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ABSTRACT 

We propose a mathematical non-steady-state, time/depth 
dependent diffusion-migration model based on the modified 
Fick’s second law of diffusion.  It considers the effects of dif- 
ferent chloride binding mechanisms for the transport process 
of chloride ions diffused in a porous concrete on the variation 
of its chloride profile.  Four different chloride-binding isotherms, 
i.e., no binding, linear binding, Langmuir binding and Freundlich 
binding, together with the time/depth dependent chloride dif-
fusivities are investigated.  Results of this study show that the 
variations of amounts of available free chloride ions in the 
solution of saturated concrete resulting from different chlo-
ride-binding isotherms have significant effects on the chloride 
profile.  Comparison between the analytical solution of the 
proposed mathematical model and previous experimental data 
shows a satisfactory agreement for the chloride concentrations 
0.05 M and 0.1 M.  The orders of reduction amount of chloride 
diffusivities from large to small are found to be in the following 
sequence: (1) no binding isotherm, (2) Freundlich binding iso-
therm, (3) Linear binding isothern, and (4) Langmuir binding 
isotherm. 

I. INTRODUCTION 

The chloride diffusion coefficient (or diffusivity) calculated 

from the chloride profile (i.e., chloride concentration versus 
depth) is one of most important parameters related to the con-
crete durability because this parameter reflects the capability 
of concrete to resist the transport of chloride ions into a con-
crete structure.  The diffusivity of porous concrete is conven-
tionally determined by the method of either the diffusion cells 
or the immersion of specimen in a solution.  The processes of 
these methods are extremely slow, often requiring months or 
years to obtain results, such that they cannot come upon en-
gineering requirements for a rapid estimation on the validity of 
new materials and treatments of existing deteriorating struc-
tures.  The application of an electrical field to accelerate the 
ionic transport becomes a practical approach to reduce the 
testing time.  The chloride ions on concrete surface may enter 
the interior of porous concrete from various sources through 
pore structure where the chloride ion either being physically 
and chemically bound to the cement hydrates(bound chlorides, 
Cb), or being dissolved in the pore solution (free chlorides, Cf).  
Only such free chlorides are expected to account for initiating 
the process of corrosion, because they can continue to penetrate 
through the concrete cover under this condition (Martín-Pérez 
et al., 2000). 

Numerous researchers have investigated the effect of chloride 
binding.  Sergi et al. (1992) postulated that chloride binding in 
concrete was owing to physical and chemical absorption.  They 
used the Langmuir adsorption isotherm (Glassstome 1960) to 
model chloride diffusion.  Xi and Bazant (1999) provided the 
Freundlich isotherm which was a modified relationship between 
bound and free chlorides.  Tang and Nilsson (1993) found that 
the Freundlich isotherm efforts were more appropriate for high 
chloride concentrations whereas the Langmuir isotherm ef-
forts were for low chloride concentrations.  Sandberg (1999) 
discovered that the amount of bound chloride increased as the 
concentration of hydroxide ions in the pore solution decreased.  
He also found that the relationship between free and total 
chloride in concrete was nearly linear provided that a linear 
chloride and hydroxide ion gradient existed.  Martín-Pérez et al. 
(2000) studied the expression in various mathematical models 
of chloride binding isotherms and discovered that the evalu-
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ated service life was longer with considering the binding effect 
than that without. 

Matano (1993) used Boltzmann’s method to solve the mo- 
dified Fick’s second law of diffusion, in which the coefficient 
of diffusion was treated as a function of concentration (i.e.,  
a function of time and depth), in conjunction with different 
initial and boundary conditions for analyzing the nickel-copper 
diffusion system.  This approach was called the Boltzmann- 
Matano methodology.  Tumidajski et al. (1995) applied the 
Boltzmann-Matano methodology to calculate the non-steady 
state chloride diffusion coefficients for concrete.  It was discov-
ered that the chloride diffusion coefficients were depended on 
time and depth/concentration and were expressed as a linear 
function of the Boltzmann variable.  Tang (1999) showed clearly 
that the effective chloride diffusion coefficient was not a con-
stant but a complicated function of concentration.  The impact 
of the different chloride binding relations on the time-dependent 
chloride penetration profiles was studied by Martín-Pérez et al. 
(2000).  They used the finite difference method to solve the 
chloride mass conservation with the modified Fick's second 
law of diffusion, where the diffusivity was assumed to be not a 
constant, for chloride binding in service life predictions of  
a concrete structure subjected to submerged in seawater and 
exposed to de-icing salts.  Sun et al. (2008) applied the Kir- 
chhoff’s transformation together with Laplace’s transformation 
methods to solve a non-steady-state one-dimensional diffusion 
equation when the diffusion coefficient was represented as  
a function of time, depth and concentration of chloride for 
concrete exposed to chloride environment.  Sun et al. (2010) 
used this analytical solution to predict service life of concrete 
structures exposed to a chloride environment.  Based on this 
model, the results illustrated by the numerical examples were 
compared with those given by the LightCon model (Maage  
et al., 1995; Poulsen, 1995; Maage et al., 1996; Poulsen and 
Mejlbro, 2006).  Liang et al. (2011) used the analytical solu-
tion obtained by Sun et al. (2008), the experimental data and 
approximate solution by Martín-Pérez et al. (2000), and four 
kinds of chloride binding isotherm (i.e., no, linear, Langmuir, 
and Freundlich binding) to predict the service life of a concrete 
structure exposed to chloride environments.  They found that 
the percentage errors, the difference between the true value of 
analytical solution and the approximate value of approximate 
solution, for the case of Freundlich’s binding were higher than 
those for the cases of both no binding and linear binding when 
both service life and concrete cover increased.  Liang et al. 
(2012) applied same theoretical model to study the effect of 
diffusions with induced chloride binding on the life predic-
tions for existing reinforced concrete bridges.  They showed 
that the Langmuir adsorption isotherm was suitable for bridge 
deck with small concrete cover whereas the linear binding was 
suitable for pier and abutment with large concrete cover.  Sun 
et al. (2012) used the diffusion-reaction model, which was 
based on the Fick’s second law of diffusion (the diffusion co- 
efficient was assumed to be not constant) to establish a ma- 
thematical formulation for an irreversible first-order chemical 

reaction, to clearly describe the diffusion mechanism of chlo-
ride diffusion process.  They indicated that the diffusion- 
reaction model had predicted a longer service life than that 
with the total and free chloride diffusion models where the 
influence of chemical reaction during the chloride diffusion 
process was not considered.  Tang and Nilsson (1992) used the 
diffusion-migration model, which was based on the Fick’s 
second law of diffusion with the diffusivity being assumed to 
be constant under an electric field, to rapidly determine the 
chloride diffusivity of concrete.  Based on the Nernst-Planck 
equation in a cylindrical coordinate and time domain, Liang  
et al. (2010) applied the diffusion–migration model with the 
diffusivity being assumed to be constant to evaluate the trans-
port phenomenon of chloride-ions in concrete.  By comparing 
the relationships between the chloride concentration and time 
with the Nernst-Planck equation, they discovered that the ana- 
lytical results obtained from solutions based on two-dimensional 
coordinates and time domain were closer to the experimental 
results than those from one-dimensional consideration like the 
case of using the Fick’s second law of diffusion with non- 
constant diffusivity under an electric field.  Castellote et al. 
(1999) experimentally studied the chloride-binding isotherms 
of concrete subjected to a non-steady-state diffusion-migration 
process. 

As a summary, although previous published studies have 
shown that the variations of chloride-binding mechanism have 
significant effects on the chloride diffusion-migration process 
and chloride profile of porous concrete, up to date, there are 
still no studies attempted to predict the chloride-binding iso-
therms in concrete by diffusion-migration model.  This may be 
a shortcoming in that the experimental results of chloride 
profile obtained from different chloride-binding isotherms in 
previous studies may have led to an under- or over-estimation 
of the degree of chloride-binding.  As a result, the major purpose 
of this paper is to use the analytical solutions of a non-steady- 
state, time/depth dependent diffusion-migration mathematic 
model to assess the variation of chloride profile of concrete 
with four different chloride-binding isotherms, i.e., no binding, 
linear binding, Langmuir binding and Freundlich binding.  In 
order to justify the validity of these four isotherm models, the 
analytical results are compared with the experimental data 
obtained by Castellote et al. (1999).  The conclusion of the 
present study may serve as a proper reference for predicting 
the chloride-binding mechanism in concrete. 

II. THEORETICAL FORMULATION 

1. Nernst-Planck’s Equation 

As the chloride flux becomes constant, the general equation 
that describes transport processes in solution is the Nernst- 
Planck’s equation (Andrade, 1993) 

 u

C FE
J D z DC

x RT


C   


 (1) 
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where J is the constant chloride flux, C (x,t) is the chloride 
content dependent on depth x and time t, D is the diffusion 
coefficient of chloride ion, z is the ions valence (for chloride 
ion, z =  1), F is the Faraday constant (F = 96500 Coul/mole), 
R is the gas constant (R = 8.314 J mole K ), T is the Kelvin 
temperature (K), E = ΔV/L in electric field, in which ΔV in the 
potential drop across the tested concrete specimen with length 
L, and u is the velocity of solute.  The first, the second and the 
third terms of Eq. (1) are the contribution due to diffusion, 
migration, and convection, respectively.  Since the concrete  
is saturated, the velocity of solution can be neglected.  If the 
concrete is partially saturated or in the environmental dry- 
wetting conditions, then the velocity of solution should be 
considered.  Under the influence of an electrical field with 12 
voltages < V < 30 voltages across the concrete sample, the 
contribution of diffusion in concrete is small and can be ne-
glected, and then, only the migration due to the electrical field 
need to be considered.  If the electrical field with 6 voltages  
V  12 voltages, then both the diffusion and migration con-
tribution should be considered.  This is in agreement with the 
concept of Bourbatache et al. (2012).  They pointed out that 
for a weak-imposed electrical field, or in natural diffusion, the 
asymptotic expansion of Nernst-Planck equation results in a 
macroscopic model coupling diffusion and migration at the 
same order.  If the electrical field with 30 voltages  V  60 
voltages, the both the migration contribution and the tem-
perature effect should be taken into account.  Castellote et al. 
(1999) applied the voltage of 12 V for their experimental work 
and just considered the migration due to the electrical field.  
Thus, their experimental results will be compared with the 
predicted results from the proposed model in this study, which 
has taken into account both the diffusion and migration con-
tribution due to the electrical field with 6 voltages  V 12 
voltages. 

2. Non-Stead-State Diffusion-Migration Model 

A one-dimensional partial differential equation (PDE) of 
non-steady-state time/depth dependent diffusion-migration 
model and its initial and boundary conditions for a porous solid 
can be written as 

 

( , ) ( , )
: ( , )

( , )
( , ) ,  

C x t C x t
PDE D x t

t x x

C x t zFE
D x t a a

x RT

        







 (2a) 

  (2b) :   ( ,0) 0IC C x 

 :   (0, ) SBC C t C  (2c) 

  (2d) ( , )mC x L t 0 

where  is the time/depth dependent apparent chloride 
diffusion coefficient dependent on chloride content , 

m  is a time of very long period since diffusion is a slow 
process which needs longer time to proceed, and Cs is the 
chloride content of the exposed concrete surface and is a 
variable dependent on time.  To solve the non-linear partial 
differential equation as given in Eq. (2a), first, the Kirchhoff 
transformation (Brebbia et al., 1984; Gebhart, 1993; Kane, 
1994) was used to render the non-linear problem into a linear 
one (Sun et al., 2008; Sun et al., 2010; Sun et al., 2012).  For 
the purpose of brevity, the state variable in  and 

 ( , )D C x t
( , )C x t

t

( , )C x t
 ( , )D C x t  will be omitted hereinafter.  Define new variable 

 in such a way that 

 
( , )

( )
d x t

D C
dC


  (3) 

Eq. (3) can also be written in integral form as in the fol-
lowing, 

  ( , ) ( )
R

C

C
x t D C dC K   C  (4) 

The above equation is called Kirchhoff’s transformation, 
where CR is an arbitrary reference value.  For convenience, we 
take CR = Cs.  By applying the concept of chain rule to Eqs. (3) 
and (4), the following three equation can be obtained, respec-
tively. 

 
C

D
t C t

  C

t

   
 

   
 (5) 

 
C

D
x x

 


 
 (6) 

 
2

2

C
D

x xx

    

   
  (7) 

Eq. (2a) is multiplied by D and changed as 

 ( )   ( )
C

x

C C
D D D DaD

t x x

   
 

   
 (8) 

Putting Eqs. (5)-(7) into Eq. (8), we obtain the following 
linear PDE. 

 
2

2
D Da

t xx

   
 


 

 (9a) 

The initial condition (IC) and boundary condition (BC) 
stated above are also transferred as 

      
0

: ,0 0
S

C

C 0IC x K C D C d


    C K  (9b) 
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  (9c)      : 0, 0
S

S C
BC t K C C D C dC    

SC

0C
       0, 0

S
m C

x L t K C D C dC K     


 (9d) 

By using the method of separation of variable with 
   ( , )x t X x T t  , we obtain Eq. (10) from Eq. (9a) 

 XT DX T DaX T     (10) 

but we cannot separate function of x and t on opposite sides  
of this equation.  In such a case, it is sometimes helpful to 
introduce two new functions  and , related to ( , )U x t ( )V x

( , )x t  by 

 ( , ) ( , ) ( )x t U x t V x    (11) 

The idea is to substitute this new expression into the diffu-
sion (or heat) equation and initial and boundary conditions and 
attempt to choose a proper function of  so that the result-
ing boundary value problem for U x  can be done by sepa-
ration of variable or other method such as Laplace’s transform. 

( )V x
)t( ,

According to Eq. (11), we have 

 
U

t t

 


 
 (12a) 

 
U V

x x x
 

  
  

 (12b) 

 
2 2 2

22 2

U V

x x x
 

  
  

 (12c) 

Inserting Eqs. (11) and (12) into Eq. (9a) to get 

2 2

2 2

U U U V
D aD D aD

t xx x

      
         

V

x


 

 (13) 

Immediately, this differential equation is simplified if 

 
2

2
0

V V
D aD

xx

 



  (14) 

This is a second order ordinary differential equation (ODE) 
for  with many solutions.  Before choosing one proper 
solution of , we need consider the boundary conditions 
being expressed as follows, 

( )V x
( )V x

  (15)        0, 0, 0St K C C U t V    

and 

        0, 0 ,m mx L t K C U x L t V x L K          (16) 

Both of these conditions for  will be simplified if we 
choose a valid  such that 

( , )U x t
( )V x

       00 0;   SV K C C V L    K  (17) 

Therefore, we can choose  to be a solution of the 
following boundary value problem 

( )V x

 
2

02
0,   0 0,   

V V
D aD V( ) V(L) K

xx

 
   


 (18) 

This is a route 2nd order ODE problem to solve.  The char-
acteristic equation of Eq. (18) is 

 2    0Dm Dam   (19) 

Since 0D  ,we obtain  or , Therefore 0m  m a

  (20) 1 2( ) axV x C C e 

where C1 and C2 are any arbitrary constants. 
Then 

 1 2(0) 0V C C    (21) 

and 

  (22) 1 2( ) aLV L C C e K   0

From Eqs. (21) and (22), we obtain the values of C1 and C2 
by the Cramer rule 

 0
1 1aL

K
C

e





 and 0

2 1aL

K
C

e



 (23) 

Thus, choose 

 0 0( )
1 1

ax

aL aL

K K e
V x

e e


 

 
 (24) 

With this choice of ,  satisfies the following 
equations 

( )V x ( , )U x t

PDE: 
2

2
  (0 ,   0)

U U U
D aD x L t

t xx

  
   

 


( ,0) ( ,0) ( ) ( )  (0 x L)x V x K X x

 (25a) 

IC: U x 0    

(0, ) ( , ) 0U L t 

 (25b) 

 BC: U t  (25c) 
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We will apply the method of separation of variables and 
seek a solution of .  Attempt a solution with the fol-
lowing form: 

( , )U x t

  (26) ( , ) ( ) ( )U x t P x Q t

The substitution of Eq. (26) into Eq. (25) yields 

  (27a) PQ DP Q aDP Q   

or 

 
Q DP aDP

Q P


  
   (27b) 

where  is called a separation constant.  We now have 

 0DP aDP P     (28) 

and 

 0Q Q    (29) 

From Eq. (25c), we have 

  (30) (0, ) (0) ( ) 0U t P Q t 



Since  for all , we have . ( ) 0Q t  0t  (0) 0P 
From Eq. (25c), we have  

  (31) ( , ) ( ) ( ) 0U L t P L Q t

Since  for all , we have . ( ) 0Q t  0t  ( ) 0P L 
From Eq. (25b), we know 

  (32) 0( ,0) ( ) (0) ( )U x P x Q K V x  

Since  for 0( ) 0P x  x L  , we get 

 0 ( )
(0) ,   0

( )

K V x
Q

P x


  x L  (33) 

At this point, we have two problems for  and : ( )P x ( )Q x

 :ODE P aP P
D

    0

: (0) ( ) 0BC P P L 

0

 (34a) 

  (34b) 

and 

 :ODE Q Q    (35a) 

Chloride concentration, C (kg/m3)
C→0CCR = CS

C
hl

or
id

e 
di

ff
us

io
n 

co
ef

fic
ie

nt
, D

 (m
2 /s

)

A

B

0

C

CS

CS

D(C)dC

D(C)dC

A
A + B

=
∫
∫

 
Fig. 1. Area ratio under the D-C curve with the diffusion-migration 

model. 

 
 

 
( ) ( )

: (0)
( )

V L V x
IC Q

P x


  (35b) 

The solution of Eq. (35a) is 

 ( ) tQ t e ,  = constant (36) 

Substituting Eq. (35b) into Eq. (36), we have 

 
( ) ( )

(0)
( )

V L V x
Q

P x
 

   (37) 

Thus, the particular solution of Eq. (35) is 

 
( ) ( )

( )
( )

tV L V x
Q t e

P x


  (38) 

Inserting Eq. (38) into Eq. (26), we obtain 

 0( , ) [ ( )] tU x t K V x e   (39) 

Substituting Eq. (24) into Eq. (39), we have 

 
 0

( , )
1

aL ax t

aL

K e e e
U x t

e





 (40) 

It is worthy to point out that Eq. (40) is actually satisfied 
with the boundary condition of Eq. (25c).  Let 0x   into Eq. 

(40), then 0(0, ) tU t K e
(0, ) 0U t

.  According to Eq. (9c) and Fig. 1, 

we have  .  Further, the substitution of x L  into 

Eq. (40) yields ( , )U L t 0 . 

The substitution of Eqs. (24) and (40) into Eq. (11) yields 
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


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It is needed to indicate that Eq. (41) is really satisfied with 
the boundary condition of Eq. (9c).  Let  into Eq. (41), 

then 

0x 

0(0, ) tt K e 
(0, ) 0t

.  On the authority of Eq. (9c) and Fig. 1, 

we know   . 

Eq. (41) can be rewritten as 

 
 

0

( )  1

1( )

S

S

C
aL ax t ax

C

aL

C

D C dC e e e e

eD C dC

 








 (42) 

Eq. (42) provides the relationships among the apparent dif- 
fusion coefficient D, the chloride concentration C, penetration 
depth x and the time t.  The D(C) function was established by 
the resulting fitting curve.  The left side of Eq. (42) is simply 
the area ratio between areas under the D-C curve from Cs to C 
and from Cs to 0, as shown in Fig. 1. 

3. Chloride Binding Mechanism and Free Chloride 

The chloride ions can penetrate into a saturated concrete by 
ionic diffusion resulting from the existing chloride concentra-
tion gradient between the exposed surface and the pore solu-
tion of the cement matrix.  This process owing to diffusion 
driving force is generally represented by Fick’s first law of 
diffusion (Martín-Pérez et al., 2000). 

 f f
c e

C C
J DW D

x x

 
   

 
 (43) 

where cJ  is the flux of chloride ions owing to diffusion, D is 

the time/depth dependent apparent chloride diffusion coeffi-
cient dependent on chloride content  with the chloride 

concentration being expressed in kilograms per cubic meter of 

concrete, 

( , )C x t

D  is the apparent chloride diffusion coefficient,  

is the evaporable water content (  = 0.8% (Martín-Pérez  

et al., 2000)), and  is the free chloride concentration at 

depth x and time t. 

eW

eW

( , )fC x t

The relationship among the total, bound, and free chloride 
concentrations in concrete can be represented as 

  (44) t b eC C W C  f

where Ct and Cb are the concentration of total and bound 
chlorides, respectively. 

The law of mass conservation for chloride ions in a satu-
rated concrete results in 

 tC

t x

 
 

 

We may assume that  to be constant, since we are in-

terested only in the value of D.  Putting Eqs. (43)-(45) into Eq. 
(2a) and using chain rule, we obtain 

eW

 ( ) ( )f f fb
e e

f

C CC
W D C W D C W

C t x x

 
e

C
a

x

    
              

 

  (46) 

where b

f

C

C




is the binding capacity of the concrete binder (m3 

of pre solution/ m3) of concrete as defined by Nilsson et al. 
(1994). 

Eq. (46) can be rewritten as 

 

*

*

( , ) ( , )
( ( , ))

( , )
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f f
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C x t C x t
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t x x
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
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 (47a) 

with 

 
 * ( , )

1
1 b

e f

D C x t
D

C

W C







 (47b) 

The associated initial and boundary conditions of Eq. (47a) 
become 

  (47c) ( ,0) 0fC x 

 (0, )f sC t C

( , ) 0C x L t 

 (47d) 

  (47e) f m

By applying the same method mentioned before, the ana-
lytical solution of Eq. (47) yields 

 

*

0 *

( ) ( )

1( )

f

S
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C
aL ax t ax

C

aL

C

D C dC e e e e

eD C dC

 







1
 (48) 

4. Chloride Binding Isotherm 

cJ
 (45) 

The chloride binding isotherm is defined as the depicted re-
lationship between the bound and free chloride concentrations 
in concrete under a given temperature condition.  Eq. (47b) 
indicates the apparent chloride diffusion coefficient and the 
corresponding binding isotherm.  Four theoretical curves used 
in the literature to express chloride binding isotherm in concrete 
are reviewed in the following (Martín-Pérez et al., 2000): 
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Fig. 2.  Total chloride profiles at different chloride concentrations. 

 
 

(1) No binding isotherm 
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(2) Linear binding isotherm 
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 where  is the binding constant. 
(3) Langmuir binding isotherm 
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  (51) 

 where  and  are the binding constants. 
(4) Freundlich binding isotherm 
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 (52) 

 where  and  are the binding constants. 
Substituting the values of Cs and D* represented by Eqs. 

(49)-(52) into Eq. (48), we can obtain the free chloride con-
centration at depth x and time t of the analytical solution of 
one-dimensional time/depth dependent diffusion-migration 
PDE. 
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Fig. 3.  Total chloride profiles at different times. 

 

III. RESULTS AND DISCUSSION 

Based on = -1, F = 96500 /( )J mole V  R = 8.314 

/( )J mole K , T = 298K, L = 0.15 m,
V

E
L


    

12
80

0.15

V V
mm

   , we calculate 13115.95 m
zFE

a
RT

  .  

According to the data measured by Castellote et al. (1999) and 
using Eq. (42), Fig. 2 shows the total chloride profiles at dif-
ferent chloride concentrations.  Values of chlorides at x = 0 
show the surface concentration.  It generally resulted in such a 
quantity higher than the rest of the profile.  It is obvious that 
the calculated results are in agreement with the measured data 
(Castellote et al., 1999) for the chloride concentrations 0.05 M 
and 0.1 M while the calculated results are not consisted with 
the measured data (Castellote et al., 1999) for the chloride 
concentrations 0.5 M and 1 M.  Fig. 3 indicates the total 
chloride profiles at different times.  It is understandable that 
the calculated results are agreeable with the measured data 
(Castellote et al., 1999) at different times.  Based on the data 
measured by Castellote et al. (1999) and using Eq. (48), Fig. 4 
displays the free chloride profiles at different chloride con-
centrations.  It is clear that the calculated results are in accor- 
dance with the measured data (Castellote et al., 1999) for the 
chloride concentrations 0.05 M and 0.1 M whereas the calcu-
lated results are not agreeable with the measured data (Cas-
tellote et al., 1999) for the chloride concentrations 0.5 M and 1 
M.  Fig. 5 illustrates the free chloride profiles at different times.  
It is perceptible that the calculated results are in agreement 
with the measured data (Castellote et al., 1999) at 14 days and 
28 days while the calculated results are not agreeable with the 
measured data (Castellote et al., 1999) at 7 days and 21 days. 

According to the values of  (see Fig. 2), 0.45SC  M

13115.95a m ,  = 0.19 (linear binding),  = 0.98,  = 0.29  
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Fig. 4.  Free chloride profiles at different chloride concentrations. 
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Fig. 5.  Free chloride profiles at different times. 

 

 
(Langmuir binding),  = 1.03,  = 0.36 (Freundlich binding) 
(Martín-Pérez et al., 2000) and using the measured data with 
an external concentration   0.5NaCl M  (Castellote et al., 
1999), and substituting Eqs. (49)-(52) into Eq. (50), we obtain 
the results as shown in Fig. 6.  From Fig. 6, the calculated 
results obtained by the Freundlich binding isotherm is in a 
better agreement with those of measured data (Castellote et al., 
1999).  It is worthy of pointing out that the calculated results 
predicted by the no binding isotherm is not quite agreeable 
with those of measured data. 

The effect of chloride binding in Eq. (47b) is to diminish the 
diffusivity of chloride ions in concrete which represents the 
binding capacity of the specific binder as shown in Fig. 7.  For 
measurement of ignoring binding or considering a linear  
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Fig. 6. Free chloride profiles by different chloride-binding isotherm 

calculations. 
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Fig. 7. The effect of chloride binding on the diffusivity under external 

[NACL] = 0.5 M. 

 
 

binding isotherm, the diffusivity D* is constant as chlorides 
penetrate into the concrete.  Nevertheless, when the non- 
linearity is considered in the bound-free chloride relation, D* 
will vary through the concrete depth, which reflects the chlo-
ride binding capacity of the concrete binder on the levels of 
chloride ions in the pore solution (Nilsson et al., 1994).  As the 
values of Cf less than 0.3% mass of concrete, the values of 
D*/D of the Freundlich isotherm is higher than that of 
Langmuir isotherm while as the values of Cf greater than 0.3% 
mass of concrete, the value of D*/D of the Freundlich iso-
therm is approximately close to that of the Langmuir isotherm. 

According to the curve of the free chloride concentration  
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Fig. 8. Chloride diffusion coefficient D* (m2/s) with different chloride- 

binding isotherm calculations. 

 
 

versus depth under an external concentration of 0.5 M  
(Castellote et al., 1999) and substituting Eqs. (49)-(52) into  
Eq. (48), we may obtain the effect of chloride diffusivity by 
different chloride-binding isotherm calculations on penetra-
tion depth as shown in Fig. 8.  It is obvious that the chloride 
diffusivities are all decreased when the concrete depth is in-
creased.  Fig. 8 shows the values of diffusivity predicted by no 
binding, linear binding, Langmuir isotherm, and Freundlich 
isotherms are 0.0128, 0.0038, 0.0036, and 0.0047 m2/s at x = 7 
mm and 0.0062, 0.0002, 0.007 and 0.002 m2/s at x = 33 mm, 
respectively.  The order of reduction amount of diffusivity from 
large to small is described as follows: (1) no binding isotherm, 
(2) Freundlich binding isotherm (3) linear binding isotherm, 
and (4) Langmuir binding isotherm. 

NaCl

IV. CONCLUSIONS 

The approach to obtaining the analytical solution of one- 
dimensional non-steady-state diffusion-migration equation by 
the Kirchhoff transformation technique in conjunction with 
the method of separation of variable has been described and 
the resulting outcomes were compared satisfactorily with the 
previously published experimental data.  Some important con- 
clusions are drawn as follows: 

 
1. This proposed method allows the predictions of chloride 

profiles, considering the non-steady-state and non-constant 
diffusion coefficients dependent on both time and penetra-
tion depths, by just using the experimental data of some 
diffusion migration tests with a short period of test time. 

2. Obviously, different chloride binding isotherms can be easily 
implemented into the currently proposed non-steady diffu-
sion-migration model.  It has been clearly shown that four 
different chloride binding isotherms with distinct chloride 

bindings and chloride depths investigated in this study ap-
parently have significant effects on the chloride profile of 
porous concrete.  Because both the increase of chloride bind-
ing in the interior of concrete and the increase of ingress 
depth of chloride ion from the exposed concrete surface tend 
to reduce the chloride diffusivity of concrete, it is found that 
the ranking of reduction amount of chloride diffusivities 
from large to small is expressed as in the following order:  
(1) no binding isotherm, (2) Freundlich binding isotherm,  
(3) Linear binding isotherm, and (4) Langmuir binding iso-
therm. 

3. An extensive laboratory investigations are certainly needed 
to tune the proposed diffusion-migration model as well as 
an extension of this model to include other effects of addi-
tional parameters like the W/C ratio of concrete, the concrete 
porosity, and material properties of mixing constituents of 
concrete, etc. 
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