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ABSTRACT 

Fire is always a severe threat to ship safety and survival.  To 
prevent the spread of a fire and eliminate serious accidental 
consequences, it is imperative for commanders to promptly 
identify the size and type of the fire so as to take rapid and 
effective firefighting action.  In this study, the architectural 
design of an advanced ship fire identification system (SFIS) is 
presented that makes timely and critical decision support for 
selecting suitable suppression methods and firefighting tactics.  
Based on a Bayesian network (BN), a novel intelligent iden-
tification model that is capable of identifying small, medium 
or large fires and distinguishing between a solid fire and a fuel 
oil fire is proposed.  The results indicate the effectiveness of the 
proposed model as well as its robustness during the failure of 
one fire sensor.  The model can be integrated into damage 
control systems (DCSS) to further enhance the situational 
awareness of the damage and assist commanders in prompt 
decision-making by allocating the most efficient firefighting 
equipment and crew. 

I. INTRODUCTION 

Fire is one of the most challenging dangers aboard ships 
(DiNenno et al., 2011).  Approximately 15% of marine acci-
dents are shipboard fires (Zhu et al., 2008).  The development 
of new types of container ships, very large crude carriers 
(VLCC), liquefied natural gas (LNG) carriers, liquefied pe-
troleum gas (LPG) carriers, floating production storage and 
offloading (FPSO) carriers and warships changed shipboard 
tonnage, thus requiring different fuel types and quantities.  
Many combustible materials, including dangerous goods, oil 
products and engine fuel oil, are stored in various ship areas 

such as cargo compartments, oil tanks, engine rooms, pump 
rooms and hangars.  When a fire occurs, due to the extreme 
hazard to the entire ship, it is important to close and seal in-
dividual ship compartments, so the heat does not increase rap-
idly and the smoke does not easily spread.  Once out of control, 
a fire may cause serious injuries to crew or damage to vital 
ship systems (David, 1998). 

To prevent further spread of fire and eliminate serious acci- 
dental consequences, a commander must select the most suitable 
suppression methods and use the most efficient firefighting 
tactics.  However, suppression methods and firefighting tactics 
mainly depend on the size and type of fire.  The stage to which 
fires develop has a direct impact on the selection of firefighting 
equipment.  The type of combustible determines the extinguish-
ing material selection. 

In ships, damage control systems (DCSS) are designed to 
detect, control and eliminate damage caused by fire.  The ob- 
jective of DCSS is to make timely and critical decisions for the 
shipboard crew and equipment use scenarios (Calabrese et al., 
2012).  Two problems in the field of DCSS intelligence are 
addressed below.  Currently, identifying the size and type of  
a fire typically depends on human investigative reports, which 
take more time and are fairly inaccurate.  Furthermore, fire sen- 
sors are known to be unreliable during major crisis when fire 
or anti-ship weapons are involved, so decision-making regard-
ing fire recognition involves reasoning with conditions of un- 
certainty and incomplete information about the fire state. 

Extensive studies have been conducted on early fire detection 
on board ships and warships, particularly research on multi- 
sensor data fusion (Milke and McAvoy, 1995, 1999), early 
warning fire detection systems (Rose-pehrsson et al., 2000, 
2003; Kuo and Chang, 2003), video image fire detection sys-
tems (Steinhurst et al., 2003; Gottuk et al., 2006; Owrutsky  
et al., 2006) and volume sensors (Gottuk and Harrison, 2003; 
Rose-pehrsson et al., 2006).  However, little attention has been 
devoted to research on fire recognition.  Williams et al. (2000) 
established blackboard models of situational awareness based 
on volume sensors to accurately detect different damaged types 
such as fire, smoke and flooding.  Minor and Johnson (2007) 
developed the volume sensor prototype (VSP) systems gener-
ally performed better than video image detectors and spot-type 
smoke detection systems relative to range of detection capa-
bilities, which has the ability to detect fires and reject nuisance  
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Fig. 1.  Architectural design of ship fire identification system. 

 
 

sources.  Zhuang and Li (2009) and Li (2010) studied an in-
cipient fire classification model using least squares wavelet 
support vector machine (LS-WSVM), but the model is only 
applicable to several solid materials.  Sun et al. (2010) pro-
posed fire identification arithmetic for naked fire, smoldering 
fire and disturbing fire on composite of rough set support 
vector machine (RS-SVM).  Zhao (2015) studied a fire recog-
nition algorithm based on fuzzy neural network to distinguish 
the probabilities of naked fire, smoldering fire and no fire.  
Kim (2015) developed a real-time probabilistic method for iden- 
tifying fire, smoke, their thermal reflections, and other objects 
in infrared images.  The above methods just discussed naked 
fire, smoldering fire and no fire, not including the study on 
distinguishing the size and type of typical ship compartment. 

It is assumed that intelligent fire sensors are more advanced 
than sensors that currently exist on ships; thus, an intelligent 
ship fire identification system (SFIS) is presented that can be 
integrated into DCSS designed for the decision support of 
firefighting actions.  Based on a Bayesian network (BN), a 
powerful tool for reasoning under uncertainty, a novel identi-
fication model is established systematically.  The effectiveness 
of the model is evaluated and validated by sample and expe- 
rimental data.  SFIS can provide timely and informed decision 
support for the allocating firefighting equipment and crew. 

The remainder of this paper is organized as follows: Section 
2 analyzes the architectural design and system flow of SFIS.  
Section 3 describes the basis and advantage of BN.  In Section 4, 
based on BN theory and fire development mechanisms, an in- 
telligent shipboard fire identification model for distinguishing 
the sizes and types of fires is established.  Section 5 evaluates 
the trained model by sample data and validates the BN iden-
tification model by experimental data.  In section 6, integrated 
and disintegrated sensor data are compared to demonstrate the 
robustness of the model.  Section 7 presents the conclusions and 
directions for future research. 

II. INTELLIGENT IDENTIFICATION 
FRAMEWORKS 

As analyzed in Section 1, the decision-making task of fire 
recognition is time critical and involves reasoning under un-
certainty.  SFIS is designed to provide answers to these key 
questions.  To streamline the decision flow and action execution, 
five major requirements are identified to drive the design of 
the SFIS.  These requirements include the following: 

 
(1) Monitoring fire status at any time; 
(2) Distinguishing the development stage of a fire; 
(3) Identifying the type of fuel; 
(4) Saving time to allow effective firefighting plans for the 

determined size and type of fire; 
(5) Providing decision support for efficient suppression methods 

and suitable firefighting equipment and crew. 
 
Fig. 1 shows overall architectural flow of SFIS and its rela- 

tionship with detection system, causal response expert system 
(CRES) and suppression action.  First, the detection system based 
on advanced sensors automatically acquires physical and chemical 
variables of a compartment fire.  Next, after the position and 
corresponding fire environment of the ignited compartment 
are determined by the compartment database, SFIS intelli-
gently identifies the size and type of the fire by an identification 
model and predetermined sample data.  Then, CRES produces a 
timely and suitable firefighting plan by reasoning with case-based, 
ruled-based and petri network-based models.  Finally, DCSS 
assists the commander to choose effective suppression meth-
ods and activating efficient firefighting systems and crew to 
contain, control and eliminate the fire effects.  Throughout the 
four steps, DCSS makes critical decisions related to the fire con- 
cerning what to detect, how to identify the fire, how to obtain 
firefighting plans for suppression, and what actions to be taken 
to eliminate the fire. 

The general SFIS architecture comprises advanced fire sen- 
sors, intelligent identification model and decision support plan.  
As an indispensible part of DCSS, SFIS can effectively iden-
tify the development stage of fire and the type of combustible.  
Furthermore, SFIS provides decision support for the CRES to 
take efficient firefighting actions. 
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Fig. 2.  Overall establishment flow of identification model of shipboard fires. 

 
 
Advanced fire sensors may be damaged by fires or anti-ship 

weapons, so disintegrated sensor data are sometimes used to 
identify compartment fire.  A BN has the advantage of dealing 
with uncertain reasoning with incomplete information, so it 
can be applied to establish an intelligent identification model 
to distinguish the size and type of fire automatically.  The SFIS 
will assist commanders to make critical decisions in case of 
fire accidents by indicating the most suitable firefighting tac-
tics and allocating the most efficient firefighting equipment. 

III. FUNDAMENTALS OF  
BAYESIAN NETWORK 

A Bayesian network (BN) is referred to as a directed acyclic 
graph (DAG), in which the nodes represent variables and are 
connected by directed arcs that signify dependency or causal 
relationship between the connected nodes (Baksh et al., 2015).  
A BN is a framework for reasoning under uncertainty, which 
ensures high accuracy and robustness (Trucco et al., 2008).  
With the characteristic of structural calculations and probability 
propagation based on causality and subjective judgment, a BN 
is widely used for representing uncertain knowledge (Zhang  
et al., 2013). 

A standard BN with a mathematical symbol can be expressed as 

  (1) (( , ) = , ,B S P V L P )



where S represents the variable field,  con- 

taining n limited variables  denotes a set of stochastic vari-

ables, denotes the set of directed lines 

and  represents the condi-

tional probability distribution. 
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Suppose that E is the subset of V, conditional probability 
can be exactly calculated with the given evidence of E = e by 
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IV. MODEL ESTABLISHMENTS 

As the core of SFIS, The identification model of shipboard 
fires is established by BN theory and fire development me- 
chanisms. 

As shown in Fig. 2, the overall establishment flow of the 
identification model involves five steps.  These steps include 
the following: 

(1) Establishing network structure based on BN; 
(2) Determining the relationship of the parameters based on 

Bayesian theory; 
(3) Training the model parameters by the Matlab toolbox, 

FULLBNT; 
(4) Evaluating the identification model by simulated sample 

data generated by a two-zone fire computer program called 
the Consolidated Model of Fire and Smoke Transport 
(CFAST); 

(5) Validating the identification model by full-scale fire ex-
perimental data from the US Naval Research Laboratory. 

1. Establishment of Topological Structure 

During the changes in fire development stages, physical 
and chemical characteristics of different types of fuels make a 
difference in heat quantity, gas temperature, smoke release rate, 
flame size, combustion products, light, sound etc.  The energy 
released from a fire may be large, and the smoke and gas 
species are indispensible factors also associated with the fire.  
Light obscuration is affected by smoke concentration, which 
reduces the visibility of the crew.  Crew tenability and HRR are 
mainly determined by the oxygen (O2) content in the compart-
ment air.  The toxicity of the combustion products of carbon mon- 
oxide (CO) and carbon dioxide (CO2) have obvious effects on 
the crew wellbeing.  O2 concentration, CO concentration, CO2 
concentration and light obscuration are selected in this study 
as fire identification signals.  Moreover, gas temperature are 
divided into the upper layer temperature (upper temperature) 
and the lower layer temperature (lower temperature).  Tempe- 
rature sensors, gas sensors and optical density sensors are 
considered as advanced onboard fire sensors. 

Based on the physical and chemical characteristics of dif-
ferent types of fuels during the fire development stage, the topo- 
logical structure of the recognition model is illustrated in Fig. 3. 

The input variables of the model include upper temperature, 
lower temperature, CO concentration, CO2 concentration, O2 
concentration and optical density.  The output variables of the 
model are fire size and type.  Fire size is divided into three states 
that represent small, medium and large fires.  Fire types include 
solid and fuel oil fires. 

2. Parameter Relationship Determination 

When the input and output variables of the model are deter- 
mined by topological structure, random variables set are ob-
tained by 

 
2 2U L CO CO O 0 F F{ , , , , , , , }V T T C C C D S C  (3)
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Fig. 3.  Topological structure of identification model. 

 
 

where  represent upper temperature, 

low temperature, CO concentration, CO2 concentration, O2 con- 
centration and optical density respectively.   denote fire 

size and type, respectively. 

2 2U L CO CO O 0, , , , ,T T C C C D
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Directed lines set are expressed as
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If the input variables set are supposed as 0X , the condi-

tional probability is obtained as 

  (5) 
2 2U L CO CO O O 0([ , , , , , ] ) 1p T T C C C D X 

If the output variables set are supposed as , the condi-

tional probability is given by 
0Y

 ( , ) 1F Fp S C   (6) 

Then, the probability distribution function of the output 
variables is expressed as: 

2 2
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

 

  (7) 

where  is 

obtained by training sample data. 
2 2U L CO CO O O 0 F F 0([ , , , , , ] , [ , ] )p T T C C C D X S C Y

Thus, the maximum probability of fire size and type can be 
calculated using Eqs. (3)-(7). 

3. Parameters Training 

The training process of input and output parameters are  

Table 1.  Comparison of fire source parameters. 

Parameters Cable Mattress Pool fire Spill fire

Fire category Solid Solid Fuel oil Fuel oil 

Spread speed Slow Medium Very fast Very fast

Built-up time (s) 300 240 5~10 < 5 

 
 

realized using the Matlab toolbox FULLBNT.  When the topo- 
logical structure of the recognition network and continuous 
input and discrete output nodes are determined, the parameters 
of the network can be learned from sample data and the six 
input and two output parameters will be assigned with rea-
sonable conditional probability value. 

4. Model Evaluation 

The objective of model evaluation is to demonstrate the 
validity of the trained model above by simulated sample data. 

5. Model Validation 

The objective of model validation is to validate the BN 
identification model by Full-scale experimental data. 

V. VERIFICATION 

To evaluate the validity of the trained model, 2880 groups 
of sample data are used to simulate integrated fire sensors.  To 
validate the effectiveness of the BN identification model, 200 
groups of experimental data are used to demonstrate integrated 
fire sensors. 

1. Simulation Evaluation 

1) Simulated Sample Data 

The simulated sample data used to train the parameters of 
the model are generated by CFAST.  To maintain consistency 
in the simulation and validation environment, the experimental 
conditions, such as the fire source, ventilation status and com- 
partment size, are identical.  The engine room, hangar, combat 
command center and accommodation quarters are chosen as 
typical ship compartments.  The cable fire, mattress fire, pool fire 
and spill fire are chosen as the fire sources, which represent 
typical flame spread speeds of slow, medium, fast and very fast 
(Williams and Scheffey, 1999; Williams and Tatem, 2000). 

The heat release rate (HRR) curves of four types of typical 
fire sources are shown in Fig. 4.  The fire development stages 
of ignition, development, maximum and recession are simu-
lated on four types of compartments.  Furthermore, five types 
of fire sensors that involve temperature, CO, CO2, O2 and 
optical density are simulated on each specific compartment. 

Table 1 indicates that the parameters of built-up time and 
maximum HRR are different from the fire sources.  The sam-
pling interval of the simulated data is 5 s.  Jet fires develop so 
rapidly that the time to reach the maximum HRR is less than  
5 s and the temperature is higher than 500C Therefore, the 
maximum stage is deemed as a large fire.  The follow-up deve- 
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Fig. 4.  HRR of different fire source. 

 
 
Table 2.  The parameters of compartment conditions. 

Parameters 
Accom- 

modation 

Combat  

center 

Engine  

room 
Hangar 

Compartment 

size (m) 

4.5   

5.5  2.5 

5.5   

11.4  2.5 

13.0   

9.0  5.7 

15.5   

5.5  6.5 

Venting size (m) 0.65  1.65 0.65  1.65 0.65  1.65 4.50  4.50

Ventilation  

condition 
Open Open Open Open 

 

 
Table 3.  Serial number of sample data. 

Fire source 
Accom- 

modation 
Combat center Engine room Hangar 

Mattress 1~180 721~900 1441~1620 2161~2340 

Cable 181~360 901~1080 1621~1800 2341~2520 

Pool 361~540 1081~1260 1801~1980 2521~2700 

Spill 541~720 1261~1440 1981~2160 2701~2880 

 

 
lopment of a jet fire depends on the fuel oil quantity.  If the 
supply is sufficient, the stage will remain as a large fire.  Oth-
erwise, the development stage will be turned into a medium 
fire or even a small fire.  Table 2 shows the geometry and ven- 
tilation conditions of typical compartments.  2880 groups of 
sample data were obtained by CFAST, as shown in Table 3. 

2) Fire Size 

The total of 2880 groups of simulated sample data are 
manually classified into 1775 groups of small fires, 729 groups 
of medium fires and 376 groups of large fires. 

The recognition results of fire size are presented in the form 
of probability, as illustrated in Figs. 5-7.  To make data pres-
entation more clearly, the horizontal axis uses logarithmic 
scale.  The points on the longitude ordinate indicate that the total 
number of recognition results is 1 under the current probability.  
Setting the probability greater than 0.9 as the limited condition, 
1683 groups of sample data are regarded as small fires, 667 
groups are medium fires and 374 groups are large fires. 

3) Fire Type 
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Fig. 5.  Evaluation of small fire. 
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Fig. 6.  Evaluation of medium fire. 
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The simulated sample data consist of 1440 groups of solid  Fig. 7.  Evaluation of large fire. 
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Fig. 8.  Evaluation results of identifying solid fire. Fig. 9.  Evaluation results of identifying fuel oil fire. 
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Fig. 13.  Validation results of identifying solid fire. Fig. 14  Validation results of identifying fuel oil fire. 

 
 

fires and 1440 groups of fuel oil fires.  As shown in Figs. 8 and 
9, 1228 groups and 1217 groups of simulated sample data are 
identified as solid fires and fuel oil fires, respectively, and 
reach a confidence level higher than 0.9. 

2. Experimental Validation 

200 groups of full-scale experimental data of were ex-
tracted from the reports from NRL (Wong and Gottuk, 2000; 
Hoover and Bailey, 2005; Hoover and Whitehurst, 2006) to 
validate the identification model. 

1) Fire Size 

Among the 200 groups of experimental data, there are 92 
groups of small fire, 80 groups of medium fire and 28 groups 

of large fire.  The experimental validation results of fire size 
are presented in Figs. 10-12.  Setting the probability greater 
than 0.9 as the limited condition, Fig. 10 shows that 75 groups 
of experimental data are identified as small fire.  Fig. 11 in-
dicates that 74 groups are identified as medium fire, and 24 
groups are identified as large fire in Fig. 12. 

2) Fire Type 

Among the 200 groups of experimental data, 92 groups are 
solid fire and 108 groups are fuel oil fire.  As shown in Fig. 13 
and 14, 83 groups and 88 groups of experimental data are 
identified as solid and fuel oil fires, respectively, reaching a 
confidence level higher than 0.9. 
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Fig. 16.  Recognition rate of fire type with sample data. 

 

VI. ANALYSIS AND DISCUSSION 

Integrated and disintegrated sensor data are compared to eva- 
luate the trained model and validate the BN identification model. 

1. Comparison of Integrated and Disintegrated Simula-
tion Data 

Accurate and false recognition results of fire size are illus-
trated in Fig. 15.  63 groups of small fires accounting for 3.5% 
of the total are mistaken for medium fires.  49 groups of me-
dium fires accounting for 6.7% of the total are mistaken for 
small or large fires.  2 groups of large fire accounting for 0.5% 
of the total are mistaken for medium fires.  The average rec-
ognition rate of the sample data for fire size was 96.0%. 

Accurate and false recognition results of fire type are illus-
trated in Fig. 16.  108 groups of solid fires accounting for 7.5% 
of the total are mistaken for fuel oil fires, and 219 groups of 
fuel oils fire accounting for 15.2% of the total are mistaken for 
solid fires.  The average recognition rate of the sample data for 
fire type was 88.6%. 

Because of serious fire accident or weapon discharge, fire 
sensors could not obtain valid data.  As shown in Table 4, with 
the sample data failure of one sensor, average recognition rate 
with integrated simulation data.  Average recognition rate of 

Table 4. Recognition rate with experimental data failure 
of one sensor. 

Type of sensor failure Fire size Fire type 
Upper temp (TU) 91.4% 86.9% 
Lower temp (TL) 95.1% 84.8% 

CO 93.1% 87.2% 
CO2 94.1% 88.2% 
O2 95.2% 85.2% 

Optical density (OD) 92.3% 85.5% 
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Fig. 17.  Recognition rate of fire size with experimental data. 
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Fig. 18.  Recognition rate of fire type with experimental data. 

 
 

fire type is 86.3%, only 2.3% less than the recognition rate 
with integrated simulation data. 

2. Comparison of Integrated and Disintegrated Experi-
mental Data 

Fig. 17 illustrates the accurate and false recognition rate of 
fire size.  11 groups of small fires accounting for 12% of the 
total are mistaken for medium fires.  4 groups of medium fires 
accounting for 5% of the total are mistaken for small or large 
fires.  4 groups of large fires accounting for 14.3% are mistaken 
for medium fires.  The average recognition rate of fire size was 
90.5%. 

Accurate and false recognition results of fire type are illus-
trated in Fig. 18.  9 groups of solid fires accounting for 9.8% of  
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Table 5. Recognition rate with experimental data failure 
of one sensor. 

Type of sensor failure Fire size Fire type 

TU 85.5% 82.5% 

TL 88.5% 84.0% 

CO 82.5% 80.5% 

CO2 77.0% 85.0% 

O2 72.5% 83.0% 

OD 88.5% 81.0% 

Average 82.4% 82.7% 

 

 
the total are mistaken for fuel oil fires, and 20 groups of fuel oil 
fires accounting for 18.5% of the total are mistaken for solid 
fires.  The average recognition rate of fire type was 85.5%. 

As shown in Table 5, given the data failure of one sensor, 
average recognition rate of fire size is 82.4%, only 8.1% less 
than the recognition rate with integrated experimental data.  
Average recognition rate of fire type is 82.7%, only 2.8% less 
than the recognition rate with integrated experimental data. 

VII. CONCLUSIONS 

The identification and management of fires that may lead to 
shipboard damage and crew danger are interesting areas of 
application for expert and decision support methods.  Globally, 
large ships are enhancing the automation and intelligence of 
DCSS to achieve higher levels of security and operational ef- 
ficiency through information fusion and visualization, damage 
identification, casual response and action planning. 

In this paper, an intelligent sensor-based SFIS is presented 
that is capable of automatically identifying the size and type of 
fire to make timely and informed decision making.  The system 
reduces damage recognition time, tactics planning time and 
action response time.  Based on BN theory and fire develop-
ment mechanisms, a novel fire identification model is proposed, 
which has outstanding advantage of dealing with accident un- 
certainty and data dis-integrity.  The effectiveness of the proposed 
model is evaluated by simulated sample data and validated by 
full-scale experimental data. 

The model developed for this research can be integrated into 
DCSS to further enhance the situational awareness of potential 
damage caused by shipboard fires.  The application of SFIS will 
assist commanders in making critical decisions by indicating 
the most suitable suppression methods and tactics and by al- 
locating the most efficient firefighting equipment and crew. 

However, multiple sensor data failure is not studied in this 
paper.  Future research will promote the recognition accuracy 
rate of shipboard fires under more complicated circumstances 
with incomplete and uncertain sensor data.  A second area of 
development will expand the scope of combustion material 
recognition to metal fire and electrical fire within the ship 
context. 
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