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ABSTRACT 

An offshore support vessel (OSV) is a ship that supports 
exploration, development, and production activities in the 
offshore industry.  Recently, industrial demand for OSVs has 
increased due to a large number of offshore field development 
projects worldwide.  One of the main functions of an OSV is 
heavy lifting such as subsea equipment installations in offshore 
oil or gas fields using crane.  Therefore, predicting dynamic 
loads in various operation conditions is one of the crucial points 
in the lifting operation of an OSV.  To do this, crane-lifting 
simulation needs to precede real operation to verify the safety 
of the lifting operation.  Most simulation tools use a rigid 
body model for crane-lifting simulation.  However, in real 
cases, some heavy loaded components such as crane boom 
might be deformed due to their own weight and the weight  
of the lifted object.  The deformation can change during the 
lifting operation because ship motion induced by ocean 
waves and winds can affect the overall behavior of the OSV.  
This study derives equations for the motion of a multibody 
system using a flexible body model for the crane boom 
based on finite element formulation to analyze the behavior  
of the system, dynamic loads, and the deformation of the 
crane boom under various ocean conditions.  Motion equa-
tions were solved with fourth-order Runge-Kutta method.   

Our results showed that flexible body models had bigger  
dynamic amplification factors than rigid body models in all 
cases, indicating that the flexibility of the crane boom should 
be considered for accurate estimation of the dynamic effect  
on OSV lifting simulation.  Finally, we can find operability of 
the lifting operation at given ocean conditions. 

I. INTRODUCTION 

1. Background 

An offshore support vessel (OSV) is a vessel that provides 
support for exploration, development, and production activi-
ties in the offshore industry.  Recently, industrial demand for 
OSVs has increased due to a large number of offshore field 
development projects worldwide.  An OSV has five main roles: 
supporting platforms, subsea operation and construction, heavy 
lifting, provision of crew residence, and exploration (Park  
et al., 2012).  To perform these roles, most OSVs have a heavy- 
lifting crane on their deck.  The heavy-lifting crane can load 
and unload supplies to support the installation of offshore plat- 
forms and subsea equipment such as manifolds (Woo, 2014).  
For crane operation in an ocean environment, dynamic analy-
sis and lifting simulation are required to predict dynamic load- 
ings on the equipment and accurate lowering position for safety 
purposes (Cha et al., 2010a). 

OSV during its lifting operation can be modeled with a 
multibody system consisting of a number of bodies and joints 
with constraints.  Fig. 1 shows the configuration of an OSV 
multibody model.  The bodies for crane-lifting simulation can 
be modeled with four components: an OSV hull with hydro-
dynamic and static forces, a crane tower connected to the hull 
by a rigid fixed joint, a crane boom connected to the crane 
tower by a fixed or hinge joint, and the lifted object connected 
to the crane boom by a wire rope. 
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In most past lifting simulations, each component was re-
garded as a rigid body.  However, in real cases, some heavy 
loaded components such as crane boom are deformed due to 
their own weight and the weight of the lifted object.  The  
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Fig. 1. Configuration of the multibody model of an offshore support 

vessel (OSV). 

 
 

deformation can change during the lifting operation because 
ship motion induced by ocean waves and wind can affect the 
overall behavior of the multibody system.  In this study, equa-
tions of motion of the multibody system are derived using a 
flexible body model for the crane boom based on the finite 
element formulation to analyze the behavior of the system 
(Shabana, 2005), its dynamic loads, and the deformation of  
the crane boom under various ocean conditions.  Equations of 
motion are solved using the fourth-order Runge-Kutta method.  
Finally, all results are compared to those obtained from a rigid 
body model to validate the flexible model in dynamic simula-
tion of an OSV. 

2. Related Studies 

Al-Sweiti and Soffker (2007) used an elastic model for a 
crane boom divided into five finite elements.  Pointed mass 
model was used for the load.  The hull structure had a one- 
degree-of-freedom body with only a rolling motion.  The equa-
tions of motion were derived from Newton’s motion equation.  
Ren et al. (2008) considered three degrees-of-freedom mo-
tions of a ship: its heave, surge, and pitch motions.  The elas-
ticity of the crane boom was considered as an additional dis-
placement of the crane tip.  The hydrostatic forces, mooring 
forces, water resistance due to the viscosity, and excitation 
force due to the ocean waves were considered as external 
forces.  Park et al. (2010) used flexible multibody dynamics to 
derive equations of motion of a floating crane barge.  The crane 
boom was modeled with an arbitrary number of three- 
dimensional (3D) finite elements.  Halse et al. (2014) simulated 
crane lifting of an OSV coupled with analysis of hydrodynamic 
forces.  They used a rigid body model and one degree-of- 
freedom of the ship motion.  A brief summary and comparison 
of related studies are summarized in Table 1. 

In this study, as in Park et al. (2010), the equations of mo-
tion of the OSV were derived based on flexible multibody 
dynamics.  The crane boom was modeled with an arbitrary 
number of 3D finite elements.  The remainder of this paper is 
structured as follows.  Section 2 describes the derivation of  

Table 1.  Summary and comparison of related studies. 

 Halse et al. (2014) 
Park et al. 

(2010) 

Ren et al. 

(2008) 

Al-Sweiti 

and Soffker 

(2007) 

Mathematical 

modeling 

Rigid multibody 

dynamics coupled 

with hydrodynamics 

Flexible 

multibody 

dynamics 

Lagrange’s 

equation

Newton’s 

equation

No. of  

elements
- N - 5 

Boom
Elastic 

coordinates
- Nodal - Nodal 

DOF of the  

floating crane 
1 6 3 1 

DOF of the cargo 1 6 1 1 

Lifted object Rigid body Rigid body Point mass Point mass

Automatic formu-

lation 
- O X X 

Simulation target Crane on the OSV 

Offshore 

crane on 

the crane 

barge 

Offshore 

crane on the 

crane barge

Offshore 

crane on the 

crane barge

 
 

equations of motion of a flexible multibody system with finite 
element formulation.  In Section 3, a comparative study of 
flexible multibody dynamics for a 2D cantilever beam is per- 
formed.  Section 4 shows the results of the dynamic simulation 
of the lifting operation of an OSV based on flexible multibody 
dynamics.  The last section summarizes the results of this 
study and briefly discusses the next study. 

II. DERIVATION OF THE EQUATIONS OF 
MOTION OF THE FLEXIBLE  
MULTIBODY SYSTEM WITH  

FINITE ELEMENT FORMULATION 

1. Kinematic Description of a Deformable Body 

Shabana (2005) suggested the equations of motion of the 
flexible multibody system with finite element formulation.  
Finite element formulation uses four coordinates systems to 
describe arbitrary points on a deformable body in the global 
coordinate system.  Fig. 2 shows the four coordinates systems 
used for the formulation.  The superscript i refers to the body 
number in the multibody system.  The superscript j refers to 
the element number in the finite element discretization of the 
deformable body i.  Subscript i refers to the intermediate 
element coordinate system.  A global coordinate system is 
fixed in time.  It forms a single standard for the entire assem-
bly of bodies.  Thus, it expresses the connectivity of all bodies 
through the system.  A body coordinate system forms a single 
standard for the entire assembly of elements in the body i thus 
expressing the connectivity of all elements in the body.  An 
intermediate element coordinate system is a system whose 
origin is rigidly attached to the origin of the body coordinate  
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Fig. 2.  Finite element coordinate systems. 
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Fig. 3.  3D nodal coordinates of a beam element. 

 
 

system.  it does not follow deformation of the element.  The in- 
termediate element coordinate system is initially oriented to be 
parallel to the element coordinate system.  An element coor-
dinate system is rigidly attached to each element j on the de-
formable body i.  This coordinate system translates and rotates 
with the element.  An arbitrary displacement vector with re-
spect to the element coordinate system is shown as follows: 

 , (1) ij ij ijw S e

wherein is the element shape matrix and  is the nodal 
coordinate of the element with respect to the element coordi-
nate system.  An explicit expression for shape matrix is defined 
in Appendix A1.  The 3D nodal coordinates of a beam element 
are defined as follows.  (Fig. 3). 

ijS ije

However, an intermediate element coordinates system with 
a fixed orientation with respect to body coordinate parallel to 
the axis of the element coordinates system was introduced to 
transform the body coordinates system.  Thus, the displacement 
vector with respect to the intermediate coordinates can be 
defined as follows: 

 , (2) ij ij ij
i w S ei

wherein  is the displacement vector and  is the nodal 

coordinate of the element ij with respect to the intermediate 

element coordinates system.  In addition,  can be obtained 

from the vector of the nodal coordinates of element ij with 

respect to the body coordinates system  using rotation trans- 

formation matrix 

ij
iw ij

ie

ij
ie

ij
nq

ijC  as follows. 

 ij ij ij
i e C qn  (3) 

The displacement vector 
iju  can be defined in the i-th body 

coordinates system as follows. 

 ij ij ij ij ij ij ij ij ij ij
i i  u C w C S e C S C qn

n

T

 (4) 

Eq. (4) defines the position coordinates of an arbitrary point 
on the finite element with respect to the origin of the body 
coordinates system.  These position coordinates are expressed 
in terms of nodal coordinate sets defined in the body coordi-
nates system. 

If  is the total vector of the nodal coordinates of body i 

resulting from the finite element discretization, the vector of 
the element nodal coordinate can be written in terms of nodal 
coordinates of the body as follows: 

i
nq

 , (5) 1
ij ij i
n q B q

wherein  is the element selection matrix whose elements 

are either zeros or one.  An example is shown in Fig. 4, where 
body 1 is divided into two beam elements. 

1
ijB

In the example in Fig. 4, total vector of the nodal coordinate 
 is defined as follows: 1

nq

 , (6) 
1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1
10 11 12 13 14 15 16 17 18

[

]

n e e e e e e e e e

e e e e e e e e e

q

and  and  are defined as follows: 11
nq 12

nq

  and (7) 
11 11 11 11 11 11 11

1 2 3 4 5 6

11 11 11 11 11 11 T
7 8 9 10 11 12

[

]

n e e e e e e

e e e e e e

q

 , (8) 
12 12 12 12 12 12 12

1 2 3 4 5 6

12 12 12 12 12 12 T
7 8 9 10 11 12

[

]

n e e e e e e

e e e e e e

q

where the transformation of Eq. (5) can be recognized as the 
first element in Eq. (9), 

11
1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

B

0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

  (9) 
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Fig. 4.  Nodal coordinates defined in the body coordinates system. 

 
 

and as the second element in Eq. (10). 

12
1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B

0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 
 
 
 

 
 
 


 
 


 
 












 

  (10) 

Thus, the displacement of element ij in Eq. (4) in terms of 
the nodal coordinates of body i is as follows: 

 1
ij ij ij ij ij i

nu C S C B q , (11) 

or in compact form, as follows: 

 ij ij i
nu N q , (12) 

wherein  is defined as follows. ijN

 1
ij ij ij ij ijN C S C B  (13) 

In the finite element formulation, the vector of the nodal 
coordinate of body i  can be separated as follows: 

 i i
n o q q qi

f , (14) 

wherein  is the vector of the nodal coordinates in the un-

deformed state, and 

i
oq

i
fq  is the vector of the nodal deformation.  

Not all nodal coordinates have nodal deformation components 
due to the boundary condition.  Thus, the vector of the nodal 
deformation can be written as follows: 

 2
i i i
f fq B q , (15) 

wherein i
fq  is the new vector of the nodal deformation, a set 

of valid deformation components of i
fq , and  is a linear 

transformation that matches elements of 

2
iB

i
fq  to the nodal co-

ordinate of the body. 
Finally, the position vector of the arbitrary point of the 

deformable body with respect to the global coordinate system 
is as follows: 

 

2( )

ij i i ij

i i ij i
n

i i ij i i i
o f

 

 

  

r R A u

R A N q

R A N q B q

, (16) 

wherein  is the position vector of the orientation of the 
body coordinate system with respect to the global coordinate 

system, and  is the rotation matrix between the body co-

ordinate system and the global coordinate system. 

iR

iA

Differentiating Eq. (16) with respect to time yields the 
following equation: 

 2
ij i i ij i i i ij i i

f  r R A u G θ A N B q  , (17) 

wherein iju  is the skew matrix form of vector iju , and iG  is 
the transformation matrix between the Euler angle and the 
angular velocity.  Eq. (17) can be written in matrix form as 
follows: 
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rij = Ri + Aiuij

uij = CijSijCijBijqij
1 n

uij = Cijwij
i

wij = Sijeij
i i

qij = Bijqi
n 1 n

eij = Cijqij
i n

qi = qiqi
n o f

qi = Biqi
f 2 f

Vector of nodal 
deformation

Vector of nodal 
deformation

Vector of nodal coordinate 
in the undeformed state

Total vector of nodal coordinates of body i 
resulting from the F.E. discretization

Vector of nodal coordinates of the element ij 
defined w.r.t. the body coordinate system

Nodal coordinates of element ij defined 
w.r.t. the intermediate element coordinate

Assumed displacement field defined 
w.r.t. the intermediate element coordinate

Displacement vector 
w.r.t. the body coordinate system

Displacement vector 
w.r.t. the global coordinate system

 
Fig. 5.  Summary of the kinematic description of the flexible body. 

 
 

 2

i

ij i ij i i ij i i

i
f

 
    
 
 

R

r I A u G A N B θ

q





  (18) 

Fig. 5 shows a summary of the kinematic description of the 
flexible body with their definition.  This kinematic description 
method uses four different coordinate systems from the nodal 
coordinate system with respect to the body coordinate system 
to the global coordinate system via intermediate element co-
ordinate system and element coordinate system. 

2 Equations of Motion of a Flexible Multibody System 

Using Eq. (18), the kinetic energy of a deformable body can 

be defined.  The matrix  defined in Eq. (19) is called 
“mass matrix,” which is in turn defined in Eq. (20). 

ijM

 
T

T1

2

1

2

i

i ij ij ij

V

i ij i

T d



 r r

q M q

 

 

ijV

 (19) 

 

2

2

2 2.

T T T

ij

T T

ij ij i i i i i i ij i ij

V

i ij ij i

dV

sym




 
   
     



I A u G A N B

M G u u G G u N B

B N N B

  

i i i i ij i  






  

  (20) 

Eq. (20) can be simplified as follows: 

 

.

ij

RR R Rf
ij

f

ff

m m m

m m

sym m



 

 
 

  
 
 

M , (21) 

wherein RRm  is the inertia due to the mass of the body, m  is 

the mass moment of the inertia due to rotational motion, and 

Rm   is the inertia due to the coupling of translational and 

rotational motions.  Terms Rfm , fm , and ffm  are inertias 

due to deformation of the body. 
Virtual work due to generalized elastic force can be defined 

as follows using deformation of the body i
fq : 

 
T

W i i i i
s f ff f  q K q , (22) 

wherein ij
ffK  is the stiffness matrix.  Shabana (2005) sug-

gested the stiffness matrix of a two-dimensional (2D) beam 
element.  Przemieniecki (1968) suggested the stiffness matrix 
of a 3D beam element. 

To make a single equation of motion of a multibody system, 
all connections between bodies should be expressed as con-
straints.  Such constraints are functions of the displacement  

and the time t as shown in Eq. (23).  Thus, the virtual work due 
to constraints force is defined as in Eq. (24): 

q

  and (23) ( , ) 0t C q

 0 qC q , (24) 
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Fig. 6.  General sequence of solutions of the equations of motion of the flexible multibody system. 

 
 

wherein  is a derivative of  with respect to the vector 

of the system generalized coordinate . 
qC ( , )tC q

q

Virtual force due to external forces is defined as in Eq. (25).  
Its matrix form is Eq. (26): 
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, (26) 

wherein  is generalized external force. i
eQ

The equations of motion of the flexible multibody system 
were derived from Lagrange’s equation using Eqs. (19), (22), 
(24), and (25) as shown in Eq. (27): 

 

T Ti i
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, (27) 

wherein  is the vector of Lagrange’s multiplier.  The matrix 
form of Eq. (27) can be written as follows: 
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  (28) 

wherein  is the quadratic velocity term derived from vectors 

in Eq. (27). 

i
vQ

Reorganizing Equ. (28) into augmented formulation to 
solve equations of motion can yield the following form of the 
equation. 

  (29) 
T

. 0
e v

csym 
      

    
    

q
q Q Q KqM C

Q



Solving Eq. (29) through numerical integration using the 
fourth-order Runge-Kutta method can yield the position and 
velocity in each time step. 

Fig. 6 shows the general sequence of solutions of the 
equations of motion of the flexible multibody system. 
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Table 2.  Specifications of a 2D cantilever beam. 

Item Value 

Length 10 m 

Mass 795 kg 

Young’s modulus 210 GPa 

Second moment of inertia 8.33 x 10-6 m4 

Density 7850 kg/m3 

Area 0.01 m3 

No. of elements 1~10 

 
 

q

bδ

L  
Fig. 7.  Deformation of the 2D cantilever beam. 
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Fig. 8.  Convergence test of the numerical cantilever beam model. 

 
 
When the equations of motion are established as Eq. (29), 

the double time derivative of positions and the angle of system 
 are determined by solving the inverse matrix of Eq. (29).  

The position and angle of the system and its time derivative 
and  are obtained by integrating q  and q  by an integra-

tor such as the fourth-order Runge-Kutta method in each time 
step.  The simulation kernel developed by Cha et al. (2010b) 
and Ha et al. (2015) can be used to calculate the elastic forces 
due to deformation and the external forces that act on the 
bodies such as hydrostatic forces, hydrodynamic forces, 
gravity, and wind forces in each time step to input the current 
value to solve the equations of motion. 

q

q q  

III. COMPARATIVE STUDY OF FLEXIBLE 
MULTIBODY DYNAMICS FOR A 2D 

CANTILEVER BEAM 

The analytic solution for the deformation of a 2D cantilever 
beam is used to validate the numerical model.  The specifica-
tions of the 2D cantilever beam are listed in Table 2.  The 
configuration of the model is shown in Fig. 7.  Convergence  

Table 3.  Principal dimensions of Skandi Arctic. 

Item Value 

LOA 156.9 m 

LBP 137.7 m 

Breadth 27 m 

Depth of the first deck 12 m 

Draft (design) 6.5 m 

Draft (scantling) 8.5 m 

Dead weight 10,996 tons @ 8.5 m 

 

 
Table 4.  Crane specifications of Skandi Arctic. 

Item Value 

Type Box boom crane 

Main hoist capacity (harbor lift) 400 tons @ 11 m 

Auxiliary hoist capacity 30 tons @ 46 m 

 

 
test results of the numerical cantilever beam model are shown 
in Fig. 8. 

The analytic solution of a 2D cantilever beam is as follows 
(Gere and Timoshenko, 1997): 

 
4

8b

qL

EI
  , (30) 

wherein q is the uniform distributed load, L is the length of the 
beam, E  is Young’s modulus, and I is the second moment of 
inertia of the beam.  The analytic solution is 0.0557 m.  The 
result of the numerical analysis is converged to the analytic 
solution when the number of element is increased, suggesting 
that the numerical code has more reliable results than the 
analytic solution. 

IV. DYNAMIC SIMULATION OF THE LIFTING 
OPERATION OF AN OSV BASED ON  
FLEXIBLE MULTIBODY DYNAMICS 

1.  Simulation Model 

Skandi Arctic is an OSV designed and built as a diving 
support and a heavy construction vessel.  It provides saturation 
dive support as a heavy-lifting deck crane for offshore con-
struction (Kupen, 2009).  In this study, it was selected as the 
simulation target.  The principal dimensions and the crane 
specifications (the main lifting facilities) of Skandi Arctic are 
shown in Tables 3 and 4, respectively.  Its configuration and 
deck plan are shown in Fig. 9. 

In this study, the subsea manifold lifting by Skandi Arctic 
was dynamically simulated in various ocean conditions to de- 
termine dynamic amplification factors of the lifted object using 
a simplified model of Skandi Arctic and the subsea manifold.  
The dynamic amplification factor is a ratio of the static load  



814 Journal of Marine Science and Technology, Vol. 24, No. 4 (2016 ) 

 
Fig. 9.  The configuration and deck plan of Skandi Arctic (Kupen, 2009). 
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Fig. 10.  Simplified simulation model of Skandi Arctic and the subsea manifold. 

 
 

the dynamic load.  The simplified model for the dynamic simu- 
lation is shown in Fig. 10.  The specifications of the modeling 
data are shown in Table 5. 

2. External Forces of the Simulated System 

Gravity, hydrostatic forces, hydrodynamic forces, wind 
forces, and the reaction force of wire rope are the external 
forces of the simulated system.  Gravity is the external force 
for all objects on earth.  It basically acts at the center of the 
body.  The center of gravity of a rigid body is a fixed point in 
the body coordinates system.  However, the center of gravity 
of a flexible body can change due to deformation.  Therefore, 
gravity that acts on the flexible body should be transformed to 

a generalized force as shown in Eqs. (25) and (26). 
Wind forces on the load are considered as static forces as 

follows (Ku and Roh, 2015): 

 21

2wind air SVF , (31) 

wherein air  is the density of air, S is the projected area of the 

load in the wind direction, and V is the wind velocity. 
The hydrostatic forces on the hull are calculated as follows: 

 hydrostatic SW ship F g , (32) 
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Table 5.  Specifications of the simplified modeling data. 

Body Item Value 

LOA 110 m 

Breadth 46 m 

Depth 7.5 m 
OSV hull 

Draft 3.75 m 

Type Knuckle boom 

Capacity 400 tons @ 11 m Crane 

Length of the boom 35 m 

Length 20.3 m 

Breadth 15 m 

Depth 6.1 m 

Subsea manifold 
(lifted object) 

Mass 175 tons 

 
 

B(   ) ∙ v(t -    )dτ τ τFRadiation = -Av(t) - ∫∞∙
0

aij(   ): Added Massω

Bij(  )sin(   -  )dτ τ τω

bij(   )ω F(   )ω

bij(  )cos(     )dτωω ωbij(   ) = ⎯ ∫∞τ π 0
2

WADAM (Wave Analysis by Diffraction and Morison Theory)

Aij = aij(   ) + ⎯ ∫∞ω ω 0
1

Fexciting = F(   )cos(t -   )ω ε

 
Fig. 11. Calculation procedure of hydrodynamic forces. 

 
 

wherein SW  is the density of sea water, g is the acceleration 

of gravity which is 9.81 m/s2, and ship  is the displacement 

volume of the ship.  The kernel (Cha et al., 2010b) can be used 
to calculate the displacement volume in each time step to 
obtain the hydrostatic forces. 

Hydrodynamic forces can be divided into wave-exciting 
force and radiation force as shown in Eq. (33).  The waveex-
citing force is exerted by incident wave while the radiation 
force is generated by the motion of the floater itself. 

  (33) hydrodynamic exciting radiation F F F

exciting

For this simulation, hydrodynamic forces are pre-calculated 
with commercial hydrodynamics tool WADAM by DNV in 
the simulated draft (Det Norske Veritas, 2002).  WADAM uses 
a 3D panel method to evaluate velocity potentials and hy-
drodynamic coefficients.  The radiation and diffraction veloc-
ity potentials on the wet part of the body surface are deter-
mined from the solution of an integral equation that is obtained 
by using Green’s theorem with free surface source potentials 
as Green’s functions.  The source strengths are evaluated 
based on source distribution method using the same source 
potentials.  The velocity potential is the sum of incident wave 
potential, diffraction velocity potential, and radiation velocity 
potential.  Hydrodynamic pressure on the hull is determined 
from Bernoulli’s equation.  The hydrodynamic force is ob-
tained from the result of surface integral of the hydrodynamic 
pressure.  Hydrodynamic force consists of Froude-Krylov 
force, diffraction force, and radiation force obtained from 
incident wave potential, diffraction velocity potential, and 
radiation velocity potential, respectively.  From the calculated 
result of the radiation force, added mass coefficient and 
damping coefficient are obtained.  Froude-Krylov force and 
diffraction force become wave exciting force.  The reaction 
force of the wire rope is modeled as incompressible spring.   

F  is obtained from the force RAO (Response Am-

plitude Operator) and the sinusoidal function at a given fre-
quency.  The force RAO can be obtained from a commercial 
solver such as WADAM by DNV (Det Norske Veritas, 2002).  
To calculate F  in the time domain, Cummins equation 

(Cummins, 1962) can be used.  The added mass aij() and  
the damping coefficient bij() can also be obtained from  
the commercial solver.  The calculation procedure is shown in 
Fig. 11. 

radiation
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Table 6.  Summary of simulation cases. 

Wave condition 

Case 
Body 
type 

Amplitude 
[m] 

Period 
[sec] 

Heading 
angle 
[deg] 

Wind speed
[m/s] 

0 Flexible 0.0 0 0 0 

1 0 

2 
0 

10 

3 45 0 

4 

Rigid 

90 0 

5 0 

6 
0 

10 

7 45 0 

8 

10.5 

90 0 

9 14 

10 12.5 

11 9 

12 8 

13 

Flexible 

1.0 

7 

0 0 
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Fig. 12. Tension of the wire rope of case 0 (no hydrodynamic force at 

static equilibrium). 

 
 

Thus, this wire rope equivalent spring can suggest the tension 
to the linked body.  In the simulation, the wire rope force is 
measured as tension. 

3. Simulation Results 

Simulation was performed in 13 different cases with two 
different body types, six wave periods, three wave heading 
angles, and two wind speeds.  The wave amplitude is fixed to 
one meter.  These simulation cases are summarized in Table 6. 

Case 0 is the case without hydrodynamic force at static 
equilibrium state.  In this case, the tension of the wire-rope is 
the same as the weight of the lifted object as shown in Fig. 12.  
Therefore, dynamic amplification factor of case 0 is 1.0, which 
means that the dynamic amplification factor contributes to the 
hydrodynamic force. 

Case 1 and 5, 3 and 7, and 4 and 8 are comparison between 
the rigid model and the flexible model at 0, 45 and 90 wave 
heading angles, respectively.  Dynamic amplification factor is 
a ratio of the maximum tension to static load.  The maximum 
tension and dynamic amplification factor according to the body  

Table 7. Maximum tension and dynamic amplification 
factor according to the body type and the wave 
heading angle. 

Amplitude: 1.0 [m], Period: 10.5 [sec], Wind speed: 0 [m/s] 

Case
Body
type

Heading 
angle
[deg]

Maximum  
tension 
[ton] 

Dynamic  
amplification 

factor 

Maximum 
height of  

the motion 
oscillation [m]

1 Rigid 177.7 1.015 0.44 

5 Flexible
0 

209.9 1.199 1.57 

3 Rigid 185.1 1.058 1.69 

7 Flexible
45 

216.0 1.234 2.72 

4 Rigid 190.5 1.088 1.67 

8 Flexible
90 

214.3 1.225 1.86 

 
 

type and the wave heading angles are shown in Table 7.  The 
dynamic amplification factor of the flexible boom model was 
bigger than that of the rigid model in all cases (Table 7).  
Tension of the wire rope according to body type and wave 
heading angle is shown in Fig. 13.  Vertical position of the crane 
boom tip according to body type and wave heading angle is 
shown in Fig. 14. 

The general behavior of flexible crane boom tip follows a 
rigid one with small perturbation due to its flexibility.  How-
ever, peaks and valleys of the graph of the flexible crane tip is 
bigger than the rigid one caused by deformation of the crane 
boom due to the weight of the lifted object and its own weight.  
Comparison between case 1 and 5 shows big differences in 
both tension and motion.  In this case, the maximum tension of 
case 1 is 177.7 ton while that of case 5 is 209.9 ton.  The 
maximum height of motion oscillation of case 1 is 0.44 m 
while that of case 5 is 1.57 m.  Comparison between case 3 and 
7 or between case 4 and 8 shows the same result that the 
flexible model has higher maximum tension and oscillation 
height, indicating that the flexibility of the crane beam should 
be considered to ensure the safety and accuracy of crane lifting 
operation.  However, comparison between wave heading an-
gles of case 1, 3, 4 and those of case 5, 7, 8 shows different 
tendency.  The rigid body has the maximum dynamic ampli-
fication factor at 90-degree heading angle.  However, the flexible 
body has the maximum dynamic amplification factor at 45 
degrees.  There reason for the difference between rigid body and 
flexible body is currently unclear.  This might be a non-linear 
behavior of the flexible body.  Whether this might be true merits 
further studies. 

The relative vertical position of the crane boom tip and the 
lifted object is shown in Fig. 15.  The lifted object is linked to 
the wire rope to provide the same tension to the crane boom tip 
and the lifted object.  Thus, the relative vertical position of the 
crane boom tip in case 1 is the same as the lifted object be-
cause the crane tip is rigid.  However, in case 5, the relative 
vertical position of the lifted object generally follows the 
motion of the crane boom tip.  Some perturbation can occur due  
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Fig. 13.  Tension of the wire rope according to body type and wave heading angle. 
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Fig. 14.  Vertical position of the crane boom tip according to body type and wave heading angle. 
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Fig. 15.  Relative vertical position of the crane boom tip and the lifted object. 

 
 

50.5

50

49.5

49

48.5

48

47.5

47
0 10 20 30 40 50 60 70 80 90 100

Time (s)

V
er

tic
al

 P
os

iti
on

 (m
)

Case 5

Case 7

Case 8

 
Fig. 16.  Vertical position of the crane boom tip according to wave heading angle. 

 
 

Table 8. Maximum tension and dynamic amplification 
factor, according to wave period. 

to vibration of the crane boom.  Fig. 16 shows the behavior of 
the crane boom tip of flexible model according to wave 
heading angle.  Case 7 shows the biggest behavior when the 
wave heading angle is 45 degrees. 

Amplitude: 1.0 [m], Heading angle: 0 [deg], Wind speed: 0 [m/s]

Case
Body
type

Wave 
period
[sec] 

Maximum 
tension 
[ton] 

Dynamic 
Amplification 

factor 

Maximum  
height of  

the motion 
oscillation [m]

5 10.5 209.9 1.199 1.57 

9 14 210.1 1.201 1.83 

10 12.5 210.9 1.205 1.78 

11 9 207.6 1.186 1.22 

12 8 207.4 1.185 0.87 

13

Flexible

7 206.4 1.179 0.79 

Maximum tension and dynamic amplification factor ac- 
cording to wave period are shown in Table 8.  The effect of wave 
period on dynamic behavior is observed in case 5, 9, 10, 11, 12, 
and 13.  Tension of the wire rope according to wave period is 
shown in Fig. 17.  Vertical position of the crane boom tip ac- 
cording to wave period is shown in Fig. 18. 

The maximum tension load was maximized when the wave 
period was 12.5 seconds.  The maximum height of motion 
oscillation was maximized when the wave period was 14 
seconds, indicating that the resonance period of this system 
might be between 12.5 and 14 seconds.  Maximum tension and 
dynamic amplification factor according to the wind force are 
summarized in Table 9. 

 
 
Wind forces slightly increased the maximum tension and  
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Table 9.  Maximum tension and dynamic amplification factor, according to wind speed. 

Amplitude: 1.0 [m], Period: 10.5 [sec], Heading angle: 0 [deg] 

Case Body type Wind speed [m/s] Maximum tension [ton] Dynamic Amplification factor Maximum height of the motion oscillation [m]

1 0 177.7 1.015 0.44 

2 
Rigid 

10 177.8 1.016 0.44 

5 0 209.8 1.199 1.57 

6 
Flexible 

10 209.9 1.199 1.58 
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Fig. 17.  Tension of the wire rope according to wave period. 
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Fig. 18.  Vertical position of the crane boom tip according to wave period. 
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the dynamic amplification factor.  If the wind speed and the 
project area of the lifting object are increased, the maximum 
tension and the dynamic amplification factor are also increased.  
Based on simulation results, the flexible analysis yielded more 
accurate dynamic amplification factors that could hedllp 
produce a reasonable safety margin and guidelines for crane 
operation. 

V. CONCLUSIONS AND FUTURE STUDIES 

The crane-lifting function of an OSV was simulated in this 
study using flexible multibody dynamics.  The crane-lifting per- 
formance of the OSV under various ocean environments was 
modeled as a flexible multibody system consisting of a rigid 
OSV hull structure with hydrodynamic and hydrostatic forces, 
a rigid crane tower attached to the hull, a finite-element- 
modeled flexible crane boom attached to the crane tower, a 
rigid modeled load, and a wire rope modeled with a spring.  
The hydrodynamic forces were pre-calculated using WADAM 
tool and the wind forces were considered for the load. 

The result of the simulation showed that flexible models 
had a bigger dynamic amplification factor than rigid models in 
all cases, suggesting that the flexibility of the crane boom 
should be considered to accurately estimate dynamic effect on 
crane-lifting.  In addition, the simulation result revealed severe 
conditions for crane operation so that guidelines for crane 
operation in certain ocean conditions can be generated. 

For future studies, proper verification for lifting operation 
of an OSV will be performed.  However, there is no reliable 
commercial code that can reproduce the same example of this 
study.  Therefore, a simplified example that can replace the 
hydrodynamic effect on the ship is needed in future studies by 
making forced oscillation on the ship.  Otherwise, model test 
can be performed for verification purpose. 

For the next step, the scenario function that can simulate 
subsequent events will be added to simulate deck lifting to 
lowering through splash zone.  To do this, a study on splash 
zone effect is required.  Next, improved wire rope model will 
be applied based on the constraints of wire rope model that 
show the realistic behavior of the wire rope.  The final goal is 
to apply finite element structural analysis to dynamic analysis 
to not only see the dynamic response, but also check the 
structural response of the body component. 
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APPENDIX 

A1. Explicit Expressions for Matrices 

Element shape function is defined as: ijS

 
 

   
  
   

 
 

   
   

2 2 3

2 2

2 2

2 2 3

T

2 2 3

2 2

2 2

2 2 3

1 0 0

6 1 3 2 0

6 0 1 3

0 1 1

1 4 3 0 2

1 4 3 2 0

0 0

6 3 2 0

6 0 3

0

2 3 0

2 3 0

ij

l l

l l

l l

l l

l l

l l



    

    

   

     

     



    

    

 

    

    





3

3

3

3

2

2

 
 

   
 

   
    
     

     



  


  


 
   
    

S



















, 

where 

 1
ij

ijx

l
 

, 
2
ij

ijx

l
  , 3

ij

ijx

l
   

ijl is the length of element ij , 1
ijx , 2

ijx , and 3
ijx  are spatial 

coordinates along element axes. 

Rotation matrix is defined as: ijC
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The locations of the nodes of element ij are defined as 

 1 2 3, ,a a a  and  1 2 3, ,b b b . 

Transformation matrix ijC  is defined as: 
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Stiffness matrix of the beam element ijK is defined as: 
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where, and are the modulus of elasticity and the 
modulus of rigidity of element ij respectively, J is the polar 

moment of the area, and 
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details are described in Shabana (2005). 
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