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ABSTRACT 

This paper presents some strategies to improve the direct 
search method (DSM) for solving the multi-area wind-thermal 
coordination dispatch (MWCD) problem considering the non- 
linear characteristics of a generator such as valve-point effects.  
Although the DSM approaches have several advantages suit-
able to tackle the difficult non-convex economic dispatch (NED) 
problems, they still have the drawbacks such as exploration 
problem, exploitation problem and constraint handling problem.  
The main problem of the conventional DSM is that it gets 
easily trapped in a local optimal solution due to premature con- 
vergence.  This paper proposes a stochastic direct search method 
(SDSM) employing the parallel stochastic searching mecha-
nism to increase both exploration and exploitation capability 
of the DSM.  Numerical experiments are included to demon-
strate that the proposed SDSM approach can obtain a higher 
quality solution with better performance. 

I. INTRODUCTION 

The rise of fuel prices and the progressive exhaustion of 
traditional fossil energy sources have increased the interests in 
economic dispatch (ED) problem, which is considered as one 
of the complex problems in modern energy management sys-
tems to be tackled.  The objective of ED is to determine an 
optimal combination of power output so that the fuel cost of 
generation can be minimized, while simultaneously satisfying 

the equality and inequality constraints (Wood and Wollenberg, 
1996).  For simplicity, the associated incremental costs of the 
units are assumed to be monotonically increasing and is solved 
using several classical mathematical programming techniques, 
such as the lambda dispatch approach, the gradient method, 
the linear programming and the Netwon’s method (Wood and 
Wollenberg, 1996).  Unfortunately, the generating units exhibit 
a greater variation in the fuel cost functions due to valve-point 
loading, prohibited operating zones, etc. (Wood and Wollenberg, 
1996).  The inclusion of non-smooth cost function increases 
the non-linearity as well as the number of local optima in the 
solution space.  These complex conditions make it very difficult 
to solve the non-convex economic dispatch (NED) problem.  
Besides, the problem is further complicated to the NED pro- 
blem imposed by adding the large-scale integration of wind 
power.  The traditional mathematical approaches cannot be used 
to solve the practical NED problem due to the inclusion of 
non-smooth fuel cost functions.  Development of more advanced 
algorithms is necessary to produce more economic schedules. 

Dynamic programming (DP) solution is one of the ap-
proaches to solve the difficult NED problem without restric-
tions on the shape of fuel cost functions.  However, the DP 
method may suffer from the curse of dimensionality (Wood 
and Wollenberg, 1996) or local optimality (Liang and Glover, 
1992).  Over the past decades, many stochastic searching tech- 
niques have been developed to solve the highly nonlinear 
NED problem, including simulated annealing (SA) (Wong and 
Fung, 1993), genetic algorithm (GA) (Walters and Sheble, 1993), 
tabu search algorithm (TSA) (Lin et al., 2002; Sa-ngiamvibool 
et al., 2011), evolutionary programming (EP) (Yang et al., 
1996), differential evolution (Noman and Iba, 2008), particle 
swarm optimization (PSO) (Gaing, 2003; Park et al., 2005; 
Chaturvedi et al., 2008; Subbaraj et al., 2010; Hosseinnezhad 
and Babeei, 2013), hybrid stochastic search (Victoire and 
Jeyakumar, 2004; Selvkumar and Thanushkodi, 2007; Alsumait 
et al., 2010; Kumar et al., 2011; Subbaraj et al., 2011; Subathra 
et al., 2015) and direct search method (DSM) (Chen and Chen, 
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2001; Chen, 2006; Chen et al., 2014).  Among all, the DSM 
approach is of particular interest because of its simple concept, 
easy implementation and computational efficiency.  Although 
DSM approaches provide several advantages to tackle the dif- 
ficult NED problems, they have drawbacks in exploration, ex- 
ploitation, and constraint handling.  Conventional DSM requires 
further research to improve its performance and robustness. 

To increase the possibility of exploring the search space where 
the global optimal solution exists, the selection of calculation 
step S in the direct search procedure is vital to the success of 
DSM for preventing premature convergence problem.  This 
study, considering valve-point effects, extends the existing work 
on the DSM solution to solve the multi-area wind-thermal co- 
ordination dispatch (MWCD) problem.  Instead of deterministic 
rules, another stochastic calculation step is designed to further 
provide a well-balanced mechanism of global and local opti-
mization in the direct search procedure.  Using the stochastic 
searching mechanism, the proposed stochastic direct search 
method (SDSM) searches for many optimum points to in-
crease the DSM diversity for restraining early convergence.  
The proposed SDSM also incorporates sequential dispatch 
into direct search procedure to provide coordination of energy 
and reserve dispatch without restrictions on the shape of cost 
functions.  To deal with the coupling constraints of the MWCD 
problem, an effective constraint handling technique is also pro- 
posed to dispatch the multi-area wind and thermal generation 
concurrently.  Appropriate setting of control parameters of the 
SDSM is recommended to enhance its search capacity for 
preventing premature convergence.  Numerical experiments are 
included to demonstrate the merits of the proposed algorithm. 

II. FORMULATION OF MWCD PROBLEM  
AND CONSTRAINTS 

1. Notation 

The following notation is used throughout the paper. 

ia , , , , ib ic ie if : cost coefficients of thermal unit i 

,A B
U UASR ASR : additional up-reserve requirements in each 

area (considering wind power generation) 

,A B
D DASR ASR : additional down-reserve requirements in 

each area (considering wind power gen-
eration) 

%d : percentage of maximum unit capacity 

iqDC : decrement cost of thermal unit i for can-

didate q 

WjqDC : decrement cost of wind unit j for candi-

date q 

iDS : down-reserve contribution of thermal unit i 
max
iDS : maximum down-reserve contribution of 

thermal unit i 
DSM: direct search method 
EDSM: enhanced direct search method 

( )iF  : production cost function of thermal unit i 

FT: total operating cost 
i: index for thermal units 

iqIC : incremental cost of thermal unit i for 

candidate q 

WjqIC : incremental cost of wind unit j for can-

didate q 
j: index for wind units 

TL : total number of convergence level 
MWCD: multi-area wind-thermal coordination dis- 

patch 
NED: non-convex economic dispatch 

BNP : base number of saved candidates at each 

convergence level ( BNP  = 10 in the study 

case) 
NT: number of thermal units in system 
NW: number of wind units in system 

DP : total load demand 

,A B
D DP P : load demand in each area 

max,AB ABP P : transfer power and flow limits from area 

A to area B respectively 

iP : generation of thermal unit i 
max

iP : upper generation limit of thermal unit i 
min

iP : lower generation limit of thermal unit i 
max

WjP : upper generation limit of wind unit j 
min

WjP : lower generation limit of wind unit j 
*

WjP : available generation of wind unit j 

WjP : actual generation of wind unit j 
* *,A B

WT WTP P : available area wind power generation 

,A B
WT WTP P : actual area wind power generation 

r%: percentage of actual wind power gen-
eration 

qS : random calculation step for candidate q 

SDSM: stochastic direct search method 

0 0,AB ABU D : transfer up and down reserves from area 

A to area B respectively (only for satis-
fying the additional reserve requirements 
in each area) 

1ABU : transfer up reserve from area A to area B 

2ABU : transfer up reserve from area B to area A 

,A B
b bUSR USR : basic up-spinning reserve requirements 

in each area (not considering wind power 
generation) 

iUS : up-reserve contribution of thermal unit i 
max
iUS : maximum up-reserve contribution of 

thermal unit i 
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Fig. 1.  Fuel cost curve of units with valve-point effects. 

 
 

v : wind speed 

Ijv : cut in wind speed of wind unit j 

Rjv : rated wind speed of wind unit j 

Ojv : cut out wind speed of wind unit j 

%, %A B
U Uz z : percentage of local up reserve in each area 

( )j  : wind power curve of wind unit j 

: scaling constant ( = 0.6 in the study case) 

2. Formulation 

The main objective of solving the MWCD problem is to 
minimize the total fuel cost considering various constraints, 
such as import/export power balance, area basic up-spinning 
reserve requirements, area additional up/down reserve require-
ments, transmission capacity limits and constrained resource 
capacity shared between generation and reserve.  Generally, the 
fuel cost of a generation unit will be a second-order polyno-
mial function (Wood and Wollenberg, 1996).  However, the 
thermal units with multi-valve steam turbines exhibit a greater 
variation in the fuel cost functions.  A practical cost function 
encompasses a series of nonsmooth curves to represent the non- 
differentiable points due to the presence of the valve-point 
loading effects and the multiple fuel option.  Walters and Sheble 
(1993) have shown the input-output performance curve for  
a typical thermal unit with many valve points.  To include the 
valve-point loading effects, an additional rectified sinusoidal 
term is considered in the quadratic cost function.  The cost 
curve function of units with valve point effects is depicted in 
Fig. 1.  According to the network shown in Fig. 2, the mathe- 
matical model of the MWCD can be stated as follow. 

Objective function: 

2 min

1

[ sin( (
NT

i i i i i i i i i
i

Minimize FT a b P c P e f P P


     )) ]  (1) 

subject to the following constraints. 

1) System Constraints 

(a) Import/export power balance constraints 

Area A
UAB2

PAB UAB0

DAB0

UAB1

Area B

Σpwj
j∈Bj∈B

ΣpiΣpwj
j∈Aj∈A

Σpi

PA
D PB

D  
Fig. 2.  A simple network model of multi-area wind-thermal system. 

 

  (2) A
i Wj AB

i A j A

P P P P
 

    D

 B
i Wj AB

i B j B

P P P P
 

    D

( )A
Wj

 (3) 

(b) Area additional up reserve requirement constraints 

 0%A
U i AB U

i A j A

z US U ASR P
 

     (4) 

 0%U i AB U
i B j B

z US U ASR P
 

   ( )B B
Wj   (5) 

(c) Area basic up reserve requirement constraints 

 2(1 )%A A
U i AB

i A

z US U U


    bSR  (6) 

 1(1 )%B B
bSRU i AB

i B

z US U U


     (7) 

(d) Area additional down reserve requirement constraints 

 0 (A
i AB D Wj

i A j A

DS D ASR P
 

  )   (8) 

 0 (i AB D Wj
i B j B

DS D ASR P
 

)B    (9) 

(e) Transmission capacity limits constraints 

  (10) max max
1 0 0AB AB AB AB AB ABP P U U D P     

  (11) max max      2 0 0ABAB AB AB AB ABP P U D U P
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2) Thermal Generator Constraints 

(f) Unit capacity constraints  

  (12) min max
i i iP P P 

(g) Unit’s maximum up/down reserve contribution constraints 

  (13) max max%iUS d P  i

max max
i

i

max min
i

  (14) %iDS d P 

(h) Unit’s up/down spinning reserve contribution constraints 

  (15)  max maxmin ,i i iUS US P P

  (16) min ,i i iDS DS P P

(i) Generation and reserve capacity coupling constraints 

 max
i i iP US P   (17) 

  (18) min
i i iP DS P 

3) Wind Generator Constraints 

(j) Wind power curve and wind speed limits 

 *

max

0

( )
Ij O

Wj j Ij Rj

Wj Rj Oj

v v or v v

P v v v v

P v v v


  


  
  

j

*P

* *B P

A

*

 (19) 

(k) Available area wind power generation 

  (20) *A
WT Wj

j A

P


 

  (21) WT Wj
j B

P



(l) Actual area wind power generation 

  (22) *0 A
WT WTP P 

 0 B B
WT WTP P   (23) 

III. BRIEF REVIEW OF DSM AND ITS 
SOLUTION DIFFICULTY 

The DSM is one of the modern heuristic algorithms suitable 
to solve the large-scale NED optimization problems.  The DSM,  

START

Set initial calculation step 
S1 and reduced factor K 

Direct search procedure 

Convergence ? 

S1 = S1/K

Is S1 greater than 
predefined resolution? 

END

NO

YES

YES

NO

Initial solution estimate

Print results

 
Fig. 3.  Simplified flow chart of the DSM approach. 

 
 

first suggested by Chen and Chen (2001), has been success-
fully applied to ED problem considering transmission capacity 
constraints.  Like DP algorithm, the DSM performs a direct 
search of solution space without restrictions on generator cost 
function.  Several inequality and equality constraints can be 
handled properly in the direct search procedure without in-
troducing any multipliers.  The multi-level convergence strat-
egy is also used to reduce the step size gradually to guarantee  
a possible complete examination of the solution space.  The 
outline of the simple DSM algorithm is shown in the flow 
chart in Fig. 3.  Experimental results reveal the proposed al-
gorithm is an efficient approach for determining the optimal 
generation schedules when the generator incremental cost curves 
are monotonically increasing.  However, the conventional DSM 
makes no guarantee that the solutions are optimal or even close 
to the optimal solution when the nonlinear characteristics of a 
generator are considered.  The solutions obtained from the DSM 
largely depend on the parameter selection, such as initial ran-
dom starting points and the values of initial step size S1 and 
reduced factor K. 

To improve the global searching capability, an enhanced DSM 
(EDSM) employing the parallel nature of evaluation pro-
gramming is proposed to solve the NED problem (Chen, 2006).   
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START

Initialize a population of 
candidate solutions Np

Set initial calculation step 
S1 and reduced factor K 

q = 1

Sq = rand × Smax

Direct search procedure: 
Simultaneous dispatch of 

generation and reserve 

q < Np ?

Cost improvement ?

END

Smax = Smax/Kq = q+ 1

Smax = S1

yes

yes

yes

no

no

no

Print results

Smax >   ?ε

 
Fig. 4.  Simplified flow chart of the SDSM approach. 

 
 

Recently, a penalty function-direct search method (PF-DSM) 
employing an effective constraint handling technique is also 
developed to solve the problem of MWCD in a hybrid power 
system (Chen et al., 2014).  In a previous work on DSM ap-
proaches, a larger initial step size S1 is desired to make the 
search effective and the step size is then successively refined 
until the calculation step is less than the predetermined reso-
lution.  It is obvious that the conventional DSM with a coarse 
convergence step can enhance the global exploration ability 
but results insufficient capability to find nearby extreme points 
(exploitation problem).  In contrast, the DSM with a refined 
convergence step can improve the local exploitation ability but 
is easily trapped in local minima (exploration problem).  As a 
result, the standard DSM with the selection of predetermined 
calculation step may mislead the search and it gets easily trapped 
in a local optimal solution due to lack of a well-balanced me- 
chanism between the global exploration and local exploitation 
abilities.  To increase the possibility of exploring the search space 
where the global optimal solution exists, the parallel stochastic 
searching mechanism is employed in the study to increase the 

diversity of DSM and overcome trapping into local minimum 
problem. 

IV. PROPOSED SOLUTION METHODOLOGY 
AND IMPLEMENTATION OF SDSM 

Like many stochastic methods, the proposed SDSM is using 
the parallel stochastic searching mechanism to enhance its global 
searching capability.  The outline of the proposed SDSM algo- 
rithm is shown in the flow chart in Fig. 4.  Several heuristic 
strategies are applied to improve the SDSM solution quality 
and performance.  The overall procedure of the proposed algo- 
rithm can be stated in detail as follows: 

1. Strategy for Constraints Handling 

Incorporating wind units into the existing utility NED pro- 
blem adds further complexity to the solution methodology due 
to the constraint handling problem.  It is very important to de- 
velop an effective strategy for satisfying the equality and in- 
equality constraints.  One of the most widely used techniques to 
handle the constraints is through the use of penalty functions.  
The constraints represented by (2)-(23) will be treated in dif-
ferent ways.  The system power balance equality (2) and (3), 
the generation limits inequality (12) with the generation and 
reserve capacity coupling inequality (17) and (18) can be 
handled properly in the stochastic direct search procedure.  
The available area wind generation can be obtained from the 
wind speed by applying the wind power curve (constraints 
(19)-(21)).  The area actual output of WTGs can also be con-
trolled to any desired value through blade pitch control (con-
straints (22) and (23)).  To account for area additional up reserve 
requirement violations (4) and (5), area basic up reserve re-
quirement violations (6) and (7), area additional down reserve 
requirement violations (8) and (9) and transmission capacity 
limit violations (10) and (11), the total operating cost is aug-
mented by nonnegative penalty terms PC1, PC2, PC3 and PC4, 
respectively, penalizing constraint violations.  Thus, the aug-
mented cost function is formed 

 
4

1
A

b
bFT FT PC



   (24) 

where PC1 is the penalty term for Eqs. (4) and (5); PC2 is the 
penalty term for Eqs. (6) and (7); PC3 is the penalty term for 
Eqs. (8) and (9); PC4 is the penalty term for Eqs. (10) and (11).  
The penalty terms (PC1-PC4) are proportional to the corre-
sponding violations and zero in case of no violation.  There are 
chosen high enough as to make constraint violations prohibitive 
in the final solution. 

2. Strategy for Initialization 

In order to explore the search space where the global optimal 
solution exists, the second heuristic strategy is to generate a 
population of NP initial candidate solutions at random and finds 
solutions in parallel using a stochastic direct search procedure.  
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The computation steps of an initial candidate solution are shown 
as follows. 

 
Step 1: Let rand be a uniform random value in the range [0, 1].  

The initial power outputs of  thermal gener-
ating units and NW wind generating units, without 
violating generation limits, are generated randomly by 

1NT 

  (25) min max min(i i i iP P rand P P    )

*

j

  (26) Wj WjP rand P 

Step 2: To satisfy the power balance equation, a dependent 
generating unit is arbitrarily selected among the com- 
mitted NT units and the output of the dependent gen-
erating unit  is determined by dP

  (27) 
1 1

NT NW

d D i W
i j
i d

P P P P
 


   

Step 3: If dP  with violating (12), a repairing strategy is ap-

plied to pick one thermal unit at random to increase 
(or decrease) its output by the random or predefined 
step (e.g., 10 MW), one by one, until it can satisfy the 
power balance constraints. 

Step 4: Calculate the area additional reserve requirement 
according to the amount of actual area wind power 
generation. 

Step 5: A simplified sequential dispatch method, described in 
Ref. (Chen et al., 2014), is used to solve the multi-area 
reserve dispatch when the generation dispatch solu-
tion is frozen.  Note that the penalty terms (PC1-PC4) 
will be evaluated if there is any violation of the sys-
tem constraints. 

Step 6: Calculate the initial operating cost (including pro-
duction cost and penalty cost). 

3. Strategy for Preventing Premature Convergence 

In applying the conventional DSM to solve the MWCD 
problem, it is quite likely that the final solution may lead to sub- 
optimal solution owing to the inclusion of non-smooth cost 
function.  In general, the initial candidate solutions are usually 
far from the global optimum, and hence, the larger calculation 
step S may prove to be beneficial.  However, it is not reason-
able for all candidate solutions to employ the same calculation 
step S in a convergence level.  How to provide a well-balanced 
mechanism between the global and local exploration abilities 
becomes an important problem in the study to avoid earliness 
convergence.  In order to improve the global searching capability, 
the third heuristic strategy is to employ the parallel stochastic 
searching mechanism to make full use of its exploration and 
exploitation capability.  Thus, the selection of step size S for all 
candidates will be different in a convergence level and these 

calculation steps for all candidates will play the role of bal-
ancing the global and local exploration abilities.  Large calcu-
lation step S enables the SDSM to explore globally and small 
calculation step S enables the SDSM to explore locally.  
During successive steps for the population, the global and 
local exploration abilities in the direct search procedure will 
be increased.  After the first level converges, the step size is 
then successively refined with S1 = S1/K during each conver-
gence level until the S1 is less than the predetermined resolu-
tion .  It is obvious that the reduced factor K will also play the 
role of preventing premature convergence.  In general, as the 
number of convergence levels increases, the balance of ex-
ploration and exploitation abilities can be enhanced, so that the 
solution quality can also be improved.  Although an arbitrary 
choice of calculation step S may mislead the search, it can be 
improved by the multi-level convergence technique to increase 
the possibility of creating and exploring the new solution in the 
search space.  Unfortunately, the appropriate selection of these 
parameters justifies the preliminary efforts required for their 
experimental determination.  However, the SDSM with large 
S1 and small K is usually commended, and this is confirmed 
through numerical experiments.  From our experience, a proper 
initial calculation step S1 is chosen to be 20~40% of the largest 
generation unit in the power system.  The recommended value 
of the reduced factor K is 1.01~2.0 depending on the number 
of local minimum points in the cost functions. 

4. Stochastic Direct Search Procedure for Candidates 

Like many stochastic methods, multiple random starts are 
used in the direct search procedure to explore the search space 
where the global optimal solution exists.  To find a direction 
that reduces the operating cost and leads to a point within the 
feasible region, another procedure may be needed to augment 
the searching technique with light computational expenses.  
The computation steps of the stochastic direct search proce-
dure for candidate q are shown as follows: 

 
Step 1: Generate a random calculation step Sq between 0 and 

S1 for candidate q. 
Step 2: Units, without violating the maximum or minimum 

generation limits, are chosen to increase or decrease 
their outputs by the random step Sq for calculating 
their incremental costs (IC) and decrement costs (DC).  
This is shown as follows: 

( ) ( )
,

0,

i i q i i
iq

q

Wjq

F P S F P
IC i thermal generator

S

IC j wind generator

 
 


  

 (28) 

( ) ( )
,

0,

i i i i q
iq

q

Wjq

F P F P S
DC i thermal generator

S

DC j wind generator

 
 


  



 (29) 
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subject to 

  
max

*

,

,
i q i

Wj q Wj

P S P i thermal generator

P S P j wind generator

   
   

 i = 1, 2, , NT; j = 1, 2, , NW (30) 

  
min ,

0,
i q i

Wj q

P S P i thermal generator

P S j wind generator

  
   

 i = 1, 2, , NT; j = 1, 2, , NW (31) 

Step 3: All units are examined to check if there is any im-
provement.  If no more improvement can be achieved, 
then stop; otherwise, go to step 4. 

Step 4: An independent unit with minimum incremental cost 
ICx (assume unit x) is chosen to increase its output by 
the random step Sq, and then, only a dependent unit 
DCy (assume unit y, y  x) while gaining the most 
reduction in the total operating cost (including pro-
duction cost and penalty cost), should be selected to 
reduce its output to satisfy the load balance equation.  
At each possible step, it should be noted that the total 
penalty cost is always calculated first by the simpli-
fied dispatch method before the generation dispatch 
solution is frozen. 

Step 5: The outputs of this particular pair of units will be 
adjusted again by the random step Sq if they do not 
violate generation limits, and only the incremental 
cost of unit x and the decrement cost of unit y need to 
be recalculated. 

Step 6: Go to step 3. 

5. Strategy for Restricting the Search Range 

To enhance the solution quality of SDSM, a larger popula-
tion size NP is desired to increase the possibility of finding the 
global optimal solution for the MWCD problem.  However, it 
is obvious that the major portion of the computing time is spent 
in performing the stochastic direct search procedure for eva- 
luating the fuel costs of candidates.  In order to improve the per- 
formance of SDSM, the last heuristic strategy is to restrict the 
number of candidate solutions to be examined during each 
convergence level.  In general, the most economic candidate 
solution of the previous level will increase the possibility  
of finding the global optimal solution.  Thus, most of the pre-
viously saved higher-cost candidate solutions could be elimi-
nated immediately without searching again at current level.  
To preserve the solution optimization, more candidates may 
have to be saved during a coarse convergence level.  The reason 
is that, although some candidates may not be economic solu-
tions at current level, those candidates may have more poten-
tial to decrease the operating cost for future successive levels, 
but in a refined convergence level, most of the higher-cost 
candidate solutions could be discarded since the production 

cost is not sensitive to the calculation step.  The following model 
was considered for relating the number of saved candidates 
(NPL) to the convergence level (L).  The number of saved can- 
didate solutions at level L is determined as follows: 

 1{ ; (1 )L B L
T

L
NP Max NP NP

L
   }  (32) 

V. NUMERICAL EXAMPLES 

The proposed approach is applied to several test systems to 
verify the feasibility and effectiveness of the SDSM algorithm.  
All computations are performed on a PC Pentium (R) Dual 
CPU 2.00 GHz computer with 1.0G RAM size, and the fol-
lowing computer programs are developed in FORTRAN: 

 
DSM: Direct search method with a single initial random 

solution (Chen and Chen, 2001) 
EDSM: DSM with a deterministic calculation step for can-

didate solutions (Chen, 2006) 
SDSM: DSM with a stochastic calculation step for candi-

date solutions 
SDSM*: SDSM with restricting the search range 

 
Because of the randomness of heuristic algorithms, their per- 

formance cannot be judged from a single run.  Thirty trials with 
different initial conditions should be made to acquire a useful 
conclusion about the performance.  These cases are stated in 
detail as follows: 

1. Example 1: Test for a 3-Unit System 

In the first example, a system with three generating units 
considering non-smooth fuel cost functions is studied.  The test 
system unit data and the loss expression are described in  
(Liang and Glover, 1992).  The load demand is set to 1400 MW.  
The classical mathematical programming techniques, such as 
the lambda-iteration dispatch method, cannot be used to solve 
the problem due to its non-smooth fuel cost function.  Many 
stochastic searching techniques, such as DP algorithm and SA 
algorithm, have been developed to solve the nonlinear NED pro- 
blem.  However, only the local optimal solution can be founded 
by the DP approach (Liang and Glover, 1992) ($6642.26) and 
the SA approach (Wong and Fung, 1993) ($6639.5043).  Note 
that only a single initial random solution is needed in the 
studied case by using the proposed SDSM algorithm to obtain 
the optimal solution ($6639.18) since the problem dimension 
is low.  To illustrate the good convergence property of the pro- 
posed algorithm, Table 1 gives a comparison of the total num- 
ber of iterations required and production costs during each 
convergence level.  From this result, the total cost is not sen-
sitive to the calculation step S1.  The execution of program is 
so fast that the CPU times can’t be found out in this studied 
case.  The efficient approach makes it an attractive method for 
the solution of the small-size NED dispatch problem. 



 C.-L. Chen: Improved DSM for WTCD Problem 731 

Table 1. Comparison of iterations and costs under various 
S1 for the load of 1400 MW in 3-unit example 
system. 

Convergence 

S1 (MW) S (MW) 
Iterations Cost ($/h) Losses (MW)

Initialization --- 6766.27 57.3219 

120.00 11.17 12 6653.23 62.3115 

80.00 56.48 1 6653.23 62.3115 

53.33 3.400 3 6643.58 62.6522 

35.55 20.81 1 6643.58 62.6522 

23.70 16.39 1 6643.58 62.6522 

15.80 7.665 1 6643.58 62.6522 

10.53 6.369 1 6643.58 62.6522 

7.023 1.476 2 6639.28 62.7593 

4.682 1.455 1 6639.28 62.7593 

3.121 1.422 1 6639.28 62.7593 

2.080 0.848 1 6639.28 62.7593 

1.387 1.257 1 6639.28 62.7593 

0.924 0.361 3 6639.28 62.7590 

0.616 0.350 2 6639.28 62.7487 

0.411 0.164 1 6639.28 62.7487 

0.274 0.042 5 6639.27 62.7533 

0.182 0.092 1 6639.27 62.7533 

0.121 0.027 4 6639.19 62.7555 

0.081 0.075 1 6639.19 62.7555 

0.054 0.043 2 6639.19 62.7542 

0.036 0.028 1 6639.19 62.7542 

0.024 0.005 1 6639.19 62.7542 

0.016 0.014 1 6639.19 62.7542 

0.010 0.008 1 6639.19 62.7542 

0.007 0.002 8 6639.18 62.7549 

Parameter Setting in SDSM: NP = 1; S1 = 120 MW; K = 1.5 ;  = 0.01 
MW 

 

2. Example 2: Test for a 40-Unit System 

In the second example, a system with forty generating units 
considering the valve-point effects is studied to test the solu-
tion quality and performance of the proposed SDSM algorithm.  
The test system unit data is given in (Sinha et al., 2003) and  
the total load demand is set to 10500 MW.  The same multiple 
minimum problem has been solved by the MTS (Sa-ngiamvibool 
et al., 2011), IFEEP (Sinha et al., 2003), PSO-SQP (Victoiro 
and Jayakumar, 2004), MPSO (Park et al., 2005), NPSO-LRS 
(Selvakumar and Thanushkodi, 2007), TSARGA (Subbaraj  
et al., 2011), GA-PS-SQP (Alsumait et al., 2010), HMAPSO 
(Kumar et al., 2011), SOH-PSO (Chaturvedi et al., 2008), 
PSO-MSAF (Subbaraj et al., 2010), -PSO (Hosseinnezhad 
and Babaei, 2013) and CE-SQP (Subathra et al., 2015).  The 
corresponding costs of the obtained best solution from SDSM 
are compared with those of the previous researches in Table 2.  
From these results, the proposed algorithm can find a better  

Table 2. Comparison of results of different methods for 
the 40-unit system. 

Methods 
Minimum  
cost ($) 

Avg. cost ($)
Maximum 

cost ($) 

MTS 
(Sa-ngiamvibool 

et al., 2011) 
121532.10 121798.51 122022.15

IFEP 
(Sinha et al., 2008)

122624.35 123382.00 125740.63

PSO-SQP 
(Victoiro and  

Jayakumar, 2004)
122094.67 122245.25 --- 

MPSO 
(Park et al., 2005)

122252.265 --- --- 

NPSO-LRS 
(Selvakumar and 

Thanushkodi, 2007)
121664.4308 122209.3185 122981.5913

TSARGA 
(Subbaraj et al., 2011)

121463.07 122928.31 124296.54

GA-PS-SQP 
(Alsumait et al., 2010)

121458 122039 --- 

HMAPSO 
(Kumar et al., 2011)

121586.90 121586.90 121586.90

SOH-PSO 
(Chaturvedi et al., 2008)

121501.14 121853.57 122446.30

PSO-MSAF 
(Subbaraj et al., 2010)

121423.23 --- --- 

-PSO 
(Hosseinnezhad  

and Babaei, 2013)
121420.9027 121509.8423 121852.4249

CE-SQP 
(Subathra et al., 2015)

121412.88 121423.65 --- 

121476.8 122170.3 125104.9 
DSM 

Avg. Time (s): 0.04 

121412.7 121431.6 121461.8 
EDSM 

Avg. Time (s): 23.12 

121412.5 121412.9 121414.6 
SDSM 

Avg. Time (s): 20.10 

Parameter Setting in DSM: NP = 1; S1 = 200 MW; K = 1.01;  = 0.001 
MW. 
Parameter Setting in EDSM (or SDSM): NP = 600; S1 = 200 MW; K = 
1.01 ;  = 0.001 MW. 

 
 

solution ($121412.5) than many existing techniques, and has 
clearly shown the superiority to the previous researches in 
terms of minimum cost as well as average cost.  Note that the 
results also highlight the superiority of the SDSM algorithm 
over the basic DSM and EDSM.  Details of the best solutions 
obtained by the proposed SDSM algorithm is shown in the 
Table 3.  To investigate effects of different parameters chosen 
on the final results, twelve cases were simulated for the pro-
posed SDSM algorithm.  Table 4 shows the best cost and 
average cost achieved for 30 trial runs.  From the results, the  
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Table 3.  Best dispatch results for the 40-unit system. 

Unit 
No. 

Pi 
Unit 
No. 

Pi 
Unit 
No.

Pi 
Unit 
No. 

Pi 

1 110.799600 11 94.000210 21 523.279900 31 189.999900

2 110.799600 12 94.000120 22 523.279800 32 189.999800

3 97.400350 13 214.759200 23 523.279100 33 189.999200

4 179.733600 14 394.279700 24 523.280000 34 164.799500

5 87.799680 15 394.278700 25 523.279000 35 199.999800

6 139.999200 16 394.279600 26 523.279100 36 194.396800

7 259.600200 17 489.278900 27 10.000210 37 109.999700

8 284.599300 18 489.278900 28 10.000630 38 110.000000

9 284.599300 19 511.279800 29 10.000220 39 109.999800

10 130.000600 20 511.278900 30 87.800590 40 511.278900

 
 

Table 4. Comparison of results with the different para- 
meters chosen for the 40-unit system. 

Case S1 (MW) K 
Minimum 
cost ($) 

Avg.  
cost ($) 

Avg.  
Time (s)

1 
2 
3 

200 
200 
200 

1.50 
1.20 
1.01 

121412.5 
121412.5 
121412.5 

121414.6 
121413.6 
121412.9 

1.27 
1.86 
20.10 

4 
5 
6 

120 
120 
120 

1.50 
1.20 
1.01 

121412.5 
121412.5 
121412.5 

121415.4 
121414.0 
121413.2 

1.25 
1.83 
19.46 

7 
8 
9 

80 
80 
80 

1.50 
1.20 
1.01 

121412.5 
121412.5 
121412.5 

121416.5 
121415.1 
121414.4 

1.22 
1.80 
19.10 

10 
11 
12 

60 
60 
60 

1.50 
1.20 
1.01 

121420.9 
121414.6 
121412.5 

121470.8 
121470.6 
121450.4 

1.24 
1.76 
18.86 

Parameter Setting in SDSM: NP = 600;  = 0.001 MW. 
 
 

SDSM with large S1 and small K is usually commended.  In the 
study cases, a proper initial calculation step S1 is chosen to be 
200 MW and the recommended value of reduced factor K is 
1.01~1.2 depending on the number of local minimum points in 
the cost functions.  To investigate the effects of initial trail so- 
lutions on the final results, different initial random solutions 
were given to the SDSM approach.  Table 5 shows the dispatch 
results under various population sizes for 30 trial runs.  From 
this result, the total cost is not sensitive to the population size 
NP.  The proposed SDSM algorithm has reached the optimal 
solution ($121412.5) with a high probability for the solution of 
the NED problem when the value of NP is chosen to be 1000.  The 
results show that the proposed SDSM provides an accurate al-
gorithm to tackle efficiently the difficult NED problem. 

3. Example 3: Test for a 80-Unit System 

In the third example, the simulation includes test runs for 
the large-scale system, used in Selvakumar and Thanushkodi 
(2009); and Subathra et al. (2015) to demonstrate the validity  

Table 5. Comparison of results with 30 trial tests under 
various NP in the 40-unit system. 

NP Minimum cost ($) Avg. cost ($) Avg. Time (s)

10 121414.6 121428.1 0.32 

50 121412.5 121415.6 1.61 

100 121412.5 121414.2 3.23 

200 121412.5 121414.0 6.55 

300 121412.5 121413.7 9.76 

400 121412.5 121413.4 13.03 

500 121412.5 121413.1 16.30 

600 121412.5 121412.9 20.10 

1000 121412.5 121412.7 32.70 

Parameter Setting in SDSM: S1 = 200 MW; K = 1.01;  = 001 MW. 
 
 

Table 6. Comparison of results of different methods for 
the 80-unit system. 

Methods Minimum cost ($) Avg. cost ($) Maximum cost ($)

CSO 

(Selvakumar and 

Thanushkodi, 2009)

243195.38 243546.63 --- 

PSO 

(Selvakumar and 

Thanushkodi, 2009)

244188.35 246375.87 --- 

SCA 

(Selvakumar and 

Thanushkodi, 2009)

250864.05 254579.79 --- 

CE-SQP 

(Subathra  

et al., 2015) 

242883.04 242945.25 --- 

243121.9 245941.5 254515.0 
DSM 

Avg. Time (s): 0.11 

242909.1 242970.1 243047.3 
EDSM 

Avg. Time (s): 101.41 

242794.7 242812.4 242826.1 
SDSM 

Avg. Time (s): 102.12 

Parameter Setting in DSM: NP = 1; S1 = 200 MW; K = 1.01;  = 0.01 
MW. 
Parameter Setting in EDSM (or SDSM): NP = 1000; S1 = 200 MW; K = 
1.01;  = 0.01 MW. 

 
 

and effectiveness of the proposed algorithm.  The 80-unit sys- 
tem is created simply by expanding example 2.  There are many 
local optimal solutions for the dispatch problem and the prob-
lem is well suitable for testing and validating the developed 
SDSM algorithm.  The results obtained by the proposed SDSM 
are compared with those obtained by using previously pub-
lished methods, such as CSO (Selvakumar and Thanushkodi, 
2009), PSO (Selvakumar and Thanushkodi, 2009), CSA (Sel- 
vakumar and Thanushkodi, 2009) and CE-SQP (Subathra et al., 
2015).  Table 6 depicts the numerical results of various methods.  
Although the best solution of SDSM is not guaranteed to be  
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Table 7.  Best dispatch results for the 80-unit system. 

Unit No. Pi Unit No. Pi Unit No. Pi Unit No. Pi 

1 110.799820 21 523.279372 41 110.799830 61 523.279362 

2 110.799825 22 523.279363 42 110.799830 62 523.279365 

3 97.399915 23 523.279374 43 97.399915 63 523.279372 

4 179.733102 24 523.279376 44 179.733100 64 523.279374 

5 87.799903 25 523.279363 45 87.799905 65 523.279374 

6 140.000000 26 523.279374 46 140.000000 66 523.279365 

7 259.599659 27 10.000007 47 259.599659 67 10.000004 

8 284.599647 28 10.000005 48 284.599647 68 10.000000 

9 284.599647 29 10.000014 49 284.599647 69 10.000002 

10 130.000000 30 87.799903 50 130.000000 70 87.799905 

11 168.799817 31 189.999986 51 168.799822 71 190.000000 

12 94.000002 32 189.999995 52 94.000008 72 189.999999 

13 214.759788 33 189.999996 53 214.759787 73 190.000000 

14 394.279369 34 164.799820 54 394.279372 74 164.799820 

15 394.279370 35 199.356192 55 394.279360 75 199.999992 

16 394.279369 36 164.799832 56 304.519569 76 164.799832 

17 489.279372 37 109.999996 57 489.279375 77 109.999986 

18 489.279373 38 109.999995 58 489.279362 78 110.000000 

19 511.279365 39 109.999997 59 511.279361 79 109.999914 

20 511.279370 40 511.279373 60 511.279365 80 511.279373 

 
 

Table 8. Comparison of results with 30 trial tests under 
various NP in the 80-unit system. 

NP Minimum cost ($) Avg. cost ($) Avg. Time (s) 

10 242836.5 242956.7 1.02 

100 242794.7 2428534 10.36 

500 242794.7 242820.1 50.96 

1000 242794.7 242812.4 102.12 

Parameter Setting in SDSM: S1 = 200 MW; K = 1.01 ;  = 0.001 MW. 
 
 

the global solution, the proposed SDSM has shown the supe-
riority to the existing methods.  Regarding the minimum and 
average cost, the proposed SDSM has found better solution 
($242794.7) than the best solution previously found by CE- 
SQP, $242883.04 (Subathra et al., 2015).  The basic DSM (or 
EDSM) offers no guarantee that the solutions are optimal or 
even close to the optimal solution.  Table 7 contains details of 
the best solutions obtained using the proposed SDSM algo-
rithm.  Table 8 shows the solution obtained from SDSM depends 
on the population size.  Increasing of population size will pro- 
vide a better solution but takes longer computing time.  This 
test case study converges within 50.96 sec for each run when 
the value of NP is chosen to be 500.  It is obvious that the 
major portion of computing time is spent in performing the 
stochastic direct search technique.  Fortunately, the numerical 
results show the production cost is close to optimal solution 
even in a coarse convergence level.  Hence, only the simplified 
dispatch with a coarse convergence step could be used to com- 

Table 9. Comparison of production costs and CPU times 
for various predefined resolution ε using SDSM 
in the 80-unit system. 

 (MW)
Minimum  
cost ($) 

Avg. cost ($) Avg. Time (s) 

0.001 242794.7 242820.1 50.96 

1.0 242798.1 242821.8 20.60 

10.0 242802.4 242830.4 10.73 

30.0 242815.5 242848.9 6.23 

50.0 242827.1 242863.4 4.43 

Parameter Setting in SDSM: NP = 500; S1 = 200 MW; K = 1.01. 
 
 

pute the fuel costs in the process of SDSM for saving execu-
tion time.  Table 9 gives a comparison of production costs and 
CPU times for various predefined resolution  to demonstrate 
the advantage of approximate economic dispatch.  This test case 
study converges within 4.43 sec with slightly sacrificing quality 
of the solution ($242827.1) when the value of  is chosen to be 
50.0.  The suitableness of the algorithm presented in this paper 
to the solution of the optimal NED dispatch is, thus, confirmed. 

4. Example 4: Test for a Two Area Wind-Thermal System 

In the last example, the same 40-unit thermal system with 
two equivalent wind generation plants is considered (Sinha  
et al., 2003).  We randomly divided forty thermal units into 
two areas of which Area A includes 20 units (1-20) and 30%  
of the total load demand and Area B has 20 units (21-40) and  
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Table 10.  Comparison of results of four DSM strategies in system example 4. 

Methods NP Minimum cost ($) Avg. cost ($) Avg. Time (s) 

DSM (Chen et al., 2014) 1 110401.3 --- 0.12 

EDSM 100 109193.8 109535.2 76.28 

SDSM 100 108767.4 109108.8 95.20 

SDSM* 100 108767.4 109112.2 45.24 

SDSM* 200 108725.4 109092.6 80.92 

Parameter Setting: S1 = 200 MW; K = 1.05;  = 0.001 MW. 
 
 

Table 11.  Comparison of results considering the wind power generation or not for the load of 10500 MW. 

Case 4.1 4.2 
* /A B

WT WTP P *  (MW) 0/0 500/500 

/A
WT WTP PB  (MW) 0/0 500/500 

Flow Limit (  MW) max( ABP ) 2000 2000 

Line Flow ( (  (MW) )ABP 1644 1600 

/A
bUSR USRB

b  (MW) 600/600 600/600 

/A
U

B
UASR ASR  (MW) 0/0 100/100 

0 1/ /AB AB ABU U U 2  (MW) 0/356/161 0/400/181 

Local Up Spinning Reserve (Area A/B) (MW) 439/244 519/300 

/A B
D DASR ASR  (MW) 0/0 100/100 

0ABD  (MW) 0 0 

Local Down Spinning Reserve (Area A/B) (MW) 633 / 545 377 / 545 

Fuel Cost (NT $/h) 121658.4 108725.4 
 
 

70% of the total load demand.  For simplicity, the available 
area wind power generation is assumed to be 500 MW.  The 
basic up-spinning reserve requirements in each area are also 
assumed to be 600 MW.  To cover the unpredictable wind gen-
erator output variations, the increased area up/down spinning 
reserve requirements are calculated as a simple fraction of the 
predicted area wind generation (r% = 20%).  The flow limit 
from area A to area B is set to be 2000 MW.  The maximum 
up/down spinning reserve of any single unit could not exceed 
more than 10 percent of its rated capacity (d% = 10%).  To 
validate the performance of the proposed algorithm, four DSM 
strategies were developed for comparison.  Table 10 shows the 
best cost and average cost achieved for 30 trial runs.  The 
results show that the SDSM performs much better than basic 
DSM (or EDSM) as an optimizer and the superiority of the 
SDSM* algorithm over SDSM can also be noticed.  Table 11 
gives a comparison of results considering wind power gen-
eration or not for the load of 10500 MW.  It should be noticed 
that the area B has limited generation capacity in this case.  To 
compensate for possible fluctuations in power of the WTGs, 
part of local reserve in each area need to be first dispatched for 
satisfying its own area additional reserve requirement (100 
MW).  The basic up-reserve requirements for area B (600 MW) 
are then satisfied through the sum of resident local (300-100 = 

200 MW) and imported reserve (UAB1 = 400 MW) from area A.  
In this test case, the fuel saving value is about 12933 $/h when 
the wind power generation (500 MW) in each area is consid-
ered.  As a result, the proposed algorithm can be used to 
maximize the contribution of utility wind farms for reducing 
the cost of thermal dispatch while maintaining an adequate 
level of supply reliability. 

VI. CONCLUSIONS 

Incorporating wind units into the existing utility non-convex 
economic dispatch (NED) problem adds further complexity to 
the solution methodology.  This paper presents a reliable and 
efficient method for solving the non-convex multi-area wind- 
thermal coordination dispatch (MWCD) problem.  Instead of de- 
terministic rules, the proposed stochastic direct search algo-
rithm (SDSM) is using a stochastic technique to enhance its 
search capacity, which leads to a higher probability of obtaining 
the global optimal solution.  The possibility of occurrence of 
finding the global optimal solution for the algorithm can be 
greatly increased by using the parallel stochastic searching 
mechanism.  Several heuristic strategies are also used to improve 
the solution quality and performance.  Compared to many sto-
chastic searching techniques, the advantage of SDSM is that it 
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is easy to implement and there are only few parameters to adjust.  
Several test systems with non-convex unit cost functions were 
used in this paper.  The results show that the proposed EDSA 
provides a fast and accurate algorithm to tackle efficiently the 
difficult MWCD of a practical electric power system.  It is 
observed that obtaining the global optimal solution is possible 
by using the proposed algorithm for the NED problem.  The 
developed MWCD software will also be a useful tool to assess 
the impact and economic benefits of the installation of wind 
farms for the multi-area isolated power system. 
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