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RESEARCH ARTICLE

Investigating Model Solution Correctness for
Parameter Uncertainty in Both Objective Function
and Constraints

Shangyao Yan*, Sin-Siang Wang, Chun-Yi Wang
Department of Civil Engineering, National Central University, Taoyuan 32001, Taiwan, R.O.C

Abstract

Parameter uncertainty, which may arise due to changes in the environment or human error, may be incorporated into
the objective function and the constraints in an optimization model. However, to simplify the modeling, the values of
these parameters are usually set or projected as deterministic values. It is no wonder that the modelling results based on
these inaccurate parameters are neither correct nor reliable. Thus, it is important to examine the correctness of the model
results in relation to parameter uncertainty. This study aims to analyze solution correctness in relation to different
degrees of parameter uncertainty for the parameters in the objective function and the constraints, specifically for a
project scheduling model. To examine the relationship between the solution correctness, the parameter uncertainty and
the solution tolerance error, we conduct a numerical experiment including a number of different scenarios, each asso-
ciated with a degree of uncertainty for all parameters in both the objective function and the constraints. Finally, the
regression technique is adopted to more efficiently analyze the relationship between model input error, solution
tolerance error and model output error, by estimating equations representative of their relationship. The obtained results
and findings could be useful for the planners to apply any optimization models, including maritime transport optimi-
zation models, and to design solution algorithms in practice.

Keywords: Solution correctness, Parameter uncertainty, Optimization model, Regression

1. Introduction the parameters on the model output are
extremely complicated.

ptimization models are a good tool for de- To effectively apply an optimization model,

cision makers to solve complicated optimi- related parameters are required. However, the pa-

rameters calculated or estimated in the real world
may not be correct due to environmental stochas-

. . . ticity or human error. It is quite difficult to accu-
given parameters with the constraints and the . .
rately calculate uncertain parameter values without

objective for a problem, mathematical optimiza- o115, When uncertain parameters are applied in
tion applies an exact solution algorithm  ,n optimization model, the solution may not be
embedded in a complicated combinational anal-  correct. The main reason for this is that the existence
ysis of variable values to choose the best solution  of model input errors will cause the occurrence of
from among numerous feasible combinations of ~ model output errors, which is the “blind spot” for
variable values. Because all model inputs syn- the successful applic‘afion of optimization models.
thetically affect the model output, the effects of Furthermore, the decision maker may not know that

zation problems, such as maritime transport
optimization problems, in practice. Based on the
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the “optimal” decision made when a model solution
contains errors is inappropriate. Additionally, the
gap between the solution obtained from an optimi-
zation model with uncertain parameters and the
real optimal solution for the model is unknown. If
the gap is significantly large, then the so-called
optimal solution is not meaningful. If so, a solution
obtained from an approximation solution algorithm
with an acceptable solution tolerance error might be
more useful than the solution gained from an opti-
mization model with uncertain parameters. In the
past, this type of situation has rarely been discussed,
but further work is indeed needed to understand
the practical applications of optimization models,
and how to design better optimization models and
approximation solution algorithms.

A number of methods have been used in the past
to estimate suitable parameter values for optimiza-
tion model applications. Methods adopted for
evaluating uncertain parameters include grey pre-
diction, data mining, robust optimization, artificial
neural networks, machine learning, fuzzy sets, sto-
chastic programming and so on. For instance, see
Refs. [1—17]. However, the solutions obtained in
past studies were mainly evaluated by comparing
them with the best solutions found previously
because the true optimal solutions cannot be ob-
tained from models with uncertain parameters. In
other words, the solution performance for such a
model, even one obtained with any of the afore-
mentioned approaches, cannot be objectively eval-
uated, because there are still errors in the effective
solutions.

Variance-based sensitivity analysis has also been
used for assessing the importance of model inputs
when there are probability distributions associated
with each input to quantify the relative contribution
of uncertainty from different sources [18]. Moreover,
the variance decomposition method, coupled with
variance-based sensitivity analysis, has been pro-
posed as a means to efficiently examine the effect of
an individual model input on the model output with
input independence [19]. However, sensitivity
analysis has only been efficiently carried out for
linear programming models with changes in one
parameter, which are known as optimization
models. Two types of parametric programming
analysis for linear programming models have been
developed to examine continuous decreasing/
increasing changes in a set of parameters (e.g., see
Hiller and Lieberman, [20]). No efficient approach
has yet been developed for performing sensitivity
analysis of linear programming models or integer
programming models, with simultaneous changes

in two or more parameters, such as Chen et al.'s [21]
model.

There have been some studies that utilize
approximation solution algorithms with a solution
tolerance error to increase the solution efficiency of
models that include uncertain parameters. For
instance, see Refs. [22—30]. Although the solution
efficiency obtained is good, the effect of various
solution tolerance errors on model solutions with
input errors has not been discussed. The compli-
cated combinatorial analysis of variable values from
an exact solution algorithm and a heuristic algo-
rithm could result in a gap between the optimal
solution and approximate solution. Furthermore, if
the model parameters contain errors, then this gap
will be distorted, and since the changes in both so-
lutions are unknown, the superiority of the
“optimal” solution over the “heuristic” solution may
not hold. It is necessary to obtain a better under-
standing of the gap based on the given parameter
uncertainty and solution tolerance error.

There are basically two types of factors causing
uncertainty of parameters in a model: uncontrolla-
ble and controllable. Uncontrollable factors are the
result of nonhuman behavior. For instance, dis-
crepancies in information between the supply and
demand sides are considered to be an uncontrolla-
ble factor. Such discrepancies will cause differences
between the currently estimated uncertain param-
eter values and those estimated in the future,
meaning that the estimated values will include er-
rors. Random error is the error of uncertain
parameter values caused by uncontrollable factors.
Controllable factors, on the other hand, arise from
human behavior. For instance, carelessness when
gathering or processing data is considered to be a
controllable factor. Some data utilized to estimate
uncertain parameter values may thus be incorrect,
implying that the estimated values will include er-
rors. Uncertain parameter value error caused by
controllable factors is defined as controllable error.
Neither type of error can be ignored when imple-
menting any numerical estimation or measurement
experiments, for example, those carried out in
general physics, according to Weltner et al. [31].
Uncontrollable error can be caused by interference
factors during the experimental period, such as
changes in air pressure, temperature or shocks.
Controllable error on the other hand can be caused
by discrepancies in the measurement instruments
or approaches. Weltner et al. [31] also mentioned
that both types of error have a notable effect on the
accuracy of the measurement results. The uncertain
parameter values in engineering optimization
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models may also contain both random and
controllable errors. Therefore, the effects of these
types of error in uncertain parameter values on the
model solution must be evaluated to avoid making
unsuitable decisions when solving such models.

An optimization model usually contains parame-
ters in both the objective function and the con-
straints. In real world practices there may be
uncertainty involved in both types of parameters.
Recently, we developed an experimental method to
evaluate solution errors from optimization models
in which uncertain parameters were included in the
objective function [32] and in the constraints [33],
respectively. However, the results of error analysis
for one type of uncertain parameters may differ
from the results of error analysis for two types of
uncertain parameters where a combined effect is
usually incurred. Recently we thus conducted a
prior study of error analysis for both types of un-
certain parameters [34] and the test results prelim-
inarily =~ demonstrated the combined effect.
Therefore, in this study, referring to Yan et al. [34]
we develop an approach for a complete correctness
evaluation, assuming uncertain parameters in both
the objective function and the constraints for a
project scheduling model. Different random and
controllable error scenarios, with different solution
tolerance error settings are used to understand the
designs and the applications of optimization models
and approximation solution algorithms. In cases
where the model constraints contain errors due to
uncertain parameter values there may be no feasible
solution. The main reason for this being estimation
errors in the parameter values for the constraints
may alter the constraint set to become an empty set,
resulting in infeasibility of the model. To obtain a
feasible solution under this condition, the model has
to be modified, as discussed in Section 4. In addi-
tion, the regression technique is adopted to
construct equations which represent the relation-
ships between input errors, solution tolerances and
solution correctness (i.e., output errors).

To sum up, the main contributions of the study are:

(1) A method is proposed and an experiment per-
formed to examine the influence of controllable
and random errors leading to uncertain param-
eter values on the output of a project scheduling
model where uncertain parameter values exist in
both the objective function and the constraints.
The method can also be applied to other opti-
mization models, including maritime transport
optimization models. A modified model is also
developed to ensure model feasibility for per-
forming all tests.

(2) Extensive tests are conducted to verify the
effectiveness of the proposed method for models
containing input errors in both the objective
function and the constraints. In addition, the
experiment is designed to include a number of
error scenarios coupled with a number of solu-
tion tolerance errors.

(3) Regression analysis is adopted to create an equa-
tion for each error scenario to examine the rela-
tionship between the model input error, the
solution tolerance error, and the model output
error. Thus, decision makers can predict model
output errors given model input errors and solu-
tion tolerance errors for similar models in practice.

(4) Some useful information and managerial sug-
gestions based on the test results are proposed
to assist decision makers in designing suitable
strategies for dealing with similar problems in
practice. For example, the design of employee
training procedures or data handling processes
to reduce model input errors or the setting of
suitable solution tolerance errors so that model
output errors and solution times can be reduced
or controlled.

The rest of the paper is organized as follows. In
Section 2, we introduce the project scheduling
model. In Section 3, the modified model is described.
In Section 4, we discuss uncertain parameters
involved in the model. In Section 5, an approach to
evaluate the model output error is proposed. In
Section 6, error tests over uncertain parameter
values and regression analysis of test results are
carried out. Finally, some conclusions and sugges-
tions for future work are given in Section 7.

2. Introduction to Chen et al.'s model

In this study we use the project scheduling model
proposed by Chen et al. [21]; as an example, to
perform the tests and to evaluate the effect of
parameter uncertainties on the correctness of the
results. There are two main reasons for choosing
this model: first, it is easy to design various sce-
narios with controllable and random errors and to
perform error tests over uncertain parameter values;
second, extensive tests can be performed using 552
instances obtained from the project scheduling
problem library (PSPLIB; http://www.om-db.wi.
tum.de/psplib/main.html) associated with the
model. Note that the proposed method can be
applied to any optimization model which can be
optimally solved using an exact solution algorithm.
Studies on other models may be performed in the
future. The model used here mainly deals with the
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multi-mode resource constrained project sched-
uling problem with discounted cash flows
(MRCPSPDCF) with the PAC (payment at activity
completion time) method for short term operations.

In this type of project scheduling problem, each
project is made up of several activities. Each project
must be concluded within an expected completion
period. There are three factors that need to be
considered when implementing the project: multi-
ple modes, the use of renewable and non-renewable
resources and the net present value (NPV). Activity
preemption is not allowed. Each activity is carried
out only by a single mode. Each mode has a specific
duration and a specific consumption of renewable
and non-renewable resources. The amount of
renewable/non-renewable resources available for
each time period/project period needs to be
controlled. Each renewable/non-renewable
resource has a specific cost. A discounted cash flow
equation must be constructed to calculate the pre-
sent value of the net cash flow of each activity. In
Chen et al. [21]; all cash outflows for each activity
are set at the activity starting time. All cash inflows
for each activity conform to the PAC method. The
aim of the MRCPSPDCF is to maximize the NPV of
all cash flows for all activities in the project. Chen et
al. [21] employed a time-precedence network flow
technique to construct a generalized network flow
model to optimally solve the MRCPSPDCF using
the CPLEX11.1 mathematical programming soft-
ware. For convenience, we briefly introduce the
original model below. The interested reader may
refer to Chen et al. [21] for a more detailed
explanation.

Firstly, symbols and notations used in Chen et al.'s
model are listed below.

Decision variable:

Yijk  kth arc flow associated with node pair (i,j).

Parameters:
cijix : present value of net cash flow associated with arc (i j,k);
Ty ¢ lth renewable resource amount associated with arc (i,j,k);
Tijko : Oth non-renewable resource amount associated with arc (i j,k);
a; : available lth renewable resource amount;
by : available oth non-renewable resource amount;
s+ number of predecessors associated with node pair (q,i);
my; - flow adjustment coefficient associated with arc (q,i,k);
d :dth activity;
v :supply point;
f : collection point;
up - arc (ij,k) flow upper bound.

Sets:
N : set of nodes;
D : set of activities;

W : set of node pairs associated with activities;

W, : set of node pairs associated with the dth activity;

Aj; :set of parallel activity arcs associated with the node pair (i,j);
B, :set of arcs preceding the node pair (q,i);

RR : set of renewable resources;

NR : set of non-renewable resources;

T, : set of node pairs associated with the hth time point;

T :set of time points associated with the project duration.

I :setof integers.

The model is shown as follows:

Maximize:
Z Z CijkYijk (1)
ijEWkeAy
Subject to:
Z Z Yijk — Z Z MyikYqik
jENkeA; qENkEA,;
1, if i=v
=<0, others VieN (2)
-1, if i=f
Z SqiYqik < Z Z yix V(g.i)EW (3)
kEA; iiEBykEA;
> yu=1 deD (4)
i EW kEA;
> ruyp<a VheET,IERR (5)
ijeThkeA,vj
> ey <b, 0ENR (6)
ijEWkeEA;
0<yjx <uj , xuE€ I VKkEA;,V(i,j)EW (7)

Equation (1) is the objective function that maxi-
mizes the NPV of all cash flows for all activities in
the project. Equation (2) ensures the flow conser-
vation at every node in the network. Equation (3)
denotes the precedence constraints between related
activities. Equation (4) indicates that one mode only
is selected for executing every activity. Equations (5)
and (6) constrain the use of the available amount of
renewable and non-renewable resources, respec-
tively. Equation (7) ensures that all the arc flows are
within their bounds.

Note that this model may be demonstrated to be
infeasible when carrying out the error tests for the
available amount of renewable and non-renewable
resources. The model has to be suitably revised to
alleviate this problem. The revised model is
described in the next section.
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3. The revised model

When carrying out the error tests for calculation of
the available amount of renewable and non-
renewable resources, the estimated available
amount of resources could be less than the amount
of resources required to finish the project (ie.,
resource demand is greater than resource supply),
so that the project cannot be completed (i.e., the
model has no feasible solution). To avoid this
occurring, Equations (1), (5) and (6) are revised to
produce Equations (8), (9) and (12). The rest of the
equations remain the same.

In Equations (8) and (9), extra amounts of the /th
renewable resource and the oth non-renewable
resource need to be added to the right-hand side in
both equations, to complete the project. Notations ¢;
and v, denote the extra amount of the Ith renewable
resource and the extra amount of the oth non-
renewable resource required, respectively.

S rwyp <a+6 VheT,IERR (8)
ijEThkEA;
Z Zrijko Yik <b,+7v, 0ENR (9)
ijEWkea,

Two new Equations (10) and (11) are added to
ensure the non-negativity and integrality of the
extra amount of the Ith renewable resource and the
oth non-renewable resource, respectively.

0;>0&0, € Integer 1€RR (10)

v, > 0&y,EInteger 0ENR (11)

In Equation (12), two penalty values, based on the
extra amount of the Ith renewable resource and the
oth non-renewable resource required to complete
the project, are added. Notations pv; and po,
represent the penalty value for extra use of a Ith
renewable resource and for extra use of a oth non-
renewable resource, respectively.

Max Z Z CiikYijk — PUI01 — PUoY, (12)

jjEWkEA;

4. Discussion of uncertain parameters
included in the model

There is only one parameter (i.e., c;j) included in
the objective function. Parameter c;j is used to ex-
press the NPV of all cash flows associated with each
activity with a specific mode or the reward/penalty
value associated with the collection arc. The NPV of
all cash flows associated with each activity with a

specific mode can be computed by a discounted
cash flow equation comprised of three elements: the
discount rate, all cash outflows for each activity with
a specific mode and all cash inflows for each activity
with a specific mode. The discount rate, a profit
return value, is a certain parameter. In Chen et al.
[21]; all cash outflows for each activity with a specific
mode are equal to the mode cost. The mode cost can
be calculated by multiplying the amount of renew-
able and non-renewable resources required by the
mode by the unit cost of these resources. Since each
mode is associated with a certain way of working,
the amount of renewable and non-renewable re-
sources required by each mode can be precisely
evaluated, meaning that the amount of resources
required by each mode will not contain errors. The
unit cost of renewable and non-renewable resources
usually requires the calculation of many compli-
cated item costs, making it difficult to completely
grasp and so it will contain errors (i.e., it is uncer-
tain). In addition, all cash inflows for each activity
with a specific mode are equal to the total contract
payment for the project divided by the number of
activities in the project. In practice, before executing
the project, the decision maker can precisely eval-
uate the total contract payment and the number of
activities in the project, meaning that they will not
contain errors. The reward and penalty values for
the collection arc will not contain errors, because
they are mainly set by the decision maker.

There are six equations (i.e., Equations (2)—(7)) for
the constraints. Equation (2) is used to ensure flow
conservation for each node in the network and the
values of parameter m,; will not contain errors.
Equation (3) is used to assure the precedence rela-
tionship for the activities and the values of param-
eter s;; will not contain errors. Equation (4) is used to
ensure that each activity is executed using a specific
mode and the given parameter values will not
contain errors. Equations (5) and (6) are used to
manage the use of the renewable and non-renew-
able resources, respectively. The values of parame-
ters a; and b, in these two equations may contain
errors, because, in practice, to save time, only a
rough estimate of the available amount of renew-
able and non-renewable resources required is
made. In addition, the values of parameters 7y and
Tijko Will not contain errors, because each mode is
associated with a way of working, meaning that the
amount of renewable and non-renewable resources
consumed by each mode can be precisely estimated.
Equation (7) is used to define the bounds of all arc
flows in the network, so the values of parameter wu;j
and the given parameter values will not contain
errors.
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To conclude the above analysis, the unit cost as
well as the available amounts of renewable and non-
renewable resources are uncertain parameters.
Therefore, in this study, the error tests are mainly
carried out over these uncertain parameter values.

5. An approach for evaluating model output
errors

In this section an approach for evaluating the so-
lution correctness is proposed in order to explore
the output errors of Chen et al's model which
contains uncertain parameters in both the objective
function and the constraints. As discussed in Section
4, the exploration of model output errors carried out
in the approach is mainly on the revised model.
Note that because many of the parameters which
could exist in an optimization model with control-
lable and random errors, as in Chen et al.'s model,
lack a specific pattern, traditional sensitivity analysis
and parametric programming techniques cannot be
used to examine the effect of the parameter errors
on the model output. Generally, when performing
the evaluation of uncertain parameter values, the
existence of both controllable and random errors
has to be considered. Hence, several different input
error scenarios are designed to represent different
conditions.

Each error scenario is associated with a specific
error range which is adjustable. The error range is
used to generate controllable and random errors.
For instance, when the error range is set to +3%, the
generated controllable and random errors will be in
the range of +3%. According to Kline and McClin-
tock [35] the generation of controllable and random
errors conforms to a normal distribution. In this
approach, the generation of controllable and
random errors associated with all designed error
scenarios mainly conforms to a truncated standard
normal distribution (the two tails for the distribu-
tion are separately cut by 5%) in order to avoid
generating extreme errors. If only one set of errors
is produced for each scenario, the produced error
may be excessively subjective. To increase the ob-
jectivity, each error scenario will be designed to
produce multiple sets of errors. The evaluation of a
suitable set of errors for each error scenario will be
discussed in Section 6.2. In addition, we can use
each set of errors produced in each error scenario
coupled with the real value of uncertain parameters
to calculate the corresponding value of uncertain
parameters for the error scenario. A simple example
is used to explain how to use the set of errors pro-
duced in an error scenario coupled with the real
value of an uncertain parameter to calculate the

corresponding value of the uncertain parameter. In
this example, the value of an uncertain parameter e
needs to be evaluated. The real value of uncertain
parameter e is assumed to be 200. There is only one
set of controllable and random errors generated in
the error scenario. The error range for the error
scenario is set to be +3%. The generated control-
lable and random errors are 0.02 and -0.01,
respectively. In the error scenario, the value of e
can be obtained by taking the real value of uncer-
tain parameter e plus the value influenced by
the generated controllable and random errors.
Therefore, the value of e in the error scenario is 202
(=200 + 200*(0.02 - 0.01)). There is a model solution
corresponding to each set of errors generated in
each error scenario. Since there are multiple sets of
errors generated for each error scenario, each error
scenario has multiple corresponding model solu-
tions. In this approach, multiple model solutions for
each error scenario must be averaged to become a
representative model solution associated with the
error scenario.

The effect of the solution tolerance errors on the
model output errors is also examined. Various so-
lution tolerance errors are designed when solving
the revised model with uncertain parameter values
for each error scenario. An equation is proposed to
compute the gap between the real optimal solution
and the solution obtained from the revised model
with uncertain parameter values for the specific
error scenario and the specific solution tolerance
error setting, as discussed below. In the equation,
for convenience, the solution obtained from Chen et
al.'s model with real parameter values, and a solu-
tion tolerance error of 0% is regarded as the real
optimal solution. Parameter value settings for the
revised model will be introduced in Section 6.1. The
real parameter value settings are the same as those
set in Chen et al. [21]. In the equation, the notation
RS indicates the representative model solution for
the revised model with uncertain parameter values
under the specific error scenario, coupled with the
specific solution tolerance error setting and OS in-
dicates the real optimal solution.

RS - 0S

Model output errors(%) = |T

| x 100%

6. Error tests for uncertain parameter values

Error tests for uncertain parameter values are
carried out using 552 test instances for a 30-activity
project scheduling problem, as used in Chen et al.
[21]. The data for the test instances can be obtained
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directly from the project scheduling problem library
(http://www.om-db.wi.tum.de/psplib/main.html).
The Visual C++ programming language, coupled
with CPLEX 11.1 (the solution procedure is
comprised of the branch and bound method,
coupled with the simplex method) is used to
construct and solve the model. A Celeron-M540 2.30
GHz CPU with 2.0 GB of RAM operating in the
environment of Microsoft Windows XP is utilized to
perform the tests.

6.1. Parameter value settings for the revised model

The same parameter value settings are used for all
test instances in this study. To save space, a test
instance with a PSPLIB file number of mf11_.bas is
utilized to introduce the parameter value settings
for the revised model. In the test instance, three
modes are provided for executing each activity. The
time period of each mode is between 1 and 10 time
units. The time units are adjustable (e.g., it can be
set to be a quarter of a year, half a year, or a year).
The type of renewable resource is two (i.e,, R1 and
R2). The type of non-renewable resource is two (i.e.,
N1 and N2). The expected finish period of the
project is 35 time units. The available amounts for
R1/R2 per time unit are 32/28. The available
amounts for N1/N2 in the analysis period are 86/93.
The analysis period (i.e, the longest execution
period of the project) is 78 time units, which is
computed by the label-correcting algorithm used in
Chen et al. [21]. For the period and the resource
demand related to the mode, as well as the succes-
sors for each activity, please refer to the file. There
are some data (e.g., the cost parameter data for the
activities, the permissible work periods for the ac-
tivities, and the data for the dummy activity arcs)
that are not provided in the file. For convenience,
these data are mainly identical to those used by
Chen et al. [21]. The contract payment for the project
is 4,000,000 monetary units. The monetary unit is
adjustable (e.g., it can be set to be USD or NTD). All
cash inflows for each activity with all modes are
equal to the contract payment for the project
divided by the number of activities in the project.
All cash inflows for each activity with all modes in
the test instance can be computed to be about
133,333 (= 4,000,000/30) monetary units. All cash
outflows for each activity are equal to the cost of the
mode performing the activity. The collection arc cost
is 4000 monetary units per time unit. The discount
rate is 0.03 per time unit. In addition, we employ the
methods proposed in Chen et al. [21] to build the
dummy activity arcs and calculate the permissible
work periods for the activities.

In accordance with the analysis in Section 3, in
Chen et al.'s model, the unit cost and the available
amounts for R1/R2/N1/N2 are considered to be
uncertain parameters. Accordingly, we design 15
error scenarios for the unit cost and available
amounts for R1/R2/N1/N2; see Table 1. No error
exists for the uncertain parameter values in error
scenario 1. Since the change in the controllable error
range is more obvious than in the random error
range for a short-term planning model, there are
two random error ranges (i.e., 0% and +5%) set and
seven controllable error ranges (i.e, +1%, +3%,
+5%, +7%, +10%, +15% and +20%) set in the other
error scenarios. Note that the unit costs for re-
sources should not be significantly variated within
the short period in practice. Consequently, the
range of random errors for these costs is expectedly
small, compared with that of the controllable errors.
That is why the maximum random error is set
smaller than the maximum controllable error. Note
that the ranges of random errors and controllable
errors, which are associated with the problems and
the environment, are adjustable in real practices.
This study does not evaluate the influence of purely
random errors on model output errors, because we
want to focus on understanding the influence of
controllable errors on output errors. In the future,
the influence of purely random errors can be eval-
uated. The real value of the unit cost for R1/R2/N1/
N2 is set to be 13,065/5823/11,628/5538 monetary
units, the same as that set in Chen et al. [21]. The
real value of the available amount for R1/R2/N1/N2
is set to be the same as that given for the test
instance. The penalty value used for the extra use of
R1/R2 is set to be 1.5 times the unit cost for R1/R2
(i.e., 19,598/8735 monetary units). The penalty value
used for the extra use of N1/N2 is set to be 2 times

Table 1. Error scenarios for the uncertain parameter values.

Error scenario  Controllable error range Random error range

1 — —

2 +1% -

3 +3% -

4 +5% -

5 +7% -

6 +10% -

7 +15% -

8 +20% -

9 +1% +5%
10 +3% +5%
11 +5% +5%
12 +7% +5%
13 +10% +5%
14 +15% +5%
15 +20% +5%
Note: The notation “~” denotes that no error range exists.
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Table 2 shows the output results for a project that

includes 30 activities under different error scenarios,
with different solution tolerance error settings. For

40

scenario, we

scenarios

units)
640000

The test instance contains a time-precedence
network. There are 79 time-precedence points
associated with each precedence point in the anal-
ysis period. The revised model includes 2028 nodes,

To ascertain how many error sets need to be
generated for each of the error scenarios ranging

Fig. 1. Average objective values for various numbers of scenarios.

620000
600000
580000
560000 r
540000
520000

the unit cost for N1/N2 (i.e., 23,256/11,076 monetary
units). The main reason for this is that renewable
6151 arcs and 14,511 constraints, in which 2028
constraints are used to ensure the flow conservation
of all nodes, 6151 constraints are used to ensure the
all arc flow bounds, and 6332 side constraints are
used to comply with the operating regulations. In
must be carried out. For convenience, error scenario
11 is evaluated, with zero solution tolerance error.

Ten situations, from 40 to 130 scenar
in increments of 10 scenarios, are tested in the

evaluation. Each scenario has a specific set of
used here is the same as that explained in Section

terms of solving the revised model under each error
from 2 to 15, the evaluation of a proper error set
random and controllable errors. The test instance
6.1. As shown in Fig. 1, after 100 scenarios, the
average objective values stabilize. For ease of
testing, when solving each test instance for each
problem, with all solution tolerance error settings,
100 error scenarios are generated for each of error
error scenario 1 in Table 2, we show the average real
solution errors (%) and average solution time

6.2. Output results

Average objective
values (monetary
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(seconds) for all test instances under each solution
tolerance error setting. Since no errors exist in un-
certain parameter values for error scenario 1, the
average real solution error is zero when the solution
tolerance error is set to be 0%, meaning that the
solutions are real optimal solutions. In addition, the
larger the solution tolerance error set, the larger the
average real solution error and the shorter the
average solution time. In contrast, the smaller the
solution tolerance error set, the smaller the average
model output error and the longer the average so-
lution time.

Figs. 2—5 show more detailed results for error
scenarios 2 to 15. Note that in these four figures, the
presented solution tolerance errors are the solution
tolerance error settings in CPLEX 11.1. Fig. 2 and 3
show that the model output errors for each of error
scenarios 2 to 15 are still positive when the solution
tolerance error is set to 0%. Based on this, we find
that when the engineering optimization model
contains uncertain parameters (i.e, model input
contains errors), the model solution is not optimal
(i.e., model output contains errors), even though the
solution tolerance error is set to 0%. This means that
any decision made using the solution obtained from
an engineering optimization model with uncertain
parameters is not optimal. On the other hand, the
lower the error range set, the smaller the average
model output error shown for error scenarios 2 to 8/
9 to 15, with a solution tolerance error setting of 0%.
Based on this, we find that the model output error
can be expected to be lowered by increasing the
precision of uncertain parameter values.

Fig. 4 shows the relative increase in average model
output errors regarding all error scenarios 2—15 as
the solution tolerance error increases. It is found
that when the solution tolerance error is less than
3%, the relative increase in average model output

errors is not significant. Fig. 5 shows the relative
decrease in average solution time for all error sce-
narios 2—15 as the solution tolerance error in-
creases. It is found that under a solution tolerance
error of 3%, the relative decrease in average solution
time for these error scenarios is significant. The
implication is that when solving Chen et al.'s model
or similar models, with uncertain parameter values,
with approximation solution algorithms, the solu-
tion tolerance error should be set to about 3%, to
maintain solution correctness while significantly
shortening the solution time. Note that suitable so-
lutions tolerance error settings may differ depend-
ing upon whether CPLEX or other solution
algorithms are used to solve other models with
uncertain parameters and further testing is needed.
T-test is carried out to understand whether the
model output errors for each of error scenarios 2—15
with 0% solution tolerance error are greater than
those obtained by [32,33]; where only uncertain
parameters are included in either the objective
function or the constraints. The significance level a
is set to be 1%. The results indicate that the p-values
of all t-tests are all below the significance level o of
1%. This shows that the model output errors for
each of error scenarios 2—15 obtained in this study
are greater than those obtained in Yan et al. [32]/Yan
et al. [32]. As a result, when more uncertain pa-
rameters are included in the model, there will be
more model output errors generated.

6.3. Regression analysis

We use the SAS 9.3 software to perform regres-
sion analysis of the test results for each error sce-
nario in order to understand the relationship
between model input error, solution tolerance error
and model output error. There are two independent

Average model output
errors %
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—=— Error scenario 3

25
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ZOJ
//
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Fig. 2. Average model output errors for each of error scenarios 2—8 with various solution tolerance errors.
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Average model output
errors %
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Fig. 3. Average model output errors for each of error scenarios 9—15 with various solution tolerance errors.

variables x; and x, (i.e., model input error and so-
lution tolerance error) and one dependent variable y
(i.e., model output error) in the regression analysis.
A test of the independence associated with x; and x
will be carried out later. The regression equation is
estimated with respect to an error scenario. The
model output error can be predicted given the
controllable input error and the solution tolerance
error associated with the regression equation. Since
there is no model input error in error scenario 1,
there is only one independent variable x; in the
corresponding regression equation. The regression
equations corresponding to each of error scenarios 2
to 15 include two independent variables x; and x».
To assure the appropriateness of the regression
equation associated for each error scenario, the
powers for x; and x; need to be evaluated. The
powers of x; and x; are first set to be 1. We found
most of the R-square values associated with the
equations to be less than 0.3, meaning that they
were not good enough to predict model output er-
rors. We then proposed a simple way of evaluating

the proper powers for x; and x, as follows. First,
error scenarios 2 to 15 are divided into two cate-
gories. One contains error scenarios 2 to 8 where x
includes controllable error only. The other contains
error scenarios 9 to 15 where x; includes both
random and controllable errors. We carry out t-test
on the test results of the two categories, where the
significance level o is set to be 1%, to understand
whether the test results for the two categories will
be different. The results indicate that the p-values of
the t-test are below the significance level o of 1%,
showing that there are notable differences in the test
results between error scenarios 2—8 and error sce-
narios 9—15. Now, regression analysis of all test re-
sults of error scenarios 2 to 8/9 to 15 for each
problem is carried out. Various powers for x; and x;
are tested, from 0.6 to 1.5, in increments of 0.1. The
intercept of the regression equation is set to zero.
After performing the tests, we choose the powers for
x; and x, so that the corresponding regression
equation has the best adjusted R-square value for
each of error scenarios 2—8/9-15. The power for x;

Relative increase in average model output errors %
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Fig. 4. Relative increase in average model output errors for error scenarios 2—15 as solution tolerance error increases.
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Fig. 5. Relative decrease in average solution time for error scenarios 2—15 as solution tolerance error increases.

for the regression equation for error scenario 1 is set
to be the same as that for the regression equation
with the best adjusted R-square value for error
scenarios 2 to 8.

The estimated regression equations and the cor-
responding adjusted R-square values for all error
scenarios are presented in Table 3. For each equa-
tion, the sample size is 6072 (= 552*11; the first
number indicates the number of test instances and
the latter the number of solution tolerance errors).
According to the proposed method, the best
adjusted R-square value for the estimated regres-
sion equation for error scenarios 2 to 8/9 to 15 is
obtained when the powers for x; and x, are equal to
1.3/1.4 and 0.8/0.8. The controllable error is ampli-
fied more than the solution tolerance error under a
random error setting. Note that the power for x; in
the estimated regression equation associated with
error scenario 1 is set to be 0.8. Based on the Pearson
correlation coefficient test, the two independent
variables in the estimated regression equation for
each of error scenarios 2 to 15 are independent. The
results of t-test with a significance level (i.e., &) of 1%

Table 3. Estimated regression equation for each error scenario.

confirm the parameter estimates of the estimated
regression equation for each error scenario to be
reliable. The results of F-test with a significance
level (i.e., o) of 1% confirm the estimated regression
equation for each error scenario to be reliable. In
addition, the adjusted R-square value for the esti-
mated regression equation for each error scenario is
good (>0.8) and acceptable.

The two independent variables (i.e., x; and x) in
the estimated regression equation for each of error
scenarios 2 to 15 positively affect the dependent
variable (i.e., y). The effect of x; on y slightly de-
creases for most estimated regression equations for
error scenarios 2 to 8/9 to 15. It can also be found
that the coefficient values of x; for the equations
corresponding to error scenarios 2 to 8 are greater
than those for the equations corresponding to error
scenarios 9 to 15, since with larger random errors,
the effect of solution tolerance error on model
output is diluted. Besides, the coefficient values of x;
for most equations corresponding to error scenarios
9 to 15 are slightly less than those for the equations
corresponding to error scenarios 2 to 8, mainly

Error scenario  Estimated regression equation  Adjusted R-square  Error scenario  Estimated regression equation  Adjusted
No. No. R-square
1 y =128x08+ ¢ 0.8635 9 y = 0.41x}* + 0.89x3% + ¢ 0.8831

2 y = 0.87x1% + 0.83x8 + ¢ 0.9136 10 y = 0.34xM + 1.0408 4 ¢ 0.8991

3 y = 0.72x13 4 0.96x5% + € 0.9054 11 y = 0.45x]* + 1.51x58 + ¢ 0.8725

4 y = 0.65x1% + 1.45:08 + ¢ 0.8974 12 y = 0.50x4 + 1.62:08 + ¢ 0.9036

5 y = 0.63x1° 4+ 1.61x38 + € 0.9131 13 y = 0.44x}* + 2.16x3°% + ¢ 0.9012

6 y = 0.56x1% + 20728 + ¢ 0.9058 14 y = 0.39xM4 4 231208 + ¢ 0.8957

7 y = 0.52x3 + 2.21x0% + ¢ 0.9022 15 y = 0.42x}* 4 2.69x3% + ¢ 0.8818

8 y = 0.61x1% + 25308 + ¢ 0.8938 9-15 y = 038x14 + 1.77x08 4 ¢ 0.8521
2-8 y = 0.60x13 + 1.87x)% + 0.8729

Note: The symbol y/x;/x;/e represents model output error/model input error/solution tolerance error/error item. For each equation, the
p-values from t-test are below the significance level a of 1%, indicating that the parameter estimated for each equation is significant, and
the p-values from F-test are below the significance level a of 1%, indicating that each equation is significant.
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because the coefficient values of x, for the equations
corresponding to error scenarios 9 to 15 are slightly
influenced by the random errors. For the equations
corresponding to error scenarios 2 to 8/9 to 15, the
coefficient values of x, are greater than those of x;,
but the power of x; is less than that of x;. With the
combined power effect, the influence of x; on y will
be greater than that of x, on y. In addition, the
powers of x; for the estimated equations for error
scenarios 9 to 15 are greater than those for error
scenarios 2 to 8, indicating that an environment with
higher random errors could amplify model output
errors. The effect of x, on y increases for the esti-
mated equations for error scenarios 2 to 8/9 to 15
when the controllable error range associated with
uncertain parameter values increases. This implies
that, in an environment with higher random errors,
the setting of solution tolerance errors must be
carefully determined to avoid the occurrence of
excessive model output errors. Finally, these
regression equations could be useful for decision
makers to predict possible model output errors
given model input errors and solution tolerance
errors for similar models.

6.4. Findings and discussion of the output results

Some important findings obtained from the
output results are detailed below.

(1) When an engineering optimization model in-
cludes uncertain parameters, the model output
will contain errors even though the solution
tolerance error is set to 0%. Decisions made with
this solution will not be optimal, although it has
always been thought that they were optimal.
Moreover, for solving engineering optimization
models with uncertain parameters, the fewer the
model input errors set, the smaller the model
output errors generated. In other words, we can
expect to decrease output errors by reducing
model input errors by enhancing the accuracy of
uncertain parameter values. Thus, decision
makers should design data handling processes
or train employees to reduce model input errors.
This would reduce model output errors.

(2) In order to shorten the solution time while
maintaining solution correctness, the solution
tolerance error should be set to 3% or 4% for
Chen et al.'s or similar models that contain un-
certain parameters to solve real problems in
practice. This ensures that the obtained objective
values will not be significantly different from the
exact ones, while the solution time could be
saved by 30%. Note that the most appropriate

solution tolerance error settings for other opti-
mization models with uncertain parameters may
be different and can be similarly examined in the
future. Note also that it is usually necessary to
utilize approximation solution algorithms with a
solution tolerance error to efficiently solve en-
gineering optimization models that are charac-
terized as NP-hard [36]. Decision makers may
also decide how to set the solution tolerance
errors to solve for near-optimal solutions to
control model output errors.

(3) Many reliable regression equations are esti-
mated using the test results obtained in this
study from which many insights can be ob-
tained. For example, when the given input error
range increases, there is a slight decrease in the
effect of the model input error on the output
errors for most regression equations for error
scenarios 2 to 8/9 to 15 (i.e,, model input errors
will not significantly affect model output errors).
The coefficient values of the model input error
for the equations corresponding to error sce-
narios 2 to 8 are greater than those for the
equations corresponding to error scenarios 9 to
15, because random errors dilute the effect. For
another example, for the equations correspond-
ing to error scenarios 2 to 8/9 to 15, the coeffi-
cient values of the solution tolerance error are
greater than those for the model input error, but
the power of the solution tolerance error is less
than that of the model input error. The combi-
nation effect makes the effect of model input
error greater than that of solution tolerance error
on model output error. Decision makers can
choose the most appropriate equation for the
prediction of possible model output errors when
solving the engineering optimization models
that are similar to Chen et al.'s model with un-
certain parameters.

(4) For the regression equations for error scenarios
2 to 8/9 to 15, when the error range associated
with uncertain parameter values increases, the
effect of solution tolerance errors on model
output errors increases. This implies that if
random errors are considered, then the setting
of solution tolerance errors must be carefully
determined in order to avoid the occurrence of
excessive model output errors. In addition, the
powers of model input errors for the equations
for error scenarios 2 to 8 are less than those for
error scenarios 9 to 15, indicating that a decrease
in model input errors will lower the amplified
effect on model output errors. For the equations
for error scenarios 2 to 8/9 to 15, a decrease in
the number of uncertain parameters will cause
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that the powers of the model input errors drop.
Thus, when solving engineering optimization
models that are similar to Chen et al.'s model
with uncertain parameters, model input errors
and the number of uncertain parameters should
be lowered as much as possible in order to
lessen the amplified effect on model output
errors.

(5) The patterns of relationship between the input
error, solution tolerance and output error are
similar to those obtained by [32,33]; who focused
on parameter uncertainty in the objective func-
tion and in the constraints, respectively, veri-
fying the usefulness of the proposed method.
However, after carrying out t-test of model
output errors for each of error scenarios 2—15
and making a comparison between the results
obtained in this study and in Yan et al. [32]/Yan
et al. [33]; we find that the p-values of all t-tests
are below the significance level a of 1%. This
shows that the model output errors for error
scenarios 2—15 obtained in this study are greater
than those obtained in Yan et al. [32]/Yan et al.
[33]; meaning that when more uncertain pa-
rameters are included in the model, there will be
more model output errors generated, mostly due
to the combined effect of parameter uncertainty
in the objective function and in the constraints.

7. Conclusions

This study develops an approach, using Chen et
al.'s [21] model as a testbed, to examine the solution
correctness of optimization models with uncertain
parameter values under various controllable and
random error scenarios in the objective function and
in the constraints, with various solution tolerance
error settings. To model is revised to ensure feasi-
bility in all tests. To verify the proposed approach,
we design 15 error scenarios for controllable and
random errors, and 11 solution tolerance errors.
With 552 test instances, there are a total of 91,080
(=15*11*552) tests in the experiment. Regression
analysis of the output results is carried out in order
to understand the relationship between the model
input error, the solution tolerance error and the
model output error. Useful findings are obtained
which should help decision makers adopting Chen
et al.'s model or similar models in real world prac-
tices. For example, to shorten the solution time
while maintaining solution correctness, the solution
tolerance error may be set as 3% or 4% when
applying models with uncertain parameters in
practice. However, the solution tolerance settings
may be different for other optimization models with

uncertain parameters and can be similarly exam-
ined in the future.

Many reliable regression equations are estimated
using the test results obtained in this study from
which many insights can be obtained. For example,
random errors dilute the effect of model input errors
on model output errors, but the effect is still greater
than that of solution tolerance error on model output
error. For another example, the solution tolerance
errors should be carefully set to avoid the occurrence
of excessive model output errors when there are
additional random errors contained in the model
input errors. Moreover, the combined effect of
parameter uncertainty in the objective function and in
the constraints on the solution correctness is higher
than the individual effect of parameter uncertainty in
either the objective function or the constraints. Deci-
sion makers can select the most appropriate equation
for predicting possible model output errors, and
adopt strategies to reduce the model output error,
when solving the engineering optimization models
that are similar to Chen et al.'s model with uncertain
parameters. Finally, although the obtained results
and findings in this study could be applied to Chen et
al.'s model or similar models, the proposed applica-
tion process could also be useful for the decision
makers to examine other optimization models,
including maritime transport optimization models, in
the future, so that these models can be more effi-
ciently and effectively applied in practice.
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