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ABSTRACT 

In this study, we use a residual-norm-based algorithm (RNBA) 
to solve nonlinear elliptic boundary value problems (BVPs) on 
an arbitrary planar domain.  For complex geometries, BVPs are 
very difficult and time-consuming to solve using conventional 
finite difference methods (FDMs).  To overcome these problems, 
we apply a novel finite difference method (NFDM).  By adding 
a fictitious rectangular domain and a bilinear function, we can 
easily treat geometrically complex boundary conditions.  Then, 
through the use of the internal residual and the boundary re-
sidual, we can easily obtain the solution without the necessity 
of computing a matrix inverse.  The RNBA avoids the oscil-
lations that can occur in the manifold-based exponentially 
convergent algorithm (MBECA) by maintaining the manifold 
properties while guaranteeing convergence order greater than 
one.  The accuracy and the convergence behaviour of this new 
method are demonstrated with several examples. 

I. INTRODUCTION 

Because of the rapid development of computer science and 
technology since 1980, numerical methods have become the 
method of choice for solving partial differential equations 
(PDEs).  Currently, the most common numerical methods are the 
finite difference method (FDM), the finite element method 
(FEM), the boundary element method (BEM), and the mesh-
less, or mesh-free, method.  The FDM was the earliest method 
developed, and it can be easily combined with discretization 

techniques to solve engineering problems.  However, if a quasi- 
linear PDE encounters a nonlinear problem in an arbitrary 
domain, both the geometric complexity and the nonlinearity 
encroach, and typically the conventional FDM requires special 
modifications to find the solution of such problems. 

A variety of algorithms have been presented to address 
quasi-linear BVPs; examples include the mountain iteration 
algorithm, the scaling iterative algorithm, the monotone itera-
tive algorithm, and the direct iterative algorithm, which were 
discussed by Chen et al. (2000).  In general, a sequence of iter- 
ations is generated by various methods, and the sequence is 
not usually guaranteed to converge to the true solution.  Many 
studies have presented numerical solutions of linear partial 
differential equations for BVPs.  For example, the mesh-free 
local Galerkin method was developed and applied in computer 
modeling and simulation (Atluri et al., 1998ab; Castillo et al., 
2000; Peraire et al., 2008).  In addition, a mesh-free partition 
of unity method was proposed to deal with diffusion equations 
on complex domains (Eigel et al., 2010).  More importantly, 
radial basis collocation method (Hu et al., 2005; Hu et al., 
2008), Trefftz methods (Liu, 2007ab; Fan et al., 2011; Fan  
et al., 2012), and method of fundamental solutions (Jin, 2004; 
Wei et al., 2007) were recently applied to fix the problems of 
elliptic equations successfully.  The numerical methods men-
tioned here are effective for linear problems.  For nonlinear 
problems, however, they are less effective, and the number of 
iterations required is prohibitive. 

The development of efficient algorithms for solving sys-
tems of nonlinear algebraic equations is a very important pro- 
blem in the field of numerical methods.  Recently, Liu (2008) 
proposed a novel method named the fictitious time integration 
method (FTIM).  The FTIM solves a system of n nonlinear 
algebraic equations by introducing a fictitious time variable  
to form an augmented system in (n  1)-dimensional space that 
is mathematically equivalent to the original system in n- 
dimensional space.  The roots of the original algebraic equa-
tions are obtained by numerically integrating the resultant 
system of ordinary differential equations, and the inverses of 
the algebraic equations are not required.  Furthermore, Liu (2009) 
demonstrated the use of the FTIM for solving m-point BVPs 
and two-dimensional, quasi-linear, elliptic BVPs.  Several nu- 
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merical examples including Laplace’s equation, Poisson’s 
equation, reaction diffusion, Helmholtz’s equation, the minimal 
surface problem, and explosion equations were solved.  It was 
shown that the FTIM can easily address nonlinear boundary 
value problems and provide highly accurate solutions. 

Three methods have been developed that construct a 
spacetime manifold that transforms a vector function into a 
time-dependent scalar function while retaining the properties 
of a Newton-like method, the FTIM with a time-like variable 
(Liu et al., 2009), a scalar homotopy method (Ku et al., 2010) 
and the manifold-based exponentially convergent algorithm 
(MBECA) (Liu et al., 2012).  These approaches can solve 
large systems of nonlinear algebraic equations (NAEs) with-
out computing the inverse of the Jacobian matrix.  However, 
some problems exist in these algorithms.  For example, the 
convergence of the scalar-based homotopy method is very 
slow because it is difficult to satisfy the convergence criterion.  
For the MBECA and the FTIM with a time-like variable, the 
parameters representing viscous damping and the time-like 
function must be determined.  When these parameters are larger 
than a certain fixed value, numerical instability will occur in 
the time integration.  To avoid these problems, Chen et al. 
(2014) introduced a group-preserving scheme (GPS) for the 
fictitious time integration.  Given the cone structure of the 
GPS and the MBECA and their manifold properties, the 
manifold path generated by the MBECA preserves the cone 
structure through the GPS with a weighting factor.  More 
importantly, we can find that the weighting factor satisfies the 
Cauchy-Schwarz inequality.  According to the plastic concept, 
the properties of the MBECA must satisfy the GPS cone con-
dition.  This means that the yielding surface under plastic 
theory must be kept on the surface of the cone such that the 
plastic flow is constrained according to the time integration 
path of the cone. 

In order to overcome the numerical instability in the time 
integration, Liu and Atluri (2011) proposed the novel residual- 
norm-based algorithm (RNBA).  The RNBA derives a gradient- 
flow system of nonlinear ordinary differential equations 
(ODEs) governing the evolution of space parameters with an 
independent, fictitious, time-like variable, where the residual 
error automatically decreases to zero.  The RNBAs are purely 
iterative in nature and have the advantages of convergence fast, 
without involving the inversion of Jacobian matrix and suit-
able solving a large system of NAEs.  According to the formula 
of RNBA, some optimal numerical methods, optimally gener-
alization regularization method (OGRM), optimal multivector 
iterative algorithm (OMVIA) and doubly optimized solution 
(DOS), are proposed by Liu (2012, 2013, 2014) and applied  
to deal with large linear inverse problems with large noisy 
level.  In this study, we will propose the RNBA combined with  
a novel finite difference method (NFDM) by Fan (2010).  We 
apply this method to calculate the solutions of elliptic-type 
BVPs defined in arbitrary plane domains.  By introducing 
fictitious time coordinates, the FDM associated with shape 
function with geometric complexity need not be treated  

N2 N1

N4N3

Ω

Γ

Ωu (x, y)

 
Fig. 1.  Illustration of the computational domain. 

 

 
in the same spatial domain but can be conveniently used to 
deal with any complicated shape within the problem domain.  
Then, modifying a weighting factor of GPS can increase com- 
putational efficiency and preserve the manifold of the system 
as the solution evolves without introducing a fictitious time 
variable. 

The outline of this paper is as follows.  Section 2 describes 
the BVPs and introduces the novel finite difference method 
(NFDM) and the residual-norm-based algorithm (RNBA).  In 
Section 3, we demonstrate the approach on four numerical 
examples of nonlinear problems, and we compare the results 
with those of the original MBECA.  In Section 4, we summarize 
the study and present our conclusions. 

II. PROBLEM FORMULATION 

1. The NFDM 

In this study, we consider elliptic BVPs and their solution 
using the FDM.  The following quasi-linear elliptic equation is 
considered: 

 ( , ) ( , , , , )x yu x y P x y u u    , ,x y  , (1) 

       , , , , ,u x y u x y G x y x yD N n     , (2)  

where D and N  are coefficients,  is the Laplacian operator, 

 is the boundary of the problem domain , and P and G  
are given functions.  Here, the boundary  in polar coordinates 
can be described by a radius function, i.e.,    

  ( , 0, 2) |r r ( ),      .  To conveniently address an 

arbitrary computational domain using the FDM, we introduce 
an equidistant rectangle to enclose the problem domain .   
Fig. 1 illustrates the arbitrary problem domain.  Suppose that 

the rectangle is given by : , ,x x ya a b b        y   such that 
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ax and bx cover the maximum dimensions of the problem 
domain in the x-axis and the y-axis, respectively.  Then, we 
divide the rectangle   into a uniform grid, with x 

, ( )i ju t

 
 and  in the x-direction and the 

y-direction, respectively.  Furthermore, we let 

2 /( 1)xa m  2 /( 1)yy b m  

  

 be the value of u at the grid point ( , , )i ju x y t ( , )i jx y   

evaluated at time t, where ( 1i )x i  x  and . ( 1) yiy i 
We approximate the Laplacian operator with finite differ-

ences and discretize the domain with a uniform grid.  Then, Eq. 
(1) can be rewritten as follows: 

 
   

1,i ju u , 1, 1i j i ju u    
 

.

, 1 , ,

2 2

2 2i j i j i ju u

x y

 

 

, 2, 3, 4, , m 

( ,P x , ),i jy   

  (3) 1i j 

Although a uniformly spaced finite difference scheme can 
easily handle the governing equation, it is difficult to match 
the boundary condition in Eq. (2) exactly.  Usually, an adaptive 
grid method is used to place the grid points on the perimeter  
of   at the boundary.  However, this may complicate the 
computations on an arbitrary domain because the boundary 
conditions are given on the boundary  of the domain , not 
on the boundary of the rectangle  .Therefore, we must de-
rive the governing equation of ui,j at the nodal points on the 
rectangular boundary. 

To overcome this problem, we introduce the concept of a 
shape function to more easily address the boundary conditions.  
Let  and  be the local coordinates in the x-direction and the 
y-direction, respectively.  We define  and  as: 

 ,2 1, , 1, 2, 3 , 4, , mi jx x
i j

x

 
   

 
 , (4) 

 ,2 1, , 1, 2, 3, 4,, mi jy y
i j

y

 
   

 
 , (5) 

where (x, y) are the global coordinates on the boundary and  
(xi,j, yi,j) denotes the coordinates of a grid point in  .  Sub-
stituting Eqs. (4) and (5) into the shape function, the weighting 
coefficients for the boundary conditions can be expressed as 
follows: 

 

 

where N1, N2, N3, and N4 denote the bilinear FEM shape 
functions.  From Eqs. (2) and (6), the following equations are 
obtained to enforce the boundary condition when an element 
contains a boundary node: 

 , (7) 

1

1 1

2

2 2

4

1

4

1

4

1

0

0

              

0n

n n

b
i b b

i

b
i b b

i

b
i b b

i

N u G

N u G

N u G







 

 

 









where b1, b2, , bn are the boundary points,  

denote the bilinear FEM shape functions associated with the 
boundary points, and  denote the boundary 

conditions.  Finally, Eqs. (3) and (7) can be rewritten as an 
algebraic equation as follows: 

1 2, , , nbb bN N N

1 2
, , ,

nb b bG G G

 , (8) ( ) 0F x

where x is a vector of the unknown coefficients.  When the 
residual errors of Eqs. (3) and (7) are both equal to zero, the 
solution of Eq. (8) is obtained.  The details will be described in 
the following sections. 

2. The RNBA 

1) Construction of the Gradient Flow 

We define a scalar function h that depends on the norm of 
the residual error in the solution to Eq. (8) and a monotonically 
increasing function , where t is a pseudo-time: ( )Q t

 
21

( , ) : ( ) ( )
2

h t Q tx F x , (9) 

and define a surface  

 . (10) ( , ) 0h t C x

Eq. (10) defines an invariant manifold in the space of .  

It is not necessary to specify the function a priori, 

where

( , )tx

( )Q t

2 (C Q t



  

  

 

1

2

3

4

1
1 1

4
1

1 1
4
1

1 1
4
1

1 1
4

N

N

N

N 

 

 

 

 

  

  

  

  

, (6) 

)  is as a measure of the residual error in Eq. (8) 

as a function of time.  We require that Q(t) > 0 increases with  
t, and C is determined by the initial condition 00 x( ) x  as 

 
21

( )
2

C  F x . (11) 

From the consistency condition, by taking the derivative of 
Eq. (10) with respect to t with , we have tx x( )
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21

( ) ( ) ( )( ) 0
2

h Q t Q t  TF x B F x    , (12) 

where B is the Jacobian matrix, for which with the ij-entry is 

defined as i
ij

j

FB x
  . 

Assuming a “normality condition”, the previous equation 
can expressed as follows: 

 ( )
h

Q t 
   


Tx B F

x
, (13) 

where  is to be determined.  Substituting Eq. (13) into (12), 
we obtain an expression for : 

 

2

22 T

( )

2 ( )

Q t

Q t
 

F

B F


. (14) 

Thus, we can obtain the gradient flow from Eqs. (13) and 
(14): 

 

2

T
2T

( )q t 
F

x
B F

 B F , (15) 

where 

 
( )

( ) :
2 ( )

Q t
q t

Q t



. (16) 

Hence, if is an increasing function of t, we have 

guaranteed convergence for the solution of the NAEs in Eq. (8) 
as t becaus

( )Q t

e 

 
2 2

( )
( )

C

Q t
F x . (17) 

2) Constraining the Solution to the Manifold 

To ensure that the solution remains on the manifold defined 
by Eq. (17), we consider the evolution of F along the path x(t): 

 
2

2T
( )q t  

F
F Bx AF

B F

  , (18) 

where 

 . (19) TA : BB

Suppose that we use the Euler method to integrate Eq. (18): 

 
2

2T
( ) ( ) ( )t t t tq t    

F
F F

B F
AF . (20) 

 
2

B FT
2T

( ) ( ) ( )t t t tq t   
F

x x
B F

. (21) 

Taking the square-norms of both sides and using Eq. (16), 
we can obtain 

 

 

 

2T

2
2

4T

2 2 2 ( )
2 ( )

( ) ( ) ( )

2
                    ( )

( )

C C C
q t t

Q t t Q t Q t

C
q t t

Q t


  

 

 

F AF

B F

F
AF

B F

. (22) 

Thus, the following scalar equation is obtained: 

 2 ( )
( ) 1 0

( )

Q t
a t b t

Q t t
     

 
, (23) 

where 

 

2 2

2
4T

: ( )a q t 1 
F AF

B F
, (24) 

: 2 ( )b q t . (25)  

Substituting Eqs. (24) and (25) into Eq. (23), we have 

 2 ( )
( ) 1 0

( )

Q t
a t b t

Q t t
     

 
, (26) 

where ( ) ( )S Q t Q t t    and  

 

2 2

0 4
:

T
A 1 

F AF

B F
, (27) 

From Eq. (27) and the Cauchy-Schwarz inequality, we can 
write 

 
2T   B F F AF F AF . (28) 

When using the MBECA with  fixed, oscillations may 
occur.  Consequently, we let  be automatically determined 
by the algorithm.  From Eq. (26), we let 

( )Q t
)(Q t



694 Journal of Marine Science and Technology, Vol. 24, No. 4 (2016 ) 

 2
0

( )
( ) 2( ) 1

( )

Q t
S A q t q t

Q t t
     

 
. (29) 

To obtain the minimum of S, we take the derivative of  
Eq. (29) with respect to .Setting the derivative equal to zero 
and solving for  gives 

t
t

 
0

1
t

qA
  . (30) 

Substituting Eq. (30) into Eq. (29), we obtain the minimum 
value of S: 

 
0

1
1S

A
  . (31) 

From Eqs. (17) and (29), we can write the following ex-
pression: 

 
( )

( )

t t
S

t

 


F

F
. (32) 

From Eqs. (32) and (31), it follows that the ratio of two 
consecutive residual errors is less than one. 

3) The RNBA 

Substituting the value of  from Eq. (30) into Eq. (21), we 
obtain the expression 

t

 

2

T
2T

0

2T

T
2T

1
( ) ( )

             ( )

t t t
A

t

   

 

F
x x

B F

B F
x B

A F

B F

F

, (33) 

where  represents the gradient vector and TB F
2T TB F B F

 
2TA F  is a regularized gradient vector.  It can be observed 

that the preceding algorithm, no special parameters or a time 
step (t) are required.  To improve the convergence, a weighting 
factor  is included in Eq. (33).  From Eq. (26), we can solve 
for t: 

 0

0

1 1 (1 )S A
t

qA

  
  , . (34) 0 if  1 (1 ) 0S A  

 
0

t
qA

 

Let 

 2
01 (1 ) 0S A     , 

2

0

1
1S

A
.


   (36) 

Thus, we have 

 
0

1
t

qA


  . (37) 

Substituting Eqs. (35) and (37) into Eq. (21), we obtain the 
following expression: 

 

2T

T
2T

( ) ( )t t t   
B F

x x
A F

B F , (38) 

where 

 1   0if  1 (1 ) 0S A   . (39) 

1
0 if  1 (1 ) 0S A  , . (35) 

 1  0if  1 (1 ) 0S A  

1

. (40) 

Here, 0    is a parameter and 0 1   is weighting 
factor. 

4) GPS for a System of Differential Equations 

The GPS (Liu, 2001) maintains the properties of the space- 
time manifold and automatically changes the weighting factor.  
We can rewrite Eq. (33) in vector form: 

 

2T

T
2T

( , )t 
B F

x f x B F
A F

 , , , (41) R nx 0t 

where n is the number of algebraic equations. 
The GPS can preserve the internal symmetry group of  

the system of ODEs.  Eq. (41) can be augmented to form the 
following dynamic system of dimension n+1: 

 
T

( , )

( , )
0

n n

t

d

dt t


 
   

       
  

F x
0

xx x

x xF x

x


. (42) 

The first n rows in Eq. (42) are from Eq. (41), and the last 
row in Eq. (42) provides a Minkowskian structure for the aug-
mented state vector.  Eq. (42) can be rewritten as: 

 . (43) X AX
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k

With some efforts, the GPS can be shown as follows: 

 1k k k  x x F , (44) 

 1
k

k k k k
k

b
a   x x F

F kx , (45) 

where 

 
 ( 1)

: k k k k k k
k

k

b a


  


x F F x

F
. (46) 

Y
X

0.5 1 1.5 2 2.5 3

3

2.5

2

1.5

1

0.5

0

 

The group properties are preserved in this scheme for all 
, and thus it is called a group-preserving scheme.  

However, using Eq. (46) in Eq. (38) can cause instability be-
cause Eq. (46) cannot easily satisfy the cone and Lie group 
properties.  We can modify Eq. (44) to create a residual-norm 
algorithm with an adaptive step size as follows: 

0t 

Fig. 2.  The domain for example 1. 

 
 

 1   0 if  1 (1 ) 0S A   . (47) 
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The parameter 0 1   controls the residual error in the 
solution, and  is a fictitious time step size.  At initialization, 
x  is equal to zero and  is a constant. 

III. NUMERICAL EXAMPLES 

In this section, we solve four examples to test the conver-
gence and the stability of the proposed numerical method.  In 
the following examples, m is the number of grid points in the 
x- and y-directions, n is the total number of boundary points, 

 is the unknown vector, and  is the convergence criterion.  

Algorithm 1 uses the weighting factor given by the GPS, al-
gorithm 2 uses the weighting factor  = 1  , and algorithm 3 
uses the weighting factor  = 1. 

0x

Fig. 3. Comparison of the residual norms of three algorithms for example 1. Example 1 
 

In this example, we consider a two-dimensional arbitrary 
domain as shown in Fig. 2 under a Poisson’s equation, ex-
pressed as follows: 

 

  (48) 2 2 cos 20,    ( , )  xu u e y x y     .

The boundary conditions are given as follows: 

 ( , ) cos 10,   ( , ) , 0xu x y e y x y      



. (49) 

The analytical solution for this problem is: 

  (50) ( , ) cos 10,   ( , ) .xu x y e y x y  

of the parameters were m = 20, n = 160, 0.50x ,    
31.09 10 , 0.08  , 0.1   and 0.0001 

0

.  The residual 

norms versus the number of steps are shown in Fig. 3, where 
the red, black and blue lines denote algorithm 1, algorithm 2 
and the MBECA, respectively.  In Fig. 3, we can observe that 
the residual norms of algorithm 1 and algorithm 2 decrease 
rapidly, and the residual errors satisfy the convergence crite-
rion at 5.937  103 steps for algorithm 1 and 7.216  103 steps 
for algorithm 2.  The residual norm, A  and S for algorithms 1 

and 2 are shown in Figs. 4(a) and (b), respectively.  The ana-
lytic solution is shown in Fig. 5(a), and the numerical errors 
are shown in Figs. 5(b) and (c), respectively.  Both algorithm 1 
and algorithm 2 give rather accurate results, with maximum 
errors less than 3.87  10-2. We used the RNBA to solve this problem, where the values  
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Fig. 4.  Residual norm, A0, S and ω for example 1: (a) algorithm 1, and (b) algorithm 2. 
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Fig. 5. Solutions to example 1, the potential for a linear equation with mixed boundary conditions: (a) analytic solution, (b) relative error of algorithm 

1, and (c) relative error of algorithm 2. 
 
 

Example 2 

In this example, the domain of interest is circular, and it can 
be expressed as follows: 

 
( , ) | 0.48cos 0.5,  

          0.48sin 0.5,   0 2

x y x

y


  

 
       


. (51) 

We include the convection and diffusion terms in the gov-
erning equation, which is expressed as follows: 

 2 2 ,  ( , )
u u

u xy x b x y
x y

 
    

 
, (52) 

where 

      2cos 18cos3 sin 1 6sin 3 1  .b x y xy x y          

  (53) 

The boundary conditions are 

 

( , ) cos 2cos 3,  

3
             ( , ) ,   0 ,

2

u x y x y x y

x y


    

  
 (54) 

   ( , ) 1 sin  1 sin  ,  u x y x nx y ny   

3
                  ( , ) ,   2 .

2

n

x y
    

 (55)  
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Fig. 6.  Comparison of the residual norms of three algorithms for example 2. 
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Fig. 7.  Residual norm, A0, S and ω for example 2: (a) algorithm 1, and (b) algorithm 2. 

 
 
The values of the parameters in the algorithms are m = 20,  

n = 160, , 1.00x 41.9 10   , 0.08  , 0.2   and 

0.001  .  The residual norms versus the number of steps are 

shown in Fig. 6, where the red, black and blue lines denote 
algorithm 1, algorithm 2 and the MBECA, respectively.  The 
Figure shows that the residual norms decrease rapid with 
converging in 7.848  103 steps for algorithm 1 and 8.876  
103 steps for algorithm 2.  From the results, it can be observed 
that the convergence of the MBECA varies very dramatically 
as the number of steps increases.  In contrast, the convergence 
rates of algorithms 1 and 2 are stable despite the addition of the 
convection and diffusion terms in the governing equation. 

The residual norm, 0A  and S for algorithms 1 and 2 are 

shown in Figs. 7(a) and (b), respectively.  In the Figures, it can 
be observed that 0A  is much greater than one when S is equal 

to one, and the residual norm clearly.  The analytic solution is 
shown in Fig. 8(a), and the relative errors of the solutions from 
algorithms 1and 2 are plotted in Figs. 8(b) and (c), where it can 
be observed that the maximum error was less than 2.223  
10-2. 

Example 3 

In this example, we verify that the proposed scheme can 
accommodate a multiply connected domain with genus 1.  The  
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Fig. 8. Solutions to example 2, the potential for a linear equation with mixed boundary conditions: (a) analytic solution, (b) relative error of algorithm 

1, and (c) relative error of algorithm 2. 
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Fig. 9.  The domain for example 3. 

 
 

irregularly shaped domain is plotted in Fig. 9, where the contour 
is given by 

  (56) 
 1 1 1( , ) | cos 2,   sin 1.5 ,

          ( , ) ,   0 2 ,

x y x y

x y

   

 

     

  

  (57) 
         2 2 2( , ) | cos 2.5,   sin 2 ,

          ( , ) ,   0 2

x y x y

x y    

with 

    2 2
1 exp sin( ) sin (2 ) exp cos( ) cos (2 )      , (58) 
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Fig. 10. Comparison of the residual norms of three algorithms for ex-

ample 3. 

 
 
We wish to solve the following nonlinear diffusion equation: 

  2 3 2 2 24 ,   8,   ( ,u u x y a a x y) .       (60) 

The exact solution for this problem is: 

 
2 2 2

1
( , ) ,   ( , )u x y x y

x y a


  

 
 , (61) 

where 1 2    . 

1

 32
2 0.45 cos(3 ) 2 sin (3 )     . (59) 

The values of the parameters were m = 16, n = 300, 

0.010x ,  81 10   ,  0.08  ,  0.08   and  0.1  .  

The residual norms versus the number of steps for the three 
algorithms are shown in Fig. 10, where the red, black and blue 
lines denote the results from algorithm 1, algorithm 2 and the  
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Fig. 11.  sidual norm, A0, S and ω for example 3: (a) algorithm 1, and (b) algorithm 2. 
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Fig. 12. Solutions to example 3, the potential for a nonlinear equation with Dirichlet-type boundary conditions: (a) analytic solution, (b) relative error 

of algorithm 1, and (c) relative error of algorithm 2. 
 
 

MBECA, respectively.  The Figure shows that the residual 
errors for algorithms 1 and 2 satisfy the convergence criterion 
at 2.4803  104 and 2.4609  104 steps, respectively.  The re- 
idual norm, A0 and S are shown for algorithms 1 and 2 in Figs. 
11(a) and (b), respectively.  In the Figures, it can be observe that 
A0 is much greater than one when S is equal to one, and the re- 
idual norm is less than 1  10-8. 

The analytic solution is shown in Fig. 12(a), and the relative 
errors of the solutions from algorithms 1 and 2 are plotted in 
Figs. 12(b) and (c), respectively, where it can be observed that 
the maximum error was less than 3.914  10-2. 

Example 4 

To test the efficiency of the proposed method in solving a 
nonlinear equation, the following nonlinear Poisson equation 
is considered: 

 2 2 ,    ( , )u u b x y    , (62) 

where 

  (63) 2( cos 1)  .xb e y x y   

We assume the same geometry as in Example 1; the 
boundary conditions are 

( , ) cos 1,   0 2 ,   ( , )xu x y e y x y x y        , (64) 

The analytical solution for this problem is 

 ( , ) cos 1,   ( , )xu x y e y x y x y      . (65) 
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Fig. 13.  Comparison of the residual norms of three algorithms: a comparison for example 4. 
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Fig. 14. Solutions to example 4, the potential for a nonlinear equation: (a) analytic solution, (b) relative error of algorithm 1, and (c) relative error of 

algorithm 2. 
 
 
The values of the parameters were m = 13, n = 160, 

, , 0.010x 61 10   0.08  , 0.08   and 0.1  .  

The residual norms versus the number of steps for the three 
algorithms are shown in Fig. 13, where the red, black and blue 
lines denote the results from algorithm 1, algorithm 2 and the 
MBECA, respectively.  It can be observed that the RNBA 
converges faster than the MBECA.  The analytic solution of 
the equation is shown in Fig. 14(a), and the relative errors of 
the solutions from algorithms 1and 2 are plotted in Figs. 14(b) 
and (c), respectively, showing that the maximum error was less 
than 7.426  10-2. 

CONCLUSIONS 

In this study, we developed the RNBA to solve nonlinear 
elliptic boundary value problems on arbitrary planar domains.  
Elliptic BVPs with nonlinear PDEs and geometrically com-
plex domains cannot easily be solved using the FDM.  To 

overcome these obstacles, we introduced the concepts of the 
internal residual and the boundary residual by imposing a 
fictitious rectangular domain and a bilinear function that we 
can easily manipulate to address any boundary condition.  As a 
result, we are only required to numerically integrate the ODEs 
until the residuals are reduced to a specified value to obtain a 
solution.  Additionally, the RNBA is simple to implement and 
does not require the inverse of the Jacobian matrix to be cal-
culated.  From the results of several numerical examples, we 
can conclude that this new approach can successfully solve 
problems with linear and nonlinear equations and converges 
much faster than the MBECA.  In summary, this scheme has 
several advantages over the conventional one, including of 
high efficiency and stability. 
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