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ABSTRACT 

With increasing fuel prices and restructuring in the power 
industry, nonconvex economic dispatch (NED) is expected to 
become crucial because of nonsmooth cost functions.  This 
paper presents an intelligent particle swarm optimization for 
economic dispatch with valve-point effect.  A new index, an-
other particle best (Pbestap), is incorporated into the particle 
swarm optimization to further improve social behavior.  More-
over, a novel diversity-based judgment mechanism for evalu-
ating Pbestap behavior is proposed for maintaining population 
diversity, which facilitates identification of the near-global 
region.  The direct search algorithm is used to fine-tune and 
determine the eventual global optimal solution at low com-
putational expense.  Numerical experiments demonstrate that 
the proposed approach offers higher quality solutions than do 
several existing techniques. 

INTRODUCTION 

Maintaining an economic, secure, and reliable generation 
schedule is critical in modern energy management systems.  
Rising fuel prices and the progressive exhaustion of traditional 
fossil energy sources have intensified interest in economic 
dispatch (ED).  Optimizing unit output scheduling can save 
millions of U.S. dollars in production costs annually.  ED is 
aimed at determining the power output combination of online 
generating units that minimizes fuel costs while simultane-

ously satisfying all unit and system equality and inequality 
constraints.  Generally, the fuel cost function for generation 
units has been approximately represented as a quadratic func-
tion and solved using classical optimization techniques, such 
as the lambda approach, the gradient method, linear program-
ming, and Newton’s methods (Wood and Wollenberg, 1996).  
The lambda iteration is a widely used approach that uses 
marginal cost information to determine the optimal solution.  
Unfortunately, the generating units vary greatly in fuel cost 
functions because of the physical limitations of power plant 
components such as valve points and combined cycle units.  In 
practice, these valve points generate several prohibited oper-
ating zones, and additional constraints affect the operating 
ranges of units that have prohibited operating zones.  Even in a 
competitive electrical market, generator characteristics can 
change with commercial interests rather than only physical 
reality.  In other words, generator operators may change their 
bid prices to increase profit.  Classical calculus-based tech-
niques, such as the lambda iteration dispatch, cannot be di-
rectly applied in this scenario because of the nonsmooth fuel 
cost function of the problem.  The importance of nonconvex 
economic dispatch (NED) is thus likely to increase, and de-
veloping advanced NED algorithms is essential for optimizing 
dispatch results. 

Fuel cost functions considering valve-point effects in ED 
further complicate the solution methodology.  Dynamic pro-
gramming can be used to solve ED without restricting the 
shape of the cost function, but this method suffers from di-
mensionality (Wood and Wollenberg, 1996) and local opti-
mality (Liang and Glover, 1992).  Therefore, several optimi-
zation algorithms based on stochastic searching techniques, 
including simulated annealing (Wong and Fung, 1993), ge-
netic algorithms (GAs) (Walters and Sheble, 1993; Orero and 
Irving, 1996; Kim et al., 2002), tabu search algorithms (TSAs) 
(Khamsawang et al., 2002; Lin et al., 2002), evolutionary 
programming (EP) (Yang et al., 1996; Sinha et al., 2003; 
Venkatesh et al., 2003), and particle swarm optimization (PSO) 
(Gaing, 2003), are used to solve highly nonlinear NED prob-
lems.  Among these, PSO, a new population-based evolu-
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tionary computation technique, has received considerable 
attention because of its flexibility and efficiency.  PSO was 
developed by Kennedy and Eberhart in 1995 (Kennedy and 
Eberhart, 1995) and was inspired by the flocking and school-
ing behaviors of birds and fish.  The approach is one among 
the latest nature-inspired algorithms and is characterized by 
high performance and easy implementation.  The PSO algo-
rithm uses a parallel searching mechanism and provides a high 
probability of determining the global or near-global optimal 
NED solution.  However, conventional PSO entails several 
problems.  Like other stochastic techniques, the main draw-
back of PSO is its tendency to be easily trapped in a local 
optimal solution, particularly when handling NED problems 
with more local optima and heavier constraints.  Conventional 
PSO requires further research to improve its performance and 
robustness. 

The inclusion of a nonsmooth cost function increases the 
nonlinearity and number of local optima in the solution space.  
Usually, stochastic search techniques identify a near-global 
region but are slow in finely tuned local searches.  By contrast, 
local searching techniques climb hills rapidly but are easily 
trapped in local minima.  Several effective hybrid optimization 
methods combining stochastic and deterministic techniques 
have been proposed (Bhagwan Das and Patvardhan, 1999; Lin 
et al., 2001; Victoire and Jeyakumar, 2004; Niknam, 2010).  
In this study, to further increase the possibility of exploring 
the search space where the global optimal solution exists, an 
intelligent PSO (INPSO) combined with a direct search 
method (DSM) is developed for ED with valve-point effect.  
The INPSO algorithm is responsible for “global exploitation” 
and the DSM algorithm for “local optimization,” with the 
current INPSO solutions used as the starting points.  A simple 
procedure based on a repairing strategy involves determining 
the system solution for initialization.  A new index, namely 
another particle best (Pbestap), is incorporated into the PSO to 
provide some of the information guiding to the global solution 
and provides additional exploration capacity for swarming.  
Moreover, a novel diversity-based judgment mechanism for 
evaluating Pbestap behavior is proposed for enhancing search 
capacity, increasing the probability of obtaining the global 
optimal solution.  A local optimization technique that utilizes 
DSM (Chen and Chen, 2001) is used to fine-tune the final 
optimal solution exploration.  Finally, numerical results illus-
trate the merits of the proposed hybrid INPSO-DSM algo-
rithm. 

II. FORMULATION OF ED WITH  
VALVE-POINT EFFECTS 

ED solutions are aimed at minimizing the total fuel cost of 
power plants subject to the operating constraints of a power 
system.  The objective function is formulated as follows: 

 
1

( )
N

T i i
i

Minimize F F P


   (1) 

where FT is the total fuel cost and N is the number of units in 
the system.  Fi(Pi) is the fuel cost function of unit i, and Pi is 
the power output of unit i.  Generally, the fuel cost of the 
generation unit is a second-order polynomial function (Wood 
and Wollenberg, 1996). 

 2( )i i i i i i iF P a b P c P    (2) 

where ai, bi, and ci are the cost coefficients of unit i. 
However, thermal units with multivalve steam turbines 

vary more in fuel cost functions.  (Walters and Sheble, 1993) 
presented the input-output performance curve for typical mul-
tivalve thermal units.  The fuel cost function is replaced by the 
following function, which considers valve-point effects. 

 2 min( ) sin( ( ))i i i i i i i i i i iF P a b P c P e f P P      (3) 

where ei and fi are the cost coefficients of generator i, reflect-
ing valve-point effects. 

The generating unit is subject to following constraints: 
 

  Power balance constraint 
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  Unit capacity constraints 

 min max
i i iP P P   (5) 

where PD is the total load demand, PLoss is the transmission 

loss, and min
iP  and max

iP  are the minimal and maximal gen-

eration limits, respectively, of unit i.  The transmission losses 
are conventionally represented as 

 0 00
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where Bjj is the coefficient of transmission losses. 

III. OVERVIEW OF CONVENTIONAL PSO 

PSO is a population-based optimization approach.  In con-
ventional PSO, the positions of Q particles are candidate  
solutions to the N-dimensional problem, and the moves of  
the particles are considered the search process for improved 
solutions.  In a physical N-dimensional search space, the po-
sition and velocity of particle q are represented as vectors 

 1 2, , ...,q q q qNX x x x  and  1 2, , ...,q q q qNV v v v  in the PSO 

algorithm.  During the search process, the particle succes-
sively adjusts its position according to two best values: the 
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best position of particle q, represented as  1 ,Pbest
q qPbest x  

2 , ...,Pbest Pbest
q qNx x  and the best position achieved so far by any 

particle, represented as  1, 2, ,, , ..., .Gbest Gbest N GbestGbest x x x   

By tracking Pbestq and Gbest, the global optimal may be ob-
tained.  Like other evolutionary algorithms, PSO involves 
numerous parameters that must be predefined.  Acceleration 
constants c1 and c2, which control the maximal step size, are 
predetermined.  Inertia weight  controls the impact of the 
previous velocity of the particle on its current velocity.  The 
benefits of appropriately selecting these parameters justify the 
effort involved in experimentally determination them.  The 
modified velocity and position of each particle is calculated 
using the current velocity and distance from Pbestq to Gbest, 
as shown in the following formulae: 

 1 1 ( ) 2k k k k
q q q qV V c rand Pbest X c         

( )k k
qrand Gbest X    (7) 

 1 1, 1, 2, ...k k k
q q qX X V q Q     (8) 

where k
qV  and k

qX  are the velocity and position of particle q 

in iteration k, respectively.  k
qPbest  is the best value of fitness 

function achieved by particle q before iteration k and Gbestk  
is the best fitness function value achieved so far by any parti-
cle.  c1 and c2 weight the stochastic acceleration terms that 
pull each particle toward Pbestq and Gbest, rand represents a 
random variable between 0.0 and 1.0, and  is the inertia 
weight factor.   is clearly an influencing factor that provides a 
well-balanced mechanism between global and local explora-
tion abilities.  Usually,  decreases linearly during iterations 
and is calculated using the following expression (Shi and 
Eberhart, 1998). 

 max max min
max

( )
iter

iter
        (9) 

where max and minare the initial and final weights, respec-
tively, itermax is the maximal iteration count, and iter is the 
current iteration number.  PSO is summarized as follows: 

 
Step 1: Randomly generate an initial population of particles. 
Step 2: Evaluate the fitness function value of each particle. 
Step 3: Record and update Pbest and Gbest. 
Step 4: Update the velocity and position of all particles ac-

cording to (7) and (8). 
Step 5: Repeat steps 2-4 until a criterion is satisfied. 

IV. INPSO WITH LOCAL OPTIMIZATION 

In conventional PSO, the movement of a particle (fish) is 

governed by three behaviors: inertia, cognitive, and social.  
Inertia behavior causes the particle to swarm in the previous 
direction (at its present velocity).  Cognitive behavior enables 
the particle remember its previously visited best position (its 
previous experience; Pbest).  Social behavior models the mem-
ory of the particle regarding the best position among the par-
ticles (the experience of its neighbors; Gbest).  However, for 
social behavior to employ only Gbest, which is generally not 
the global optimal solution, containing parts of nonoptimal 
information, is unreasonable.  The subsequent movement of 
the fish is often affected by the location of the fish that is in  
the best position and by the location of the other fish that it 
randomly observes when fish schools begin feeding.  There-
fore, conventional PSO experiences premature convergence 
and is easily trapped in local optima if a promising area where 
the global optimum is residing is not identified at the end of 
optimization. 

1. Improving PSO by Adding the Pbestap Item 

To increase the possibility of exploring the search space 
where the global optimal solution exists, we follow a slightly 
different social behavior approach to further select the global 
best guide of the particle swarm.  Social behavior comprises 
two phases: best particle position ever obtained (Gbest) and 
random another particle best position (Pbestap), namely, an-
other behavior.  After increasing another behavior to the social 
behavior, Pbestap provides some of the information guiding to 
the global solution and affords additional exploration capacity 
for swarming.  The new velocity update equation is given by: 

1 0 1 ( ) 2k k k k
q q q qV c V c rand Pbest X c         

k( ) 3 ( )k k k k
q q qaprand Gbest X c rand Pbest X        (10) 

1 1 1, 2, ..., ;k k k
q q qX X V q Q ap q      (11) 

where c0 is the inertia weight factor.   1 2, ,Pbest Pbest
ap ap apPbest x x  

..., Pbest
apNx  is the best position of a random another particle, 

called particle ap.   1 23 3 , 3 , ..., 3q q q qNc c c c  is the weight 

factor of another behavior.  Initial candidate solutions are 
usually far from the global optimum and hence a larger c3q 
may benefit global exploration.  However, the difference in 
global best guides between Gbest and Pbestap gradually de-
creases with successive iterations.  Therefore, c3q decreases 
linearly and is calculated using the following expression. 

 max max min
max

iter
3 3 ( 3 3 )qc c c c

iter
     

 q = 1, 2, … Q; i = 1, 2, … N (12) 

where c3max and c3min are the initial and final weights, respec-
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tively, itermax is the maximal iteration count, and iter is the 
current iteration number. 

2. Application of Pbestap with a Diversity-Based Judgment 
Mechanism in PSO 

Adding the Pbestap item increases PSO search space and 
robustness.  However, the information guiding to the global 
solution from Pbestap may contain the best particle position 
ever obtained, Gbest.  The random another particle best posi-
tion cannot usually provide positive guidance.  For maintain-
ing population diversity, an intelligent judgment mechanism 
for evaluating the Pbestap behavior is developed to provide 
facilitate identification of the near-global region.  The new 
velocity of each particle is calculated using the following 
formulae. 

1 0 1 ( ) 2k k k k
q q q qV c V c rand Pbest X c         

,k
ap( ) 3 ( ),k k k k

q q qrand Gbest X c rand Pbest X        

( ) ( ) 0k k k k
Gbest q ap qif x x x x     (13) 

1 0 1 ( ) 2k k k k
q q q qV c V c rand Pbest X c         

,k
ap( ) 3 ( ),k k k k

q q qrand Gbest X c rand Pbest X        

( ) ( ) 0k k k k
Gbest q ap qif x x x x     (14) 

The weight factor c3q maintains a wide spread of nondo-
minated solutions.  From (13), if (xk

ap  xk
q) and (xk

Gbest  xk
q) 

move in the same direction, the information guiding to the 
global solution from Pbestap and Gbest is similar.  Compared 
with Gbest, xk

ap is a bad position, and the influence of particle 
ap to the movement of particle q is negative.  Conversely, the 
information guiding to the global solution from Pbestap and 
Gbest differs largely if (xk

Gbest  xk
q) and (xk

ap  xk
q) do not 

move in the same direction.  As shown in (14), the influence of 
particle ap on the movement of particle q is positive.  The most 
attractive feature of the intelligent judgment mechanism for 
evaluating the aforementioned Pbestap behavior is its ability to 
maintain population diversity, which increases the possibility 
of escaping local optimal solution traps. 

3. Local Optimization Using DSM 

The DSM algorithm appears to be the optimal choice for 
local optimization because of its simplicity, computational 
efficiency, and easy implementation.  A salient feature of DSM 
is that it begins with an initial feasible solution and searches 
for the optimal solution along a trajectory that continually 
maintains a feasible solution.  DSM advantageously handles 
several inequality constraints without introducing multipliers.  
Furthermore, DSM solves problems involving unavailable 
derivatives and complex fuel cost functions.  Moreover, DSM 
gradually reduces the step size by using the multilevel con- 

START

Read system data

 Initialize a population of 
particles Q

Apply DSM for local 
optimization

Termination criteria 
reached?

END

Obtain solution

YES

NO

Perform intelligent particle
swarm  optimization

procedure for candidates

 
Fig. 1.  Flow chart for the proposed INPSO-DSM algorithm. 

 
 

vergence strategy to increase the possibility of escaping local 
optimal solution traps.  Numerical results demonstrate that 
DSM rapidly identifies a near-global region and performs a 
local search.  This efficient approach is appropriate for assess-
ing NED costs.  However, like many local search techniques, 
DSM is sensitive to the starting points.  In addition, selecting 
calculation step S is vital for successfully obtaining the global 
optimal solution.  Empirically, an appropriate initial calcula-
tion step S1 is 10%-20% of the largest generation unit in the 
power system.  Depending on the number of local minimal 
points in the cost functions, the recommended value of the 
reduced factor K is 1.1-3.0.  The extended economic dispatch 
problem is solved as described in (Chen and Chen, 2001).  The 
proposed INPSO-DSM algorithm is outlined in Fig. 1. 

V. SOLVING AND IMPLEMENTING  
INPSO-DSM 

The primary computational processes of the algorithm pre-
sented in this paper for solving ED with valve-point power 
systems are detailed here.  This algorithm is an implementa-
tion of INPSO-DSM. 

 
Step 1: Establish the INPSO-DSM parameters. 
 Establish the set of INPSO-DSM parameters, such as 
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the number of particles Q; weighting factors c0, c1,  
c2, c3max, and c3min; the maximal number of iterations 
itermax; initial calculation step S1; and reduced factor 
K. 

Step 2: Define the particle elements. 
 A particle is a solution in INPSO-DSM.  Each particle 

contains elements that represent the actual power gen-
eration of the generators.  Eq. (15) shows a particle q: 

1 2[ , , ..., , ..., ], 1, 2, ...,k k k k k
q i NX P P P P q Q   (15) 

Step 3: Randomly generate an initial population of particles. 
 Let rand be a uniform random value in the range [0,1].  

The initial power outputs of N  1 thermal generating 
units without violating (5) are generated randomly by 
using 

 min max min( )i i i iP P rand P P     (16) 

 To satisfy the power balance equation, a dependent 
generating unit is arbitrarily selected from the com-
mitted N units, and the output of the dependent gen-
erating unit Pd is determined using 

 
1

N

d D Loss i
i
i d

P P P P



    (17) 

 Pd can be calculated directly by using a quadratic equa-
tion, as shown in (Wong and Fung, 1993).  If Pd vio-
lates (5), a repairing strategy is applied to randomly 
select a unit to increase (or reduce) its output by the 
random or predefined step (e.g., 10 MW) sequentially 
until all constraints are satisfied. 

Step 4: Evaluate the fitness of each particle. 
 Calculate the fitness function value of each particle.  

The fitness function is an index for evaluating the fit-
ness of particles.  Eq. (1) is the fitness function of the 
ED problem. 

Step 5: Record and update Pbest and Gbest. 
 The two best values are recorded in the searching 

process.  Each particle tracks coordinates in the solu-
tion space associated with the best solution reached so 
far, which is recorded as Pbest.  The overall best value 
obtained by any particle is recorded as Gbest. 

Step 6: Update the velocity and position of the particles. 
 Eqs. (18)-(20) update the velocity and position of the 

particles.  The velocity of a particle represents a move-
ment of the generation of the generators.  The position 
of a particle is the generation of the generators and 
represents a movement of a particle. 

1 0 1 ( ) 2k k k k
qi qi qi qiV c V c rand Pbest X c         

( ) 3k k
i qi qirand Gbest X c rand      

( ),k k
api qiPbest X   

,( ) ( ) 0k k k k
i Gbest qi api qiif x x x x     (18) 

1 0 1 ( ) 2k k k k
qi qi qi qiV c V c rand Pbest X c         

( ) 3k k
i qi qirand Gbest X c rand      

( ),k k
api qiPbest X   

,( ) ( ) 0k k k k
i Gbest qi api qiif x x x x     (19) 

1 1k k k
qi qi qiX X V    

1, 2, ..., ; 1, 2, ..., ;q Q i N ap q    (20) 

 The new positions of the particles are forced to satisfy 
the unit’s generation limit constraint yielded by (5) and 
any other existing constraints. 

Step 7: Verify the end condition. 
 Upon reaching the maximal number of iterations, in-

voke the DSM algorithm, using the current solutions 
of the INPSO as the starting points for further ex-
ploring the final optimal solution; repeat steps 4-6 
until the end conditions are satisfied. 

VI. NUMERICAL EXPERIMENTS 

To verify the feasibility and effectiveness of the proposed 
algorithm, numerical studies are performed for the two test 
systems where valve-point effects are considered, one with 13 
generators and another with 40 generators.  All computations 
are performed on a Pentium (R) Dual-Core 3.0 GHz PC, and 
the following computer programs are developed in FORTRAN: 

 
PSO: Basic PSO 
PSO-IW: PSO with inertia weight 
CNPSO: PSO using common another particle behavior 
INPSO: CNPSO with a diversity-based judgment mechanism  
INPSO*: INPSO with local optimization 

 
Table 1 lists the optimal parameter settings determined after 

testing and evaluating different parameter combinations for 
the PSO, PSO-IW, CNPSO, INPSO, and INPSO* algorithms.  
The studied cases are detailed herein: 

1. Example 1: 13-Unit System 

A system with 13 generating units that considers valve- 
point effects is studied to test the solution quality and per-
formance of the proposed algorithm.  The system unit data is 
shown in Table 2 (Sinha et al., 2003); the total load demand is 
2520 MW.  To facilitate comparison, the network losses of the  
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Table 1.  Best parameter setting of the five PSO strategies. 

Parameter PSO PSO-IW CNPSO/INPSO INPSO* 

Example 1  
 

and  
 

Example 2 

Q = 300; 
itermax = 2000; 

c1 = 2.0; 
c2 = 2.0 

Q = 300; 
itermax = 2000; 

c1 = 2.0; 
c2 = 2.0; 
max = 0.9; 
min = 0.4 

Q = 300; 
itermax = 2000; 

c0 = 0.3; 
c1 = 2.5; c2 = 0.8; 

c3max = 0.4; 
c3min = 0.01 

Q = 300; 
itermax = 2000; c0 = 0.3;

c1 = 2.5; c2 = 0.8; 
c3max = 0.4; 
c3min = 0.01; 

S1 = 120, K = 1.2 
 
 

Table 2.  Parameters for the 13-unit system. 
Unit No. Pi

max Pi
min ai bi ci ei fi 

  1 680 0 550 8.1 0.00028 300 0.035 
  2 360 0 309 8.1 0.00056 200 0.042 
  3 360 0 307 8.1 0.00056 200 0.042 
  4 180 60 240 7.74 0.00324 150 0.063 
  5 180 60 240 7.74 0.00324 150 0.063 
  6 180 60 240 7.74 0.00324 150 0.063 
  7 180 60 240 7.74 0.00324 150 0.063 
  8 180 60 240 7.74 0.00324 150 0.063 
  9 180 60 240 7.74 0.00324 150 0.063 
10 120 40 126 8.6 0.00284 100 0.084 
11 120 40 126 8.6 0.00284 100 0.084 
12 120 55 126 8.6 0.00284 100 0.084 
13 120 55 126 8.6 0.00284 100 0.084 

 
 

Table 3.  Comparison of dispatch results for the load of 2520 MW in the system Example 1. 

Unit HSS TSA  EP-SQP PSO-SQP INPSO* 
  1 628.23 628.319 628.3136 628.3205 628.3185 
  2 299.22 299.1993 299.1715 299.0524 299.1990 
  3 299.17 331.8975 299.0474 298.9681 299.1990 
  4 159.12 159.7305 159.6399 159.4680 159.7330 
  5 159.95 159.7331 159.6560 159.1429 159.7330 
  6 158.85 159.7306 158.4831 159.2724 159.7328 
  7 157.26 159.7334 159.6749 159.5371 159.7328 
  8 159.93 159.7308 159.7265 158.8522 159.7329 
  9 159.86 159.7316 159.6653 159.7845 159.7329 
10 110.78 40.0028 114.0334 110.9618  77.3996 
11 75.00 77.3994 75.0000 75.0000  77.3996 
12 60.00 92.3932 60.0000 60.0000 92.3998 
13 92.62 92.3986 87.5884 91.6401 87.6868 

Cost ($/h) 24275.71 24313 24266.44 24261.05 24169.92 
 
 

system are ignored.  Traditional approaches, such as the lambda 
iteration, cannot be used to solve this problem because of their 
nonsmooth fuel cost functions.  The obtained optimal result 
using the proposed INPSO* is compared with those of the 
following earlier studies: HSS (Bhagwan Das and Patvardhan, 
1999), TSA (Khamsawang et al., 2002), EP-SQP (Victoire and 
Jeyakumar, 2004), and PSO-SQP (Victoire and Jeyakumar, 
2004) (Table 3).  From these results, although multiple local 
minimal solutions exist in the studied case, the proposed 
INPSO* obtains a solution ($24169.92) superior to those ob-
tained using the other approaches.  Thus, the appropriateness 

of the algorithm presented in this paper for obtaining optimal 
NED is confirmed. 

The INPSO optimization procedure is compared with typical 
PSO, PSO-IW, and CNPSO runs in Fig. 2, illustrating the con-
vergence property of the proposed algorithm.  In this test, the 
same initial random solution ($25293.98) is used in the four 
PSO strategies.  The results reveal that INPSO offers an excel-
lent convergence property for determining the optimal solu-
tion ($24169.92).  Moreover, the results demonstrate that the 
total number of iterations required for achieving the optimal 
solution is approximately 60 using INPSO and 220 using  
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Table 4.  Comparison of results after 100 trials for the system Example 1. 

Methods Minimum cost ($) Average cost ($) Maximum cost ($) NTO ACT (s) 

PSO 24392.76 24565.24 24714.27     0 1.9448 

PSO-IW 24287.9 24413.04 24695.04     0 2.2325 

CNPSO 24169.95 24266.33 24444.13     0 1.8999 

INPSO 24169.92 24182.91 24223.88   20 2.0675 

INPSO* 24169.92 24169.92 24169.92 100 2.086 

NTO: number of times to reach optimal solution ($ 24169.92). 
ACT: average computation time for 100 trail tests. 
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Fig. 2. Comparative convergence behaviors of the four PSO strategies 

for the 13-unit example system. 
 
 
CNPSO.  PSO-IW exhibits premature convergence and is easily 
trapped in local optima ($24392.76).  The simulation results 
clearly demonstrate that the proposed diversity-based judg-
ment mechanism for evaluating Pbestap provides an improved 
property during optimization. 

Because of the randomness of heuristic algorithms, their 
performance cannot be judged from a single run.  Many trials 
with different initial conditions are necessary to reach a fair 
conclusion.  Table 4 reports the lowest, average, and highest 
costs achieved for 100 trial runs.  The results highlight the 
superiority of the INPSO and INPSO* algorithms over the 
basic PSO.  The proposed INPSO* algorithm reaches the op-
timal NED solution ($24169.92) with a high probability, dem-
onstrating the benefit of integrating DSM into INPSO.  In these 
test cases, the proposed INPSO* easily obtains satisfactory 
solutions, and the average computing time is approximately 2 s.  
The encouraging simulation results reveal that INPSO* can 
obtain higher-quality NED solutions. 

2. Example 2: 40-Unit System 

In this example, to demonstrate the robustness and effec-
tiveness of the proposed INPSO* algorithm, the simulation 
includes test runs for the large-scale 40-unit system used in 
(Sinha et al., 2003).  Many local optimal solutions exist for the 
dispatch problem, which is thus well-suited for testing and 
validating the developed algorithm.  The system unit data is 
listed in Table 5; the load demand is 10500 MW.  This example 
problem has previously been solved using IFEEP (Sinha et 
al., 2003), MPSO (Park et al., 2005), PSO-SQP (Victoire and  

Table 5.  Parameters for the 40-unit system. 

Unit
No.

Pi
max Pi

min ai bi ci ei fi 

  1 114.0 36.0 94.700 6.73 0.00690 100.0 0.084
  2 114.0 36.0 94.705 6.73 0.00690 100.0 0.084
  3 120.0 60.0 309.54 7.07 0.02028 100.0 0.084
  4 190.0 80.0 369.03 8.18 0.00942 150.0 0.063
  5 97.0 47.0 148.89 5.35 0.0114 120.0 0.077
  6 140.0 68.0 222.33 8.05 0.01142 100.0 0.084
  7 300.0 110.0 287.71 8.03 0.00357 200.0 0.042
  8 300.0 135.0 391.98 6.99 0.00492 200.0 0.042
  9 300.0 135.0 455.76 6.60 0.00573 200.0 0.042
10 300.0 130.0 722.82 12.9 0.00605 200.0 0.042
11 375.0 94.0 635.20 12.9 0.00515 200.0 0.042
12 375.0 94.0 654.69 12.8 0.00569 200.0 0.042
13 500.0 125.0 913.40 12.5 0.00421 300.0 0.035
14 500.0 125.0 1760.4 8.84 0.00752 300.0 0.035
15 500.0 125.0 1728.3 9.15 0.00708 300.0 0.035
16 500.0 125.0 1728.3 9.15 0.00708 300.0 0.035
17 500.0 220.0 647.85 7.97 0.00313 300.0 0.035
18 500.0 220.0 649.69 7.95 0.00313 300.0 0.035
19 550.0 242.0 647.83 7.97 0.00313 300.0 0.035
20 550.0 242.0 647.81 7.97 0.00313 300.0 0.035
21 550.0 254.0 785.96 6.63 0.00298 300.0 0.035
22 550.0 254.0 785.96 6.63 0.00298 300.0 0.035
23 550.0 254.0 794.53 6.66 0.00284 300.0 0.035
24 550.0 254.0 794.53 6.66 0.00284 300.0 0.035
25 550.0 254.0 801.32 7.10 0.00277 300.0 0.035
26 550.0 254.0 801.32 7.10 0.00277 300.0 0.035
27 150.0 10.0 1055.1 3.33 0.52124 120.0 0.077
28 150.0 10.0 1055.1 3.33 0.52124 120.0 0.077
29 150.0 10.0 1055.1 3.33 0.52124 120.0 0.077
30 97.0 47.0 148.89 5.35 0.01140 120.0 0.077
31 190.0 60.0 222.92 6.43 0.00160 150.0 0.063
32 190.0 60.0 222.92 6.43 0.00160 150.0 0.063
33 190.0 60.0 222.92 6.43 0.00160 150.0 0.063
34 200.0 90.0 107.87 8.95 0.0001 200.0 0.042
35 200.0 90.0 116.58 8.62 0.0001 200.0 0.042
36 200.0 90.0 116.58 8.62 0.0001 200.0 0.042
37 110.0 25.0 307.45 5.88 0.0161 80.0 0.098
38 110.0 25.0 307.45 5.88 0.0161 80.0 0.098
39 110.0 25.0 307.45 5.88 0.0161 80.0 0.098
40 550.0 242.0 647.83 7.97 0.00313 300.0 0.035
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Table 6.  Comparison of results of different methods for the system Example 2. 

Methods Minimum cost ($) Average cost ($) Maximum cost ($) 

IFEP  122624.35 125740.63 123382 

PSO-SQP  122094.67 122245.25 --- 

MPSO  122252.265 --- --- 

NPSO-LRS  121664.4308 122209.3185 122981.5913 

CSO  121461.6707 121936.1926 122844.5391 

TSARGA  121463.07 122928.31 124296.54 

GA-PS-SQP  121458 122039 --- 

HMAPSO  121586.90 121586.90 121586.90 

SOH-PSO  121501.14 121853.57 122446.30 

MTS  121532.10 121798.51 122022.15 

PSO-MSAF 121423.23 --- --- 

-PSO  121420.9027 121509.8423 121852.4249 

INPSO 121412.6 121481.7 121622.6 

INPSO* 121412.6 121437.6 121538.4 
 
 

Table 7.  Best dispatch results for the forty-unit system. 

Unit No. Pi Unit No. Pi  Unit No. Pi  Unit No. Pi  

  1 110.799600 11   94.000210 21 523.279900 31 189.999900 

  2 110.799600 12   94.000120 22 523.279800 32 189.999800 

  3   97.400350 13 214.759200 23 523.279100 33 189.999200 

  4 179.733600 14 394.279700 24 523.280000 34 164.799500 

  5   87.799680 15 394.278700 25 523.279000 35 199.999800 

  6 139.999200 16 394.279600 26 523.279100 36 194.396800 

  7 259.600200 17 489.278900 27   10.000210 37 109.999700 

  8 284.599300 18 489.278900 28   10.000630 38 110.000000 

  9 284.599300 19 511.279800 29   10.000220 39 109.999800 

10 130.000600 20 511.278900 30   87.800590 40 511.278900 
 
 

Jeyakumar, 2004), NPSO-LRS (Selvakumar and Thanushkodi, 
2007), CSO (Selvakumar and Thanushkodi, 2009), TSARGA 
(Subbaraj et al., 2011), GA-PS-SQP (Alsumait et al., 2010), 
HMAPSO (Kumar et al., 2011), SOH-PSO (Chaturvedi et al., 
2008), MTS (Sa-ngiamvibool et al., 2011), PSO-MSAF (Sub-
baraj et al., 2010), and -PSO (Hosseinnezhad and Babaei, 
2013).  In Table 6, the corresponding costs of the optimal solu-
tion obtained using INPSO and INPSO* are compared with 
those of the aforementioned approaches.  These results show 
that the proposed INPSO* yields a solution ($121412.6) su-
perior in minimal and average costs to those obtained in pre-
vious research.  Table 7 contains details of the best solutions 
obtained using the proposed INPSO* algorithm.  The results 
show that the proposed INPSO* algorithm is accurate and 
efficiently solves complex NED problems. 

The CNPSO and INPSO optimization procedures are com-
pared with typical PSO and PSO-IW runs in Fig. 3, demon-
strating the strong convergence property of the proposed al-
gorithm.  In the test, the same initial random starting points 
($131251.6) are used in the basic PSO, PSO-IW, CNPSO, and 
INPSO algorithms.  As shown in Fig. 3, the basic PSO exhibits 
premature convergence and is easily trapped in local optima1  
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Fig. 3. Comparative convergence behaviors of the four PSO strategies 

for the 40-unit example system. 

 
 

($123516.4) at the 56th iteration.  Similarly, PSO-IW is trapped 
in a local optimal solution ($122206.2) because a promising 
area where the global optimal exists is unidentified at the end 
of optimization.  The satisfactory solution ($121600.9) achieved 
by INPSO decreases rapidly before the 300th iteration and the 
global optimal solution ($121412.6) is obtained in the 881st 
iteration.  The improved social behavior mechanism is effec-
tive, and the algorithm converges rapidly.  Moreover, the final  
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Table 8.   Comparison of results after 100 trials for the system Example 2. 

Methods Minimum cost ($) Average cost ($) Maximum cost ($) NTO ACT (s) 

PSO 122838.9 123006.4 123198.5   0 6.025 

PSO-IW 121745.6 121940.1 122233.7   0 6.5856 

CNPSO 121417.6 121685.4 124647.0   0 5.9314 

INPSO 121412.6 121481.7 121622.6 13 6.416 

INPSO* 121412.6 121437.6 121538.4 33 6.8023 

NTO: number of times to reach optimal solution ($121412.6). 
ACT: average computation time for 100 trail tests. 
 
 
results of INPSO are better than those of PSO and PSO-IW.  
The ability of the proposed INPSO algorithm to escape local 
optimal traps is thus confirmed. 

To investigate the effects of initial trial solutions on the final 
results, different initial random solutions are used in PSO, 
PSO-IW, CNPSO, INPSO, and INPSO*.  Table 8 reports the 
least, average, and highest costs calculated using the five PSO 
strategies for 100 trial runs.  In these test cases, the proposed 
INPSO easily obtains satisfactory solutions by using the in-
telligent judgment mechanism.  However, only the near-global 
optimal solution is obtained using the proposed approach.  
INPSO reached the global optimal solution ($121412.6) 13 
times, whereas CNPSO did so 0 times in the test cases.  The 
basic PSO offers no guarantee that the solutions are optimal or 
even close to the optimal solution.  As the data in the sixth row 
of Table 8 reveals, INPSO* produced the optimal solution 
($121412.6) 33 times, demonstrating its effectiveness, reliably, 
and efficiency.  This test case study converges within 6.8 s in 
each run when Q is 300.  Various load demands were studied 
and the results show that the proposed INPSO* algorithm 
successfully escapes the local optimal traps.  This approach 
accurately solves NED problems. 

VII. CONCLUSIONS 

This paper presents a hybrid algorithm that combines INPSO 
and DSM to solve ED problems with valve-point effects.  Using 
the Pbestap item with a diversity-based judgment mechanism, 
the proposed PSO algorithm facilitates identification of the 
near-global region.  Moreover, a local optimization technique 
that utilizes DSM is used to fine-tune and determine the 
eventual global optimal solution at low computational ex-
penses.  The proposed INPSO-DSM provides the global op-
timal solution with a high probability for ED problems with 
valve-point effects.  Large-scale NED problems can be solved 
using the proposed algorithm.  Furthermore, numerical ex-
periments demonstrate that the proposed algorithm is more 
practical and valid than many existing NED solutions. 
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