
Volume 24 Issue 4 Article 17 

STUDY ON THE NEW VARIANT OF PARTICLE SWARM METHOD FOR STUDY ON THE NEW VARIANT OF PARTICLE SWARM METHOD FOR 
OPTIMIZATION DESIGN OPTIMIZATION DESIGN 

Jinn-Tong Chiu 
Department of Systems Engineering and Naval Architecture, National Taiwan Ocean University, Keelung, Taiwan, 
R.O.C., cjt7725@gmail.com 

Chih-Chung Fang 
Department of Systems Engineering and Naval Architecture, National Taiwan Ocean University, Keelung, Taiwan, 
R.O.C. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Engineering Commons 

Recommended Citation Recommended Citation 
Chiu, Jinn-Tong and Fang, Chih-Chung (2016) "STUDY ON THE NEW VARIANT OF PARTICLE SWARM METHOD FOR 
OPTIMIZATION DESIGN," Journal of Marine Science and Technology: Vol. 24: Iss. 4, Article 17. 
DOI: 10.6119/JMST-016-0325-2 
Available at: https://jmstt.ntou.edu.tw/journal/vol24/iss4/17 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol24
https://jmstt.ntou.edu.tw/journal/vol24/iss4
https://jmstt.ntou.edu.tw/journal/vol24/iss4/17
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol24%2Fiss4%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol24%2Fiss4%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol24/iss4/17?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol24%2Fiss4%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages


832 Journal of Marine Science and Technology, Vol. 24, No. 4, pp. 832-841 (2016 ) 
DOI: 10.6119/JMST-016-0325-2 

STUDY ON THE NEW VARIANT OF PARTICLE 
SWARM METHOD FOR OPTIMIZATION DESIGN 
 
 

Jinn-Tong Chiu and Chih-Chung Fang 

 
 

Key words: particle swarm optimization, spring, optimization. 

ABSTRACT 

A new variant of Particle Swarm Optimization (PSO) is de- 
veloped to improve the performance of PSO, which has been 
widely used in various fields for optimization.  The proposed 
PSO incorporates a space partitioning technique in grid method 
with PSO.  In the searching process of the new algorithm, three 
position vectors are introduced to enhance the exploration of 
the particles in the population of PSO and hence helpful for a 
global optimization problem of interest. 

First, the proposed variant of PSO is verified by applying it 
to the seven benchmark functions and thereafter proved from 
the results as a robust one.  Next, we applied the algorithm to the 
optimization design of the M-type spring used in the 3C equip- 
ments.  With the maximum stress as the objective function of 
the designing product and the thrust as the constraint, we 
obtain from the computation the designing parameter set of the 
spring, which gives the designing spring a more uniform stress 
distribution and a reduction of the maximum stress by around 
9.2% helpful to increase the lifetime of the initiated product. 

I. INTRODUCTION 

Particle Swarm Optimization algorithm (PSO) is inspired 
by the ecological behavior of birds.  It is argued by Acan and 
Gunay (2005) that PSO can find the global optimum in most 
cases for low-dimensional problems and for uni-modal prob-
lems.  However, for high-dimensional problems or problems 
with multiple extreme points, it usually fails to find the global 
optimum.  Hence, improvement on PSO’s performance has been 
proposed since it was developed. 

Suganthan (1999) proposed dynamically increasing neigh-
boring particles for linearly decreasing inertia weights (L.PSO).  
This applies the idea of a linearly decreasing inertia weight 
function to recognition of acceleration constant C1 and social 
acceleration constant C2.  It improves the capability of global 

searching and search accuracy.  Starting from basic mathemati-
cal and analytical ideas, Kennedy and Clerc (2000) proposed 
particles swarm optimization with constriction factor (PSO-CF), 
which effectively confines the search trajectory of each particle 
and does not limit their maximal speed vmax.  Shi and Eberhart 
(2001) used PSO-CF parameters and their characteristics to 
adjust the inertia weight function in PSO-IW and applied it to 
optimizations of dynamic systems.  Chatterjee and Siarry (2004) 
proposed non-linear inertia weight, which selects inertia weights 
according to the relationship between the inertia weights of the 
previous generation and next generation, thereby increasing 
the activity (diversity) of the particle swarm.  Liu et al. (2005) 
combined PSO with a chaotic system.  First, they improved  
the inertia weight according to the relationship between each 
particle and the population average.  They then added a chaotic 
local search (CLS) to increase the activity and accuracy of 
PSO.  S. Fan and Erwie (2006) proposed combining PSO with 
the simplex algorithm.  It replaced the original particle move- 
ment pattern in PSO with the movement pattern of the simplex 
algorithm, using the particle diffusivity in the simplex algo-
rithm to avoid PSO results falling in local optima.  Yin et al. 
(2010) proposed a few Cyber Swarm algorithms.  They adopted 
the adaptive learning-and-memorizing strategy to increase the 
swarm activity and the search accuracy.  Mohammed El-Abd 
(2011) combined two swarm intelligence algorithms and pro- 
posed the Artificial Bee Colony PSO, which utilizes the excel-
lent performance of the Artificial Bee Colony on multimodal 
functions to address the drawbacks of PSO on multimodal 
problems.  Wang et al. (2013) paper proposed a hybrid PSO al- 
gorithm, called DNSPSO, which employs a diversity enhancing 
mechanism and neighborhood search strategies to achieve a 
trade-off between exploration and exploitation abilities.  Zhao 
et al. (2015) proposed a compact PSO, which has excellent per- 
formance with less hardware requirement and plays an essential 
role to obtain the optimal scaling factors. 

From the above studies, we can see that there are three main 
directions to improve the PSO algorithm: (1) change the mathe- 
matical model and calculation of PSO; (2) improve the model’s 
parameters, such as inertia weight  and acceleration constants 
C1 and C2; (3) incorporate a strong local search mechanism 
during PSO search.  The first two strategies both enhance the 
swarm activity of PSO and increase the population diversity 
by different methods, in order to prevent PSO from premature 
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convergence.  The third strategy is to further search the good so- 
lutions to prevent potentially best particles from being absorbed 
by others, which will cause search failure. 

Different from the above three strategies improving the 
PSO, we in the study attempt to propose a variant of PSO by 
adopting the Grid method (Jasbir, 1989), which shrinks a 
given original search zone gradually into a sufficiently small 
region where the extreme value of a problem lies inside.  Besides, 
we introduce three different values out of the results by the 
Grid method, and those values would replace the worst three 
particles in performance among the population in PSO.  The re- 
placement is found helpful for strengthening the particle’s ex- 
ploration in the ensuing evolution of PSO and hence heightens 
the likelihood of obtaining the global optimal of the problem 
of interest. 

The verification of the proposed modified PSO will be pro- 
cessed by applying it to seven benchmark functions, uni-modal 
and multi-modal.  Further, we will practice the modified PSO 
in the design of an M type spring to find the best one among all 
the sets of the relevant designing variables of the spring capable 
of enduring the possible longest lifetime.  The M type spring is 
used in a 3C equipment such as usb flash drive, slider phone or 
remote controller. 

II. MODIFIED PARTICLE SWARM 
OPTIMIZATION 

1. Iterative Grid Method 

Grid Method is also known as one-dimensional search.  In a 
fixed search range , we select a few equally-spaced points, ],[ ba

1 2, , , nd    such that the search range is divided into (nd  1) 

subintervals.  Next, the function f(x) is evaluated at these 
points, and the point with the minimal value is denoted by fm, 
i.e., fm = min{f(a), f(1), f(2), , f(nd), f(b)}.  Because the 
point m

 
corresponding to fm must lie between the left and 

right neighbors m-1 and m1 of the point, we then take [ 1m  , 

1m  ] as the new search range and repeat the above process to 

shrink the search range until a predefined accuracy is reached. 
We generalize the Grid Method to handle n-dimensional 

problems with several steps.  First we randomly pick a vector 

1 2{ , , , }ref nX x x x



 
in the search range and apply the original 

Grid Method to each dimension, each time fixing the values in 
the other n-1 dimensions.  The obtained results are then sub-

stituted for the corresponding dimension in refX


 and we then 

have the optimal solution for the n-dimensional problem. 
The above method, which successively grid searches for 

each variable, is also called Iterative Grid Method and is 
computationally simple.  For an optimization problem in which 
variables are not correlated, it can easily find solutions close to 
the global optimum. 

2. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is a stochastic optimi-

zation technique that is motivated by the behavior of a flock of 
birds.  A PSO population is called a swarm, which is imagined 
to be flying in the n-dimensional search space defined by a 
given optimization problem.  Each individual in the swarm is 
known as a particle, and each particle represents a solution to 
the problem.  The problem’s objective (or fitness) function is 
expressed in terms of these particles to measure how close the 
computed solution comes to the goal. 

Initially, the positions and the velocities of all of the parti-
cles are randomly assigned.  Each particle keeps tracks of its 
coordinates in a defined search space generation by generation.  

We define 1 2( , , , )k
i i i inS s s s  k  to denote the position of a 

particle i at the k-th generation, with a corresponding velocity 

denoted by 1 2( , , , )k
i i i inv v v v  k

1 1 ; 1, ,k k k

.  Each generation generates 

two different types of solutions: the particle best and the glob-
ally best solutions.  The particle's best solution is the location 
that a particle so far achieved is closest to the exact solution, 
and usually denoted as the pbest.  The globally best solution is 
the best among all particles’ pbests and termed as the gbest. 

Given the positions and velocities of all of the particles, the 
velocity of particle i at the (k  1)th generation is determined 
by three vectors and is expressed mathematically in Eq. (1).  
Its position is updated by Eq. (2). 

1
1 2() ( ) () ( )k k pbest k gbest k

ij ij ij ij ijv wv c rand s s c rand s s           (1) 

 ij ij ijs v t j n     ； (2) s

The first term on the right-hand side of Eq. (1) describes the 
particle’s momentum with an inertial parameter w balancing 
the global and local searches.  The second term, which is the 

difference between the pbest
iS  (also known as pbest) and the 

particle’s current position, is multiplied by a learning factor, 
C1, and a random number rand() that represents the particle’s 
self-cognition ability.  Similarly, the third term, which is the dif- 

ference between the gbestS (also known as gbest) and the par-
ticle’s current position, is multiplied by another learning factor, 
C2, and a random number, rand(), indicating the particle’s 
sociability.  The two different factors, C1 and C2 boost the 
particle’s self-cognition ability and sociability.  The random 
number rand() is chosen from a uniform distribution within the 
range (0, 1).  The t is search time step and be assigned to 1.  
The search process is illustrated in Fig. 1. 

A single PSO run proceeds as follows: 
 

(1) Create a swarm of Np particles that are distributed within 
an n-dimensional search space.  Randomly initialize each 
particle’s position and velocity, with both expressed as 
n-vectors.  Specify the values of the parameters , C1, C2, 
and the maximum generation number required by the 
PSO. 

(2) Define the problem’s objective (fitness) function.  Evaluate  
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Fig. 1.  Particle speed and location update. 

 
 

 the objective function value for each particle and for each 
generation. 

(3) Compute each particle’s velocity and position using Eqs. 
(1) and (2).  Set the two different best positions of each 
particle, pbest and gbest, to 

1,
min{( ( ), ( )}

p
i

i N
f pbest f gbest


. 

(4) Check whether the objective function value at the current 
generation meets the criterion of whether the system has 
reached the maximum generation number.  If yes, then go 
to Step 5; otherwise, go to Step 2. 

(5) Halt. 

3. The Modified Particle Swarm Optimization, MPSO 

Among all of the types of well-known heuristic computation 
algorithms, the PSO is a simple, fast and easily implemented 
evolution algorithm; however, its performance usually provides 
an unreliable result when a complicated problem is solved, 
such as a multi-modal problem or a problem with a large num- 
ber of variables.  Therefore, many variants of PSOs have been 
developed to improve its performance on complicated prob-
lems by modifying the parameters defined in the PSO or by 
introducing local search methods or cooperating with other 
computational algorithms. 

As described previously the Iterative Grid Method is well 
suited for separable problems, the results by the method pos-
sibly give information on the location of the problem’s solution 
lies.  Hence we in the study attempt to incorporate the Iterative 
Grid Method with the PSO to improve the PSO’s performance 
for non-separable or multi-modal problems with a large number 
of variables.  The developed algorithm is thus called the mo- 
dified Particle Optimization (MPSO). 

In the development of the proposed MPSO algorithm, we 

introduce three creative positions, which are denoted by 
pbest
avgX


, 

igmX


, and DisturbX


, to replace the three poorest fitness parti-
cles among the population of particles in the PSO.  This re-
placement aims to improve both the exploitation and the ex-
ploration of the particles when particles in the evolution stay in 
a stagnant situation. 

The best average position 
pbest
avgX


 represents the position of 

the center point of the population and is determined by averaging 
all of the particle’s current positions, expressed as follows: 

 
1

1 p
pbest pbest
avg i

tp

X
N 

 S


 (3) 

The position igmX


 is determined only from applying the 

iterative grid method.  Technically, the converged igmX


is 
close to the exact solution for a separable problem but hardly 
for a non-separable one.  In spite of the position obtained in 
violation of the problem’s non-separable characteristics, it 
possibly provides a tendency of variation for individual 
components among the population in the evolution process.  
Next, to recover the ignorance of the interdependence among 

the variables while obtaining the igmX


, we create another 

disturbance position DisturbX


, which is determined by the 

positions igmX


, 
pbest
avgX


 and 

gbest
S


.  Note that the last two 
positions are obtained with the consideration of mutual inter-
action among the variables. 

Thus, we take the center position 
pbest
avgX


 as a reference 

point in the determination of the position DisturbX


.  Then, each 

component of DisturbX


 is determined through several proce-
dures that are described below. 

Starting with the first component of 
pbest
avgX


, we create two 

virtual vectors of iterative grid position igmT


 and best position 

gbestT


.  The first component of igmT


 is taken from the first 

component of igmX


, and the remaining components of the 

vector igmT


 are all the same as those of vector 
pbest
avgX


.  Simi-

larly, the first component of the vector gbestT


 is taken from the 

first component of gbestS , and the remaining components of 

gbestT


 are all the same as those of the 
pbest
avgX


.  Next, we check 

the function values of the three positions 
pbest
avgX


, igmT


 and 

gbestT
 ; the first component of the position with the minimum 

function value is selected to be the first component of DisturbX


.  
Following the similar procedure, all of the remaining com-

ponents of DisturbX


are produced. 
Note that the replacement is launched once for each number 

of evolution generations, denoted by rplcN , reaches the value 

set in experimenting PSO.  The flowchart of the MPSO is 
shown in Fig. 2. 
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Table 1.  Seven benchmark functions. 

 Function Math. Expression Domains of variables Exact Solution 

F1 Sphere 
2

1
1

( )
n

i
i

F x x


   -100  xi  100 
i = 1, 2, , n 

0, 1, 2, ,ix i n  


 

( ) 0f x   

F2 Quadric 
2

2
1 1

)( ) (
n n

j
i j

F x x
 

    -100  xi  100 
i = 1, 2, , n 

0, 1, 2, ,ix i n  


 

( ) 0f x   

F3 Rosenbrock 
1

2 2
3 1

1

( ) ( 1( ) 100
n

i i i
i

x x xF x





     2) 
-30  xi  30 
i = 1, 2, , n 

1, 1, 2, ,ix i n  


 

( ) 0f x   

F4 Ackley 

2
4

1

1

1
0.2

exp cos(2 ) 20

( ) 20exp

1

n

i
i

n

i
i

x
n

x e

F x

n






 
  
 

 
  

 

  

 

-32  xi  32 
i = 1, 2, , n 

0, 1, 2, ,ix i n  


 

( ) 0f x   

F5 Griewank 
2

5
1 1

1
cos 1

4000
( )

nn
i

i
i i

x
xF x

i 

 
  

 
   -600  xi  600 

i = 1, 2, , n 

0, 1, 2, ,ix i n  


 

( ) 0f x   

F6 Rastrigrin  2
6

1

10cos(2 ) 10( )
n

i i
i

x xF x 


    -5.12  xi  5.12 
i = 1, 2, , n 

0, 1, 2, ,ix i n  


 

( ) 0f x   

F7 Schwefel 7
1

sin( )( )
n

i i
i

x xF x


   -500  xi  500 
i = 1, 2, , n 

420.9687, 1, 2, ,ix i n   


 

( ) 418.98f x n    
 

 
Input parameters of 

optimization  

Random generates the
initial velocity and 

position of each particle 

Record the individual and
group optimum positions 

Update the velocity and
position of each particle 

Final solution

Is covergience

Mod(k, NE) = 0

Reserve individual and
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positions of k generations  

Evaluate the disturb and
optimum individual by 
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average position 

No

No

Yes

Yes
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Fig. 2.  Modified PSO algorithm flow chart. 
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Table 2. The results for the seven functions, each with 30 
variables. 

 PSO MPSO 

function fav fb 
success

rate 
fav fb 

success
rate

F1 8.37E-07 5.89E-07 100% 8.76E-07 6.81E-07 100%

F2 3.46E03 9.26E-07 40% 9.15E-07 0.00E00 100%

F3 1.82E04 1.00E-06 3.3% 1.20E-06 9.88E-07 100%

F4 1.30E01 8.46E-07 23.3% 6.48E-07 8.88E-16 100%

F5 9.03E-03 7.72E-07 43.3% 6.94E-07 0.00E00 100%

F6 5.55E00 8.67E-07 83.3% 7.41E-07 0.00E00 100%

F7 6.71E03 8.11E03 0 -1.26E04 -1.2604 100%

Success rate: convergence times of 30 tests. 
 

 
Table 3. The results for the seven functions, each with 50 

variables. 

 PSO MPSO 

function fav fb 
success

rate 
fav fb 

success
rate

F1 9.32E-07 7.46E-07 100% 7.22E-07 0.00E00 100%

F2 1.91E04 9.99E-07 3.33% 9.62E-07 0.00E00 100%

F3 2.18E04 9.98E-07 10% 9.99E-07 9.95E-07 100%

F4 1.89E01 9.63E-07 3.33% 8.88E-16 8.88E-16 100%

F5 1.44E-02 8.90E-07 43.33% 8.79E-07 0.00E00 100%

F6 1.98E01 9.21E-07 50% 6.44E-07 0.00E00 100%

F7 -1.06E04 -1.33E04 0 -2.09E04 -2.09E04 100%

Success rate: convergence times of 30 tests. 
 

III. CASES AND DISCUSSIONS 

1. Comparison with the Original PSO 

To demonstrate the effectiveness of the proposed MPSO, 
we applied it on seven benchmark problems, which are dis-
played in Table 1.  The functions of F2 and F3 are non- 
separable functions, and the rest are separable.  Furthermore, 
the first three functions F1, F2, F3 are uni-modal and the rest 
are multi-modal. 

In the computation, the relevant parameters were given 
values as follows: 

The number of particles in the population Np = 80; the 
weight coefficient  = 0.6; the learning coefficients C1 = 1.5 
and C2 = 2.0; the number of subintervals ndi = 9; the replace-
ment rate Nrplc = 250; the maximum number of generations 
Nmax = 50,000; and the convergence criteria  = 10-6.  There are 
three different numbers of variables that were used for the 
comparison: n = 30, n = 50, and n = 100. 

Because the proposed algorithm MPSO is developed for im- 
proving the PSO algorithm, the results determined by MPSO 
are compared with those of the original PSO.  To avoid a bias 
in the results, we performed each function through 30 inde-
pendent runs.  To present the algorithm’s performance, we define  

Table 4. The results for the seven functions, each with 100 
variables. 

 PSO MPSO 

function fav fb 
success 

rate 
fav fb 

success
rate

F1 1.71E+04 9.97E-07 16.66% 0.00E+00 0.00E+00 100%

F2 6.70E+04 2.50E+04 0 9.98E-08 0.00E+00 100%

F3 5.15E+07 9.99E-07 6.66% 1.00E-06 9.97E-07 100%

F4 1.99E+01 1.99E+01 0 8.88E-16 8.88E-16 100%

F5 5.82E-02 7.08E-07 40% 5.22E-07 0.00E+00 100%

F6 1.07E+02 2.77+01 0 0.00E+00 0.00E+00 100%

F7 -2.13E+04 -2.48E+04 0 -4.18E+04 -4.18E+04 100%

Success rate: convergence times of 30 tests. 
 
 

a parameter , which averages the final solutions of the 30 

runs, and a parameter , which represents the best value 

among the 30 final function values.  Obviously, the less dif-
ference between and 

avgf

bf

avgbf f , the more reliable the algorithm 

is for the function tested.  Moreover, we define the success rate 
as the rate of the number of final solutions that met the con-
vergence criterion  over the total of 30 runs. 

Therefore, the results obtained respectively by both MPSO 
and PSO for all of the seven functions with 30 variables, 50 
variables and 100 variables are presented, respectively, in 
Tables 2-4.  The results shown in the three Tables indicate that 
the proposed MPSO algorithm work much successfully and  
is hardly affected by types of functions (separable or non- 
separable, uni-modal or multi-modal) and the number of the 
variables.  In regard to the original PSO, except the F1, which 
is a separable and uni-modal function, the algorithm cannot 
attain a success rate of 100% for all the rest of functions, par-
ticularly for the F7, which is a multi-modal function, a success 
rate of zero for all the three different variables.  The results 
clearly illustrate the modified PSO outperforms the original  
PSO with a great success. 

2. Simulation Analysis of the M Type Spring 

According to the statistics (Lin, 2007), electronic products 
have a life cycle of about 2~5 years.  Their springs must 
withstand 40,000~70,000 slides (about 40~50 times per day).  
Therefore, the springs’ anti-fatigue capability should be at 
least 70,000 times.  When designing the springs in 3C equip-
ment, both different spring strengths and install positions will 
affect the phone’s lifetime. 

Yihui Tsai (2008) applied the Taguchi method to analyze the 
M type springs in 3C equipment for the optimal geometry sizes 
of the 3C equipment springs to extend their lifetime.  Zhang 
(2009) used Genetic Algorithm to find the optimal install posi-
tion such that no lateral force is induced when the lid slides. 

Therefore, to further demonstrate the effectiveness of the 
proposed algorithm on practical application, we select a M 
type spring used in the 3C equipment.  In Fig. 3 is shown the  
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Table 5. Material Properties. 

Stainless Steel Alloy SUS304 

Young's Modulus (MPa) 100000 

Poisson Ratio 0.29 

Yield Stress (MPa) 2200 
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0.5 mm

A1

A2

A3
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Fig. 3.  M type spring geometry. 

 
 

Free Compress Eject  
Fig. 4.  M type spring movement in a semi-automatic 3C equipment. 

 
 

geometry of the M type spring.  The sectional diameter of the 
spring is 0.5 mm.  There are eight variables to describe the 
performance of the product.  The properties of the material 
used for the spring are listed in Table 5. 

3. Description of the Spring Movement 

The spring movement in the 3C equipment has three con-
tinuous states: (1) free state, (2) compress state, and (3) eject 
state, as shown in Fig. 4. 

Damages to malleable material are often due to shear stress.  
Then von Mises criterion considers the shear damage and can 
be used to determine if the material is in linear elastic region or 
plastic region.  Assuming 1 2 3, ,    are the principal stresses 

in 3D space, we can use the following formula to calculate von 
Mises stress: 

 2 2
1 2 1 3 3 2

1 [( ) ( ) ( ) ]2eqv            2  (4) 

If the yield strength of the tensile test is yS , then when 

eqv yS  , the material is in the linear elastic region and will 

not yield, satisfying Hooke’s Law. 

fixture load cell

test mechine

XY table

 
Fig. 5.  Horizontal electric tester (Chen, 2007). 

 
 

UX = 30 mm
UY, UZ, ROTX, ROTY, ROTZ = Fixed

UZ = Fixed
UX, UY, ROTX, ROTY, ROTZ = Free

Y

X

ALL Fixed

Node 2

Node 1

 
Fig. 6.  Boundary conditions. 

 
 
When the spring in a 3C equipment undergoes forced dis-

placement, we observe the contact forces of the spring in each 
direction.  As in Chen (2007), the experiment equipment is a 
horizontal electric test with fixtures, an XY mobile station and 
a Load Cell, as shown in Fig. 5. 

When simulating the M type spring movement, it will have 
large deformation and contact behavior, which can easily 
cause divergence and the failure of optimization.  Therefore, we 
use two different analysis elements for simulation: (1) solid 
element used for analysis and (2) beam element for simplifying 
the analysis model.  We use ANSYS APDL (2012) to create a 
finite element model for the M type spring and provide ele-
ment type, element size, and boundary condition for geometry 
nonlinear analysis. 

The analysis model consists of three parts.  The M type spring 
is in the X-Y plane.  The lid and base bolt are simulated by two 
cylinders with rigid surfaces.  The contact boundary condition 
applies between the spring and two bolts.  The boundary con- 
dition is shown in Fig. 6.  We push Node 1 30 mm in X direc-
tion while Node 2 is fixed.  The direction of spring Z is also 
fixed.  There are 100 steps, each advancing 0.3 mm.  We use 
static mode to simulate the deformation of the M type spring.  
For solid element analysis, we use the element named Solid 
185 8-Node; for contact element, we use Conta175/Target170, 
element number: 30030, number of nodes: 31934. 



838 Journal of Marine Science and Technology, Vol. 24, No. 4 (2016 ) 

150

100

50

0

-50

-100

-150
0 5 10 15

Displacement (mm)

C
on

ta
ct

 F
or

ce
 (g

)

Test
Beam element
Solid element

20 25 30

 
Fig. 7.  Displacement-reaction force in X direction. 
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Fig. 8.  Displacement-reaction force in Y direction. 

 
 
Fig. 7 shows the beam element analysis, solid element ana- 

lysis and physical measurements of X-directional displacement 
and counter force using ANSYS.  The horizontal axis is the dis- 
placement of Node1

 x  from 0 mm to 30 mm.  The vertical axis 

shows the X-directional counter force, measured by grams (g).  
The solid curve is the physical measurement, the dashed curve 
is the beam element analysis and the dotted curve is the solid 
element analysis. 

Fig. 8 shows the solid analysis and beam analysis in the 
Y-directional displacement and counter force.  The former has 
a maximal counter force of 208.3 g on Y direction, while the 
latter has 201.3 g, with an error of 3.36%.  From Figs. 7 and 8, 
we can see that the simulated values have a similar trend to the 
experiment values. 

Table 6 compares the simulated and experimental results.  
The counter force, elastic force and positions where force di- 
rection changes are obtained from the two element analyses 
are all within reasonable error ranges, which are: 2.59%, 
1.27%, and 1.93% for beam analysis; 1.04%, 5.57%, and  

Table 6. Comparison of ANSYS Simulation and physical 
measurements. 

 
Counter 

force 
Elastic  
force 

Position where the force 
direction changes 

Experiment  
Result 

116.0 g 95.0 g 16.04 mm 

Beam Simulation 
result 

119.01g 93.79g 16.35 mm 

Solid simulation 
result 

117.21g 100.30g 16.35 mm 

Error 
Beam and  

experiments 
2.59% 1.27% 1.93% 

Solid and  
experiments 

1.04% 5.57% 1.93% 
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Fig. 9. The stress distribution when the slider goes to 15.9 mm by solid 

element. 
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Fig. 10. The stress distribution when the slider goes to 15.9 mm by beam 

element. 

 
 

1.93% for solid analysis.  We observe stress distribution in 
four regions of the M type spring, namely region A, B, C and D. 

Figs. 9 and 10 show the von Mises stress distribution in  
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Table 7. Initial values and ranges of the parameters for M 
type spring. 

Design  
Variables 

A1 A2 A3 L1 L2 R1 R2 R3

Initial Value 90 1.5 26 3.8 11 1.35 2.3 40

Lower Bound 88 1 21 2.5 11 1.1 2.1 30

Upper Bound 105 2 27 5.5 13 1.6 2.6 50

A: A1 and A3 Angle (deg), A2 Distance (mm),  
R: Radius (mm), L: Length (mm). 

 
 

solid analysis and beam analysis when the slider moves to 15.9 
mm, which is also when the maximal stress occurs.  The stress 
concentrates at the rounded corner in Region C.  The former 
stress is 1592 MPa and the latter is 1539 MPa.  Since the stress 
obtained from beam element calculation is closer to the av-
erage, it could be smaller than the stress obtained from solid 
element calculation.  The solid element analysis shows that the 
stresses in Regions A, B, and D are 1292 MPa, 735 MPa and 
1375 MPa, respectively.  We can see that the stress on Region B 
is not high so the stress cannot be evenly distributed between 
the regions.  In the following design optimization for the M type 
spring, we use beam element analysis during the searching pro- 
cess and then use solid element analysis as the basis for the 
final solution. 

IV. DESIGN OPTIMIZATION FOR THE M TYPE 
SPRING BY THE PROPOSED ALGORITHM 

1. Characteristics of the Geometry Design Parameters for 
the M Type Spring 

The stress on the M type spring mainly concentrates at the 
corners.  There are 8 variables for the geometry design optimi-
zation of the M type spring.  The initial value and search range 
for each are listed in Table 7. 

The relation between the maximum concentrated stress 
created on the M type spring and its geometry parameters cannot 
be formulated by mathematical equations to determine if the 
parameters are correlated.  In the parameters’ search ranges, we 
take the initial parameters as references, and repeatedly divide 
each search range by 11 points to analyze the M type spring 
movement.  The characteristic curves of the maximal concen-
trated stresses on these 11 points are depicted in Figs. 11 and 
12.  From the curves in Figs. 11 and 12, we can see that the 
geometry parameters are correlated, which means they are not 
independent variables. 

2. Mathematical Model for the Design Optimization of the 
M Type Spring 

Consider the relation between the sliding piece and the 
spring.  The thrust and elastic force are set to  of original 
spring.  The objective function is to lower the maximum von 
Mises stress 

10%

max .  The mathematical model of this problem is 

as follows. 

*
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Fig. 11.  The maximal concentrated stress for the 1st~4th parameters. 
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Fig. 12.  The maximal concentrated stress for the 5th~8th parameters. 

 
 

 Minimize:  (5) max( )f x σ

Subject to: 

 1

116
10%116

PF
g


  , 2

95
10%95

BO
g


   (6) 

Where: PF is the maximum thrust force and BO is the 
maximum elastic force. 

We use a penalty function to deal with the constraints and 
transform the above problem into an unconstrained optimiza-
tion problem, as follows.

 

  max 1 2( ) min[0, ] min[0, ]f x R g    g  (7) 

R is the penalty factor.  In this paper, R = 200000. 
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Table 8.  optimal value of design variables. 

Design A1 A2 A3 L1 

Optimal 88 deg 2 mm 26.2 deg 2.9 mm 

Design L2 R1 R2 R3 

Optimal 12.2 mm 1.6 mm 2.1 mm 31.3 mm
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Fig. 13.  Convergence of optimal result for M type spring. 
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Fig. 14.  von Mises stress distribution when the slider moves to 15.9 mm. 

 
 
MPSO parameters are: 
 

(a) Number of populations (NP) = 25. 
(b) Inertia weight (w) = 0.6. 
(c) Acceleration constants C1 = 1.5, C2 = 2. 
(d) Number of dividing points (Nd) = 5. 
(e) Range shrink rate of iterative grid method () = 0.98. 
(f) Maximum iterations of iterative grid method (CGMiter max) = 1. 
(g) The generations that apply iterative grid method (NE) = 2. 
(h) The convergence criteria is that maximum iterations 

(itermax) = 20 or max   1150 Mpa. 

Table 9. The maximal stress before and after optimization 
in each region and the relative improvements. 

Unit: MPa Region A Region B Region C Region D
Initial 

(ratio to the  
maximal stress)

1292.8 
(0.81) 

735.6 
(0.46) 

1592 
(1) 

1375.3 
(0.86) 

Optimal 
(ratio to the  

maximal stress)

1163.8 
(0.80) 

874.4 
(0.604) 

1446 
(1) 

1374.1 
(0.95) 

Improvement -10.0% 18.8% -9.2% -0.08%
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Fig. 15. Displacement and reaction force of the slider spring in X and Y 

direction. 

 
 

(i) The search range of each design variable is listed in Table 7. 
 
Table 8 shows the determined optimal design parameters.  

Fig. 13 illustrates the search convergence.  After six genera-
tions, the evolving converges and cannot be updated.  Fig. 14 
shows the von Mises stress diagram for the optimal design.  
The M type spring has maximum stress at 15.9 mm.  The maxi- 
mum stress concentrates on the inner surface of the rounded 
corner in region C with a magnitude of 1446 MPa, which is 
9.2% lower than the original spring. 

Table 9 shows the stresses before and after optimization in 
each region and the improvements.  We can see from the table 
that all the high stress regions have decreased in stress and the 
stress distributions are more uniform.  Fig. 15 shows the re-
action force curves of the M type spring in X and Y direction.  
The maximal thrust is 107.2 g, the maximal elastic force is 
91.6 g, and the maximal counter-force in Y direction is 230.4 g.  
The volume of the spring goes from 16.34 mm3

 to 16.48 mm3, 
which is about 0.85% increase, as shown in Fig. 16. 

V. CONCLUSION 

By incorporating a grid method with the PSO, we developed  
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optimal

initial

 
Fig. 16.  Comparison of Initial and Optimal Shape. 

 
 

a new variant of the original PSO.  The developed algorithm is 
a robust one giving a success rate of 100% when it is applied 
on each of seven tested benchmark functions.  It overcomes 
the difficulty met by the original PSO when a non-separable or 
a multi-modal function is solved or when the number of vari- 
ables of the problem is increased. 

To verify the effectiveness of the proposed algorithm in a 
practical application, the optimal design of a M type spring 
used in the 3C equipments was selected for the demonstration.  
There are eight variables in the geometry design of the spring.  
The optimal solution of the eight variables of the spring giving 
the maximum strength is determined by the algorithm.  In the 
calculation, the ANSYS APDL is used to create the finite ele- 
ment model for the M type spring and determine the relevant 
forces, such as the counter-force, the elastic force and directions 
of forces. 

The geometry parameter optimization for the M type spring 
shows that when the thrust is larger than 105 g and elastic force 
larger than 90 g, the maximum von Mises stress decreases about 
9.2% from 1592 MPa to 1446 Mpa. 
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