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ABSTRACT 

This paper proposes a novel approach based on the chaos 
eye method (CEM) and extension neural network (ENN) for 
fault diagnosis of wind power systems.  First, we used sensors 
to capture the vibration signals of the wind power system to 
detect subtle changes.  Subsequently, the chaotic synchronization 
detection method was used to form a chaos error distribution 
diagram.  The distribution diagram centroid, called chaos eye 
in this paper, was used as the fault diagnosis feature to reduce 
the number of extracted features.  This reduction in diagnostic 
features enables considerably reducing the computation time and 
cost of hardware implementation.  The ENN-based method 
was then used to design a fault diagnosis system for the tested 
wind power generation.  The feasibility and practicability of the 
proposed method were validated using a simulation system.  
The patent for the proposed method is currently pending, and 
this method contributes to the key technologies of large-scale 
wind power generation systems in Taiwan. 

I. INTRODUCTION 

With rising environmental awareness, the public has begun 
paying attention to environmental protection; green energy is 
one of the solutions proposed for reducing environmental pol- 
lution (Bull, 2001).  Taiwan has limited natural resources and 
has typically relied on international resource imports.  To effec- 
tively develop new energy resources, the Taiwan government 
proposed the Guidelines for Sustainable Energy Policy in 1997, 
outlining and promoting the National Science Technology Pro- 
gram in Energy.  The program was created to facilitate exam- 

ining and developing carbon-free renewable energy sources, 
endeavoring to foster renewable energy use and increase the 
gross power output generated using renewable energy to 8% of 
total power generation by 2025.  The Bureau of Energy, under 
the Ministry of Economic Affairs, has actively promoted the 
development of green energy, establishing goals for energy 
conservation and carbon reduction.  The government proposed 
increasing annual energy efficiency by 2% within the 8 years 
following 2008 and reducing energy intensity.  Regarding CO2 
emissions, the government established goals of reducing car- 
bon emissions to the 2005 level by 2020, and then to the 2000 
level by 2025.  Taiwan is a small island with a land area of 
35,915 km2.  Although its land area is smaller than those of many 
other countries, Taiwan has relatively abundant wind resources 
that facilitate developing wind power systems, yielding a wind 
power output of 132 TWh annually.  The offshore island areas, 
central and southern shore areas, and Hsinchu City in Taiwan 
are suitable for developing and installing wind power generators.  
Currently, more than 200 wind power generators exist in Taiwan, 
yielding an installed capacity exceeding 550 MW (Lu et al., 
2000; Liang, 2005). 

Renewable energy has advanced in the past decade, with solar 
photovoltaic power, hydroelectric power, wind power, and fuel 
cells being prominent research topics.  Wind power has been 
developed and promoted since 1996, and the total installed 
capacity of global wind power generators has rapidly increased.  
In 2011, the total installed capacity exceeded 200,000 MW, 
reaching nearly 250,000 MW.  Taiwan has explored wind power 
since 2002, rapidly expanding the installed capacity of its wind 
power generator; in 2001, the total installed capacity surpassed 
500 MW.  Fig. 1 shows the total installed wind power gen- 
eration capacity in Taiwan during 2002-2012, indicating that 
Taiwan is a suitable location for developing wind power. 

Wind turbines are expensive, and the fault occurrence pro- 
bability of any power generation system rises after any long- 
term operation (Lu et al., 2000; Kusiak and Li, 2011).  From 
the data of Swedish wind power plants during 1997-2005, we 
determined that certain parts of wind power generators 
breakdown more easily compared with other parts, and that the 
maintenance time is considerable, which affects the output 
efficiency of wind power plants (Ribrant and Bertling, 2007).   
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Fig. 1.  Total capacity of Taiwan wind power units during 2002-2012. 

 
 

Designing a system that can analyze the extract signals of 
operational status, forecast the trends and fault state of the 
operation, and send the results back to the control center 
through wireless communication networks in real time for 
maintenance is imperative (Callaway et al., 2002; Lee et al., 
2007).  Such a system enables adjusting the operating mode, 
which prevents the wind power generator from accidents.  
Moreover, we can ensure the safe operation of the system, 
increase management efficiency, and reduce operation and 
maintenance costs. 

When the attraction to wind electric power generation in- 
creases, a higher number of fault detection systems involving 
more functions, such as trouble shooting external problems, 
are implemented.  Consider, for example, offshore wind power 
generation systems.  Fault detection systems here can eliminate 
the vibration engendered by the seawater impact (Nilsson and 
Tjerberg, 2007).  The recognition accuracy is obviously high, 
but the fault system is applicable only when distinguishing the 
state.  When a machine is damaged because of a fault, the 
lifetime of the wind turbine is shortened.  Most fault diagnosis 
systems for wind power generation increase or reduce the 
number of sensors according to the accuracy of the system.  
When the characteristic number is higher, more sensors are 
required, and the cost is also higher (Caselitz and Giebhardt, 
2005; Becker and Posta, 2006).  In the current study, a chaotic 
synchronization-based detector module was used to form the 
main features of the chaos error distribution diagram.  The two 
centroid points (or chaos eyes, CEs) in the diagram were used 
as fault detection features.  The proposed system achieved a 
high recognition rate by detecting the critical characteristics of 
a few machines.  The proposed ENN-based fault diagnosis 
method (EBFDM) not only facilitates executing fast adaptive 
processes for accessing crucial and new information, but also 
enables shortening learning times relative to those of previous 
approaches.  Moreover, the proposed EBFDM demonstrated 
higher accuracy, less memory consumption, and more efficient 
noise rejection ability in an application. 

II. FAULT DIAGNOSIS METHOD 

1. Experimental Platform Design 

The wind power experimental platform designed by our 
laboratory was refitted for this study (Figs. 2 and 3).  Electric  

Wind 
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Temperature sensor
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Fig. 2. Experimental platform for the wind power generation system of 

this study. 
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Fig. 3.  Fault diagnosis system. 

 
 

and mechanical signals of the wind turbine were captured by 
sensors and transmitted through the Ethernet to the signal- 
processing unit of a remote monitoring computer (Lorenz, 1963; 
Egan, 2005; Yang, 2010).  The signal acquisition unit extracted 
applicable features, and the signal data were stored in the da- 
tabase.  The fault forecasting model was then created using the 
data.  Fig. 4 illustrates the fault diagnosis process, which includes 
signal processing, feature extraction, and fault diagnosis mo- 
dules.  Visual Basic (VB) was used to develop the fault diag- 
nosis tool for the wind power system in this study. 

2. Chaotic Synchronization Detection Method 

Meteorologist Norton Lorenz proposed chaos theory in 1963 
(Lu, 2001).  This theory concerns research on the unsteady 
behavior of nonlinear dynamic systems.  Chaotic synchroni- 
zation, proposed in 1990, is a theory that entails using a certain 
type of chaotic signal to control another type of chaotic signal, 
ultimately synchronizing the two signals (Cai, 1997; Yu et al., 
2008).  The two synchronous chaotic systems are called a master 
system and a slave system.  When the initial values of the master 
and slave systems are different, the operating trajectories of 
these chaotic systems also differ.  Therefore, a controller is  
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Fig. 4.  Overall program flowchart. 

 
 

attached to the back end of the slave system to track the master 
system.  The controller equalizes the trajectories of the two cha- 
otic systems simultaneously.  This tracking state is considered 
chaotic synchronization, as expressed by Eq. (1). 
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In this study, the detection of the chaotic trajectory for sys- 
tem signals was conducted in the simulated system.  The master 
and slave chaotic systems are shown in Eqs. (2) and (3). 
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where Fi (i = 1, 2, , n) is a nonlinear function; Eqs. (2) and (3) 
form the error state, as shown in Eq. (4).  The dynamic error is 
presented in Eq. (5). 
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where Gi (i = 1, 2, , n) is a nonlinear equation, and the 
dynamic error equation is of a chaotic system.  The kinematic 
trajectory of the attractor of the chaos phenomenon, which is 
used in the paper, is mostly used to study various system 
operating states such as the behaviors of periodic, nonperiodic, 
and random signals.  Therefore, the chaotic dynamic error 
equation was used in this study to recognize the system state.  
The dynamic error should be multiple data, and the data mode 
is expressed as follows: 

1 1 1
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Two Lorenz chaotic systems were used as examples in this 
study: a master system and slave system, as expressed in Eqs. 
(7) and (8), respectively.  The dynamic error state equation is 
established and expressed in matrix form in Eq. (9). 
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III. THEORY OF THE EXTENSION  
NEURAL NETWORK 

In certain clustering problems, features are defined as a 
range of values.  For example, the safe operating currents of a 
specific motor may be between 15 and 20 A.  Additionally, 
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young can be defined as a cluster of people aged between 18 
and 25 years.  Appropriately implementing solutions to such 
problems by using current clustering techniques is difficult.  
Therefore, a new neural network topology, called extension 
neural network (ENN), that involves combining extension 
theory (Wang and Chen, 2012) with neural networks has been 
proposed for solving these problems (Wang and Hung, 2003; 
Wang, 2012; Wang and Chen, 2012).  In other words, the ENN 
allows clustering problems to have a range of features, su- 
pervised learning, continuous input, and discrete output.  This 
new neural network involves the salient features of parallel 
computation power and learning capability. 

1. ENN Structure 

In the fault diagnosis problem of a wind power system, the 
features and associated defect types cover a range of values.  
Therefore, the ENN is highly appropriate for resolving the 
fault diagnosis problem of a wind power system.  Fig. 5 illus- 
trates a schematic structure of the ENN, indicating that this 
structure comprises both an input layer and an output layer.  This 
network involves two connection values (weights) between 
input nodes and output nodes, with one connection representing 
the lower bound and the other connection representing the 
upper bound for this classical domain of features.  The con- 
nections between the j-th input node and k-th output node are 

L
kjw and , respectively.  The output layer is a competitive 

layer, meaning that one node exists in the output layer for each 
prototype pattern; moreover, there exists only one output node 
with a nonzero output, which indicates the prototype pattern 
closest to the input vector.  The ENN learning algorithm is 
described as follows. 

U
kjw

2. ENN Learning Algorithm 

The learning of the ENN can be considered a supervised 
learning process.  Before the learning process, several variables 

must be defined.  Let a training set    1 1 2 2X ,T , X ,T , ,
 

 Q QX ,T , where Q is the total number of training patterns, 

represent an input vector to the neural network as well as a 
corresponding target output.  The i-th input vector is iX 

  i1 i2 inx , x ,x , where n is the total number of features.  To 

evaluate the learning performance, the error function is de- 
fined as follows: 

 
 

 
cnQ 2

t ij
i 1 j 1

1 ijE t o
2

 (10) 

where wi j represents the desired j-th output for the i-th input 
pattern and Qi j represents the actual j-th output for the i-th 
input pattern.  The supervised learning algorithm is as follows: 

 
Step 1: Set the connection weights between the input nodes 

and output nodes according to the range of classical  

1 j n

1 k

Lw11
Uw11

L
kjw

U
kjw

Oi1 Oik Oinc
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Output Layernc

 
Fig. 5.  ENN structure. 

 
 

 domains.  The range of classical domains can be di- 
rectly derived from previous experience, or it can be 
determined from training data as follows: 

  min
i

L
kj ij

T k
w


 x  (11) 

  max
i

kj ij
T k

w


U x  (12) 

 for i = 1, 2, , Q; j = 1, 2, , n; k = 1, 2, , nc

 Step 2: Read the i-th training pattern and its cluster number p: 

  1 2, , ...
i i i inX x x x  (13) 

Step 3: Use the extension distance (ED) to calculate the dis- 
tance between the input pattern Xi and the k-th cluster 
as follows: 

 
1

( ) / 2 ( ) / 2
1

( ) / 2

U L U Ln
ij kj kj kj kj

ik U L
j kj kj

x w w w w
ED

w w
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 
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 for k = 1, 2, , nc 
 
The proposed ED is a new distance measure, and it is 

graphically presented in Fig. 5.  The proposed ED can describe 
the distance between x and a range wL, wU, which is different 
from the traditional Euclidean distance.  The dimension of ED 
is (i  Nc), and the required memory space for the fault diag- 
nosis system increases when the dimension of ED is consi- 
derably high, which also increases the computation time.  
However, the proposed ENN is a two-layer neural network; 
therefore, its computation time and memory space are still 
lower than those of the traditional neural network.  Fig. 6 
shows that different ranges of classical domains can arrive at 
different distances because of different sensitivities, and this is 
a major advantage in classification applications.  In general, if  
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Fig. 6.  Proposed ED. 

 
 

a feature covers a wide range, the data requirement is fuzzy or 
the sensitivity to distance is low.  By contrast, if the feature 
covers a narrow range, the data precision requirement and 
sensitivity to distance are high. 

 
Step 4: Find m such that EDim = min{EDik}.  If m = p, then 

proceed to Step 6; otherwise, proceed to Step 5. 
Step 5: Update the weights of the p-th and m-th clusters as 

follows: 
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 For j = 1, 2, , nc 

 
where  is a learning rate, which was set to 0.1 in this study.  In 
this step, the learning process involves adjusting only the 
weights of the p-th and m-th clusters 

 
Step 6: Repeat Steps 2-5, and if all patterns have been clas- 

sified, then a learning epoch is completed. 
Step 7: Stop if the clustering process has converged or the 

total error has reached a preset value; otherwise, return 
to Step 3. 

 
The proposed ENN can adopt human expertise before the 

learning process, and it can produce meaningful output after 
the learning process because the classified boundaries of the 
features are clearly determined. 

3. Operating Phase of the ENN 
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Fig. 7.  Man-machine interface I of this study. 

 
 

Step 1: Read the weight matrix of the ENN. 
Step 2: Read a testing pattern 

  1 2, , ...,t t t tnX x x x  (17) 

Step 3: Use the proposed ED to calculate the distance be- 
tween the tested pattern and every existing cluster 
according to Eq. (5). 

Step 4: Find m such that EDim = min{EDik}, and set Oim = 1 to 
indicate the cluster of the tested pattern. 

Step 5: Stop if all the tested patterns have been classified; 
otherwise, proceed to Step 2. 

IV. RESULTS AND DISCUSSION 

In this study, VB was used to develop the fault diagnosis 
tool for the wind power system (Figs. 7 and 8).  Ten fault types 
were diagnosed in the operation of the wind power generation 
system: normal, fractured blade, crooked blade, 30% of oil 
spills in the gear accelerator, 50% of oil spills in the gear ac- 
celerator, 70% of oil spills in the gear accelerator, 90% of oil 
spills in the gear accelerator, bearing failure, lack phase, and 
generator overheat.  Sensors were used to capture the values of 
the generator voltage, gear case vibration, generator vibration, 
and gear case oil temperature of the wind turbine, and these 
values were stored in the database.  These four primary charac- 
teristics were used to form a chaos error distribution diagram 
by employing a chaotic synchronization-based detector module, 
and the centroid (or CEs) of the diagram served as the feature.  
The distribution diagram formed from a primary characteristic 
had two CEs, and the values of the X and Y axes of the CEs 
were recorded.  Therefore, 16 subcharacteristics were derived; 
the EBFDM was then used to diagnose the present fault point 
situation of the wind power system. 

We used sensors to capture data under different conditions 
and stored them in the database.  We used 15,000 tested data 
sets according to the tested wind power system to test the 
practicability of the proposed method.  At the training stage, the 
training data comprised 10,000 data sets, and the remaining 
data sets (5000) were used to test the pattern.  To detect subtle  
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Fig. 8.  Man-machine interface II of this study. 
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Fig. 9.  Gearbox vibration signals. 
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Fig. 10.  Generator voltage signal. 

 
 

changes in the system, we imported the original data into the 
chaotic synchronization-based detector module to form the 
chaos error distribution diagram.  However, because the diagram 
contained numerous error distribution points, we used the 
centroid of the diagram as the characteristic feature for fault 
diagnosis to effectively set the feature range and reduce the 
quantity of the extracted features.  Fig. 9 illustrates the wave- 
form of the Gearbox Vibration signal, and Fig. 10 presents the 
waveform of the generator voltage signal.  Each time the 1000 
documents used for synchronizing the chaos detection module 
under various fault conditions were read, a different chaotic  

Table 1.  Accuracy rates of various fault diagnosis methods. 

Testing  
method  

Learning 
times 

Learning  
accuracy rate (%) 

Test accuracy 
rate (%) 

Proposed method 2 95.1% 92.9% 

K-means  
clustering method

n/a 80.5% 77.3% 

MNN-I 3000 88.2% 85.6% 

MNN-II 3000 91.3% 87.3% 

MNN-III 3000 89.2% 88.4% 
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Fig. 11. Chaotic distribution diagram of the generator voltage signals 

under different conditions, (a) normal state, (b) owe-phase,  
(c) generator overheat. 
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Fig. 12. Chaotic distribution diagram of the bearing vibration signal 
under different conditions, (a) normal state or no fault, (b) blade 
crooked, (c) bearing fault. 

 
 

scatter plot was formed.  Fig. 11 shows the chaotic distribution 
diagram of the generator voltage signals under different con- 
ditions: Fig. 11(a) shows a normal state involving no fault, Fig. 
11 (b) shows an owe-phase state of output power, and Fig. 11(c) 
shows the generator overheat condition.  The red triangle re- 
presents an x-axis positive region and a negative region center 
of gravity of the chaos error distribution diagram, which is also 
labeled as CE in Fig. 11.  Fig. 12 shows the chaotic distribution 
diagram of the bearing vibration signal under different condi- 
tions: Fig. 12(a) shows a normal state involving no fault, Fig. 
12(b) shows the condition involving the crooked blade, and 
Fig. 12(c) shows the bearing fault. 

To evaluate the performance of the proposed EPDRM, the 
experimental results of the proposed method were directly 
compared with those of a multilayer neural network (MNN)- 
based method (Gulski and Krivda, 1992) according to the CE 
features of the evaluated wind power system (Table 1).  Table 
1 shows the classification results of the proposed EPDRM for 
various input patterns.  The accuracy rates of the proposed 
EPDRM were relatively high, and they were approximately 
95.1% and 92.9% for the training and testing sets, respectively.  
Clearly, the ENN has strong generalization capability. 
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Table 2. Comparison of the classification performance of 
various methods. 

Diagnosis methods 
Compare item 

MNN-I MNN-II MNN-III Proposed ENN

Structure 16-9-10 16-10-10 16-11-10 16-10 

No. of connections 1440 1600 1765 320 

Learning  
times (epochs) 

3000 3000 3000 2 

CPU time (sec) 2350.4 3420.6 4530.2 2.1 

 
 
Table 2 shows the structures of the various neural network- 

based diagnosis methods.  Notably, the structure of the pro- 
posed ENN is highly simple in that it requires only 26 nodes 
and 320 connections.  By contrast, nearly 36 nodes and 1600 
connections are required in the structure of the MNN-II-based 
method.  Moreover, the proposed ENN-based method facilitates 
executing fast adaptive processing for a high amount of training 
data or new information; this is because the ENN learning 
process is tuned to only the lower and upper bounds of the 
excited connections.  The ENN also adopts expert experience 
before the learning process and can produce meaningful output 
after the learning process; this is because the optimal classified 
boundaries of the features are clearly determined.  Table 2 
shows that the proposed ENN exhibits shorter learning time 
than does the MNN; the ENN also consume sonly 2 epoch or 
2.1 s of the CPU time.  Although the fault diagnosis system is 
trained offline, the training time is not a critical point to be 
evaluated.  However, this time is an index that implies, to a 
certain degree, the efficiency of the algorithm developed, which 
is rather beneficial when implementing fault diagnosis methods 
in a microcomputer for a real-time fault diagnosis device or a 
portable instrument. 

V. CONCLUSIONS 

This paper presents a novel CE- and ENN-based fault diag- 
nosis method for wind turbine generators.  Compared with other 
existing methods, the structure of the proposed ENN is simpler 
and its learning time is faster.  Moreover, the proposed fault 
diagnosis method facilitates executing fast adaptive processes 
for new data because it involves tuning only the boundaries of 
the classified features or adding a new neural node. 

Implementing the proposed method in a microcomputer for 
portable fault detecting devices is feasible.  The conclusions of 
this study are summarized as follows: 

 
1. This paper proposes that the CE is a new concept for feature 

determination in the fault diagnosis method for nonlinear 
energy systems. 

2. The chaotic synchronization-based detector module was used 
to obtain the chaos error distribution from preliminarily cap- 
tured system signals.  The CE was used as a feature, and the 

fault category was diagnosed according to the CE.  The pro- 
posed method facilitates reducing the number of extracted 
features and shortening the program computation time. 

3. This novel approach merits more attention because the ENN 
deserves serious consideration as a tool in PD recognition 
problems.  The findings of this study can lead to further in- 
vestigation for industrial applications. 
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