.2
0.4
0.6
0.8
1.0

s

(c)1E+5
1E+4
1E+3
1E+2
1E+1
1E+0
1E-1
1E-2
1E-3
1E-4

R
es

id
ua

l E
rr

or

(d)1E+6

1E+2

1E+5
1E+4
1E+3

1E+1
1E+0
1E-1
1E-2
1E-3
1E-4
1E-5
1E-6
1E-7

f

100001000 2000 3000 4000 5000 6000 7000 8000 90000
Number of Steps

γ = 0

γ = 0.01

 
Fig. 11. For the minimization of Schwefel function comparing (a) a0, (b) s, 

(c) residual error and (d) f obtained by the SDM and the MSDM. 
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Fig. 12. For the minimization of Whitley function comparing (a) a0, (b) s, 

(c) residual error and (d) f obtained by the SDM and the MSDM. 
 
 
The minimum is zero at xj = 0, j = 1, , n. 
We apply the MSDM to this problem starting at xi = 1 under 

a convergence criterion of  = 103.  The SDM does not con-
verge with 10000 steps as shown in Fig. 11 by solid lines for 
showing a0, s, residual error and f.  At the same time, the 
MSDM with  = 0.01 converges with 634 steps, with a0, s, 
residual error and f shown in Fig. 11 by dashed lines.  The 
MSDM is over 13 times faster than the SDM, and f is tending 
to 7.65  107, which is more accurate than 1.733  104 ob-
tained by the SDM. 

Example 8 

In this example, we test the minimization of the Whitley 
function with n = 8: 

 
2

1 1

min cos 1
4000

n n
ji

ji
i j

y
f y

 

 
   

  
 , (46) 
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where 2 2 2100( ) ( 1)ji i j jy x x x    .  The minimum is zero at 

xj = 1, j = 1, , n. 
It is very difficult to optimize.  We apply the MSDM to this 

problem starting at xi = 1.12 under a convergence criterion of 
 = 108.  The SDM diverges as shown in Fig. 12 by solid lines 
for showing a0, s, residual error and f.  At the same time, the 
MSDM with  = 0.06 converges with 26 steps, with a0, s, 
residual error and f shown in Fig. 12 by dashed lines, and f is 
tending to 1.54  1013.  It can be found that the SDM fails. 

V. CONCLUSIONS 

By embedding the minimization problem into a continuous 
manifold with a fictitious time, we can derive a governing 
ODE for the unknown vector.  Then by employing the Euler 
scheme, we have derived an iterative algorithm, which is 
naturally rendered to a modification of the classical steepest 
descent method (SDM) with a critical parameter 0   < 1.  
This novel algorithm might be named a modified steepest 
descent method (MSDM).  We have proved that the minimi-
zations in the SDM and in our formulation lead to the same 
algorithm, and are not the best ones, which usually result in a 
quite slow convergence of finding solution.  The parameter   
is a bifurcation parameter, which played the role to change the 
situation from a slow convergence with  = 0 to a quick con-
vergence with   > 0.  This bifurcation is indeed an intermittent 
chaos which destabilizes the original invariant manifold ex-
istent for  = 0 in the SDM algorithm and is also the main 
reason to cause a slow convergence of the SDM for solving 
optimization problems.  Through several tests, we have found 
that the MSDM outperforms very well as compared with the 
SDM. 
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