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RESEARCH ARTICLE

Identification of Nonlinear Channels in Bandpass
Communication Systems with OFDM Inputs

Jen-Ho Cheng, Ching-Hsiang Tseng*

Department of Electrical Engineering, National Taiwan Ocean University, Keelung, Taiwan, ROC

Abstract

A general approach to the derivation of simple yet accurate formulas for identifying bandpass nonlinear channels in
orthogonal frequency-division multiplexing (OFDM) systems is proposed in this paper. The OFDM is an widely
adopted technique for wideband communication applications. An OFDM signal could be highly vulnerable to non-
linearities in a communication link. This makes proper estimation of the nonlinear channel essential for an OFDM
system. A nonlinear bandpass communication channel is commonly described by a complex Voletrra series, in which the
task of nonlinear channel identification is to determine the Volterra kernels. This task can become very difficult when
the order of the nonlinear system increases. In this paper, we explore higher-order statistical properties of the OFDM
signal to develop a universal scheme for solving the Volterra kernel identification problem. Based on this scheme, a
simple yet accurate formula for identifying Volterra kernels of 5th-order nonlinear OFDM systems is derived. The
resulting solution is shown to attain the minimum mean square error (MMSE) in both theory and computer simulation.

Keywords: OFDM, Nonlinear channel, Volterra kernel, System identification, Higher-order statistics

1. Introduction

T he orthogonal frequency-division multiplexing

(OFDM) [1] is a multicarrier modulation
scheme that has been used in numerous commu-
nication applications [2e6]. An OFDM signal tends
to yield a high peak-to-average power ratio (PAR)
due to the possible constructive combination of its
subcarriers. The undesirable feature often causes
the OFDM signal to be corrupted by out-of-band
radiations and inter-subcarrier interference gener-
ated from nonlinearities in communication systems
[7e9]. To combat this problem, proper identification
of the nonlinear channels in communication sys-
tems can play an essential role.
For a nonlinear bandpass communication channel,

its nonlinearities are often originated from a power
amplifier and are commonly modeled by a bandpass
Volterra series [10e12]. By incorporating the
nonlinear effect of the power amplifier into the

channel response, the resulting nonlinear channel
canbedescribedbyabandpassVolterramodelwhich
relates the complex envelopes of the channel input
and output [11,13]. Several methods for identifying
the Volterra kernels of the bandpass nonlinear
channel can be found in the literature. Namely, to
determine the time-domain Volterra kernels of
bandpass channels in PSK and QAM systems, algo-
rithms based on the assumption that the input signal
is independent and identically-distributed (i.i.d.)
have been derived [14,15]. For the OFDM system,
which is the focus of this paper,methods by assuming
the OFDM signal to be asymptotically i.i.d. and
complex Gaussian [16,17] have also been developed.
Although the Gaussianity assumption greatly sim-
plifies the mathematics in these methods, unsatis-
factory estimate of the kernels could result when the
Gaussianity of the input signal cannot beguaranteed.
Recently, a computationally efficient method for

determining the frequency-domain Volterra kernels
of cubically nonlinear bandpass channels in OFDM
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systems was derived [18]. Instead of making the
Gaussianity assumption, this method took advantage
of the random multisine [19] nature of the OFDM
signal to attain a simple solution. Specifically, this
method utilized certain higher-order auto-moment
spectral properties of the random multisine signal to
come upwith closed-form expressions for frequency-
domain Volterra kernels. The acquired kernel esti-
mates by this method are optimal in the minimum
mean square error (MMSE) sense. A limitation of the
solution in [18], however, is that it is designed for
nonlinear OFDM systems up to the third order. It has
been shown that some nonlinear communication
channels (such as the satellite communication chan-
nel in [13]) require a Volterra series model up to the
5th order. For these nonlinear channel identification
problems, the solution in [18] is inadequate.
In this paper, we extend the development we have

done in [18] for cubically nonlinear OFDM systems,
so that a simple Volterra Kernel estimation solution
can be acquired for nonlinear OFDM systems higher
than the 3rd order. Moreover, a systematic method
for generating pseudo random test sequences which
guarantee the attainment of the optimal MMSE so-
lution is also developed. By applying the proposed
approach, we show that how a simple formula for a
5th-order nonlinear OFDM channel can be derived.
The correctness of the derived formula is justified by
computer simulation.

2. Nonlinear bandpass channel and Volterra
series

Nonlinear bandpass channels are often resulted
from power amplifiers in communication systems
operating at the radio frequency range [20]. The AM/
AM and AM/PM conversions of the power amplifier
cause the bandpass communication system to
become nonlinear. As mentioned in Section 1, the
combination of the power amplifier and the channel
response results in a nonlinear channel which can be
described by a bandpass Volterra model. The goal of
this paper is to perform channel estimation at the
receiver by estimating the kernels of the bandpass
Volterra model using the channel input and output.
It has been shown that the input and output of the

nonlinear bandpass channel can be related by a
discrete time-domain complex-valued Volterra
model as follows [13]:

y½n� ¼
XK
k¼0

XN
n1¼0

XN
n2¼0

/
XN

n2kþ1¼0

h2kþ1½n1;n2;…;n2kþ1�$

Ykþ1

i¼1

x½n� ni�
Y2kþ1

j¼kþ2

x*
�
n� nj

�þ e½n�
ð1Þ

where x½n� and y½n� are the input and output of the
nonlinear channel, h2kþ1½n1; n2;…; n2kþ1� is the

�
2k þ

1
�
th-order baseband equivalent Volterra kernel

(will simply be referred to as the Volterra kernel
hereafter), e½n� is the modeling error, N is the
memory length, and 2K þ 1 is the order of the Vol-
terra model. By taking the discrete Fourier trans-
form (DFT) of (1), one obtains frequency-domain
Volterra model expression as follows:

Y
�
m
�¼XK

k¼0

X
�
m1þm2þ/þm2kþ1¼m

��M�m1 ;m2 ;/;m2kþ1�M

H2kþ1
�
m1;m2;/;m2kþ1

�Ykþ1

i¼1

X
�
mi

� Y2kþ1

j¼kþ2

X*
��mj

�þe
�
m
�¼ bY�m�þe

�
m
�
;

ð2Þ

where X
�
m
�
and Y

�
m
�
are the DFTs of x½n� and y½n�,

respectively, H2kþ1
�
m1;m2;…;m2kþ1

�
is the

�
2k þ

1
�
th-order frequency-domain Volterra kernel, bY�m�

is the model output, and e
�
m
�
is the modeling error.

Based on (2), the problem of nonlinear channel
identification using the frequency-domain Volterra
model is depicted in Fig. 1, where the goal is to
determine the various Volterra kernels. As one can
see in (2), the number of the Volterra kernel co-
efficients increases rapidly with the order of the
Volterra model. This suggests that the difficulty
of determining the Volterra kernelsmay also increase
dramatically with the order of the Volterra model.

2.1. Symmetry properties of the Volterra kernels

For notational simplicity, we define the multi-
dimensional indices mjji and m jji as follows:

mjji¼
�
mi;miþ1;…;mj

� ð3Þ

m jji¼
�
mi;miþ1;…;mj

� ð4Þ

Fig. 1. The frequency-domain Volterra model for a nonlinear channel.
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where the underline in (4) denotes any possible
interchange of the indices. For instance,

mj31¼
�
m1;m2;m3

�
; ð5Þ

and

m j31 ¼ �
m1;m2;m3

�
2 f�m1;m2;m3

�
;
�
m1;m3;m2

�
;
�
m2;m1;m3

�
;�

m2;m3;m1
�
;
�
m3;m1;m2

�
;
�
m3;m2;m1

�g
ð6Þ

Using (3), the
�
2k þ 1

�
th-order Volterra kernel

in (2) can be rewritten as

H2kþ1

�
m1;m2;…;m2kþ1

�¼H2kþ1

�
mjkþ1

1 ;m2kþ1
kþ2

�
: ð7Þ

Since H2kþ1
�
mjkþ1

1 ;m2kþ1
kþ2

�
and H2kþ1

�
m jkþ1

1 ;m j2kþ1
kþ2

�
are both multiplied by the same input product termQkþ1

i¼1 X
�
mi

�Q2kþ1
j¼kþ2X

*
��mj

�
in (2), one can assume

without loss of generality that

H2kþ1
�
mjkþ1

1 ;m2kþ1
kþ2

�¼H2kþ1
�
m jkþ1

1 ;m j2kþ1
kþ2

�
: ð8Þ

The total number of identical Volterra kernel
coefficients in (8) varies with the number of distinct
values in mjkþ1

1 and mj2kþ1
kþ2 . Assuming there are I

distinct values in mjkþ1
1 with the i-th value appearing

pi times, we have

p1þp2 þ…þ pI ¼ kþ 1: ð9Þ
The total number of permutations in m jkþ1

1 , say,
P
�
mjkþ1

1

�
, is equal to

P
�
mjkþ1

1

�¼ I!
p1!p2!/pI !

ð10Þ

where I! is the factorial of I. Likewise, assuming
there are J distinctive values in mj2kþ1

kþ2 with the j-th
value occurring qj times, we obtain
q1þq2 þ/þ qJ ¼ k ð11Þ

P
�
mj2kþ1

kþ2

�¼ J!
q1!q2!/qJ !

ð12Þ

Combing (10) and (12), we see that the total
number of indistinguishable Volterra kernel co-
efficients in (8), say P

�
mjkþ1

1 ;m2kþ1
kþ2

�
, is

P
�
mjkþ1

1 ;m2kþ1
kþ2

� ¼ P
�
mjkþ1

1

�
P
�
mj2kþ1

kþ2

�
¼ I!J!

p1!p2!/pI !q1!q2!/qJ !

ð13Þ

By considering (8) and (13), the number of
Volterra kernel coefficients requiring to be esti-
mated can be significantly reduced.

3. OFDM signal and its spectral properties

In an OFDM communication system, the data are
transmitted in parallel via equally-spaced orthog-
onal subcarriers, where the sequence of input data
symbols to each subcarrier is often QAM or PSK.
The summation of the parallel modulated signals
constitutes the OFDM signal. Specifically, a base-
band OFDM signal with 2M þ 1 subcarriers at fre-
quencies m=N; m ¼ �M;…;M is usually generated
by taking the inverse fast Fourier transform (IFFT) of
the parallel QAM or PSK symbols as follows:

x½n�¼
XM

m¼�M

X
�
m
�
ej2pmn=N ; 0� t � T ð14Þ

where X
�
m
�

is the QAM or PSK complex data
symbol for the subcarrier at the frequency m=N; and
N is the number of FFT points.
The higher-order moments of the QAM and PSK

signals exhibit certain properties due to their
circularly symmetric characteristics [17,21]. Specif-
ically, for a QAM signal of the form X ¼ aþ jb,
where a and b are assume to be i.i.d. random vari-
ables with a symmetric distribution, we have [17]

E
�
XpX*q

�¼
8<: E

���Xj2min
�
p;q
�
,Xjp�qj�; if ��p� q

��
mod 4¼ 0

0; otherwise
ð15Þ

This can be explained as follows. If p � q, than

E
�
XpX*q

�¼E
���Xj2qX�p�q

�� ð16Þ
If on the contrary p< q, than

E
�
XpX*q

�¼E
���Xj2pX*

�
q�p

�� ð17Þ
Note that, due to the circularly symmetric

characteristics of the QAM signal, its symbols must
appear in complex conjugate pairs. That is, for any
symbol X0 ¼ r0ejq0 ; there must exist another symbol
X0
0 ¼ r0e�jq0 : The contribution of these two symbols

to the expectation in Eq. (17) can be expressed as

��X0j2pX*
�
q�p

�
0 þ ��X0

0j2p
�
X0

0

�*�q�p
�

¼ r2p0 r

�
q�p

�
0

�
e�j

�
q�p

�
q0 þ ej

�
q�p

�
q0
�

¼ 2rpþq
0 cos

��
q� p

�
q
�
;

ð18Þ

which is a real number. This indicates that, the
expectation term in Eq. (17) must also be real. Since
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x ¼ x* when x is real, we see that Eq. (17) can be
written as

E½XpX*q� ¼ E½jXj2pX*
�
q�p

��
¼ E

���Xj2pX*
�
q�p

��*
¼ E½jXj2pX

�
q�p

�� ð19Þ

Combining Eqs. (16) and (19) one obtains

E
�
XpX*q

�¼E
���Xj2min

�
p;q
�
,Xjp�qj� ð20Þ

In addition, since E½XpX*q� is real, we have
E½XpX*q� ¼ E½XpX*q�* ¼ E½XqX*p� This indicates that
interchanging p and q does not alter the result of
E½XpX*q� Based on the observation, we will only
discuss the case of p � q:
Assuming that ( p�q) mod 4 ¼ i; one can write p�q

¼ 4mþi for some integers m and i: Note that i2
f0; 1; 2; 3g: Now we want to show that Eq. (20) is
equal to zero for ( p�q) mod 4s0: First we start with
the 4QAM. Its symbols are on a circle of a radius r in
the complex plane and can be denoted by

X¼ rejq; q2

�
q0þkp

2

����k¼0;1;2;3
�

ð21Þ

where (r, q0) is the Polar coordinate of the symbol in
the first quadrant. By substituting (21) into (20), one
obtains

E½XpX*q� ¼ E½r2qr
�
p�q

�
ej
�
p�q

�
q�

¼ rpþqE
�
ej
�
4mþi

�
q
�

¼ rpþqej
�
4mþi

�
q0

4

X3

k¼0

e
j
�
ikp
2

�

¼
(
rpþqej4mq0 ; if i¼ 0

0; otherwise

ð22Þ

This justifies (15) for 4QAM. The result can be
easily extended to higher-level QAMs by recog-
nizing that a higher-level QAM can be divided into
subsets of 4 QAMs. For example, the 16 QAM in
Fig. 2 is divided into 4 subsets of 4QAMs with
different graphic symbols. Since the contributions
from the 4 data symbols in each subset would cancel
out, we see that higher-level QAMs also satisfy (15).
For an M � PSK signal of the form

X ¼ r,expj
�
2pm=M

�
; m ¼ 0; 1;…;M � 1; we have [17]

E½XpX*q�¼
�
rpþq; if

��p� q
�� mod M ¼ 0

0; otherwise
ð23Þ

This can be explained as follows. Assuming that
p � q: and ( p�q) mod M ¼ i, one can write p� q ¼
kM þ i for some integers k and i. Note that
i2f0; 1; 2;…;M�1g: By substituting the M � PSK

symbol X ¼ rej
�
2pm=M

�
; m ¼ 0; 1;…;M � 1 into

E½XpX*q�; we obtain

E
�
XpX*q

�¼ "XM�1

m¼0

�
rej
�
2pm=M

��p�
rej
�
2pm=M

��*q#,
M

¼ rpþq

M

XM�1

m¼0

ej
�
2pm=M

��
p�q

�

¼ rpþq

M

XM�1

m¼0

ej
�
2pm=M

��
kMþi

�
¼ rpþq

M

XM�1

m¼0

ej
�
2pim=M

�

¼
(
rpþq; if i¼ 0

0; otherwise

ð24Þ
For p< q and

�
q�p

�
mod M ¼ i; one can write

q� p ¼ kM þ i for some integers k and i. We have

E½XpX*q� ¼ E½Xp*Xq�* ¼ E½XqXp*�*

¼
�
rqþp; if i¼ 0
0; otherwise

;
ð25Þ

where (24) has been used in deriving (25). The
combination of (24) and (25) justifies (23).
From (15) and (23) we see that, for both QAM and

PSK signals, most of their higher-order moments
are equal to zero. These properties may come in
handy when we develop the higher-order moment
spectra of the OFDM signal.

Fig. 2. The division of 16-QAM constellation into 4 subsets of 4QAMs
with different graphic symbols. The 16QAM is used for the OFDM
subcarriers in the simulation. Each data symbol is labeled with its 4-bit
representation and its symbol number inside a parenthesis.
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The derivation of the proposed Volterra kernel
identification method in this paper is based on
analyzing the higher-order auto-moment spectra of
the OFDM signal. As we have seen from (14), the
DFT of the OFDM signal at any frequency m (i.e.,
X
�
m
�
) is equal to the complex data symbol (taken

from the QAM or PSK alphabet) fed to the m-th
subcarrier. Therefore, the higher-order auto-
moment spectra of the OFDM signal is composed of
the higher-order moments of the QAM or PSK sig-
nals. By using the higher-order moment properties
of QAM and PSK given by (15) and (23), respec-
tively, we can obtain the higher-order auto-moment
spectra of the OFDM signal.
Since the QAM or PSK symbols fed to different

subcarriers are independent, a higher-order auto-
moment spectrum of the OFDM signal with k
distinct frequencies has the following property:

E
�
f1
�
X
�
m1

��
, f2

�
X
�
m2

��
/fk

�
X
�
mk

���¼
E
�
f1
�
X
�
m1

���
,E

�
f2
�
X
�
m2

���
/E

�
fk
�
X
�
mk

���
; ð26Þ

where m1, m2, …, mk are the k distinct frequencies,
and fi

�
X
�
(i ¼ 1;…; k) denotes an arbitrary function

of X: Note that the separability of the expectation in
(26) is due to the independency of the QAM and
PSK symbols among different subcarriers, and each
separated expectation term E½fi

�
X
�
mi

��� can be
determined via (15) or (23).

4. Identification of the Volterra kernels for
nonlinear bandpass channels

In this section we will derive the optimal MMSE
estimate of the Volterra kernels in (2). That is to
determine the optimal H2kþ1

�
m1;m2;…;m2kþ1

�
(where �M�m1;m2;…; m2kþ1�M and m1 þ m2 þ
/þ m2kþ1 ¼ m), k¼ 0; 1; …; Kwhich minimize the
cost function

J¼ E
h��e�m�j2i ¼ E

h��Y�m�� bY�m�j2i¼ E
h��Y�m��XK

k¼0

X
�
m1þm2þ/þm2kþ1¼m

��M�m1 ;m2 ;/;m2kþ1�M

H2kþ1
�
m1;m2;/;m2kþ1

�
Ykþ1

i¼1

X
�
mi

� Y2kþ1

j¼kþ2

X*
��mj

�j2i
ð27Þ

Note that (2) has been used in deriving (27). By
applying the orthogonality principle [22], one can
see that the cost function J is minimized when the
error e

�
m
�
is orthogonal to all the input terms in (2).

This can be stated mathematically as follows:

E

"Ykþ1

i¼1

X*
�
mi

� Y2kþ1

j¼kþ2

X
��mj

�
e
�
m
�#¼ 0;�M �m1;m2; :::;

m2kþ1 �M;m1 þm2 þ/þm2kþ1 ¼m; 0� k� K

ð28Þ
By using (2) one can rewrite (28) as

E

24Ykþ1

i¼1

X*
�
mi

� Y2kþ1

j¼kþ2

X
��mj

�
Y
�
m
�35¼

XK
k0¼0

X
�
m0

1þm0
2þ/þm0

2kþ1¼m
��M�m0

1
;m0

2
;/;m0

2kþ1
�M

H2k0þ1
�
m0

1;m
0
2;/;m0

2k0þ1
�
,E

24Ykþ1

i¼1

X*
�
mi

� Y2kþ1

j¼kþ2

X
��mj

�
Yk0þ1

i¼1

X
�
m0

i

� Y2k0þ1

j¼k0þ2

X*
��m0

j

�35;�M �m1;m2;…;m2kþ1 �M;

m1 þm2 þ/þm2kþ1 ¼m; 0� k� K

ð29Þ
To obtain the MMSE estimates of the Volterra

kernels, one needs to solve the system of equations
in the form of (29) for �M�m1;m2;…;m2kþ1�M
(subject to the constraint m1 þ m2 þ /þ m2kþ1 ¼ m)
and k¼0;1;…;K simultaneously. This is a very chal-
lenging task due to the extremely large number of
kernel coefficients involved in (29). Note that the
term expressed as the expectation of the input
product on the righthand side of (29) (i.e.,
E½Qkþ1

i¼1X
*
�
mi

�Q2kþ1
j¼kþ2X

� � mj
�Qk0þ1

i¼1 X
�
m0

i

�Q2k0þ1
j¼k0þ2X

*� � m0
j

��) is in fact a higher-order auto-moment
spectrum [23] of the OFDM signal in the form of
(26). Suppose there are L distinct frequencies
involved in the expectation term, and the distinct
frequencies are denoted by n1, n2, …, nL. By
applying (26), the expectation term can be rewritten
as:

E

24Ykþ1

i¼1

X*
�
mi

� Y2kþ1

j¼kþ2

X
��mj

�Yk0þ1

i¼1

X
�
m0

i

� Y2k0þ1

j¼k0þ2

X*
��m0

j

�35¼

E½Xp1
�
n1
�
X*q1

�
n1
��,E½Xp2

�
n2
�
X*q2

�
n2
��/

E½XpL
�
nL
�
X*qL

�
nL
��

ð30Þ

where pl and ql (l ¼ 1; 2;…; L) fulfill

p1þ/þ pL ¼ kþ k0 þ 1; ð31Þ

q1þ/þ qL ¼ kþ k0 þ 1: ð32Þ
For (30) to be nonzero, each of the individual

expectations E½Xpl
�
nl
�
X*ql

�
nl
��; l ¼ 1;…;L on the

righthand side of (30)must be nonzero.However, one

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2021;29:433e452 437



can see from (15) and (23) that E½Xpl
�
nl
�
X*ql

�
nl
�� is

equal to zero under most circumstances. This implies
that, given a combination of

�
m1;…;mkþ1;�

mkþ2;…;�m2kþ1
�
;Eq. (30)will be nonzero only for few

combinations of
�
m0

1;…;m0
k0þ1;�m0

k0þ2;…; �m0
2k0þ1

�
;

which in turn implies that at most only few Volterra
kernel coefficients in the form of
H2k0þ1

�
m0

1;m
0
2;/;m0

2k0þ1
�
can actually survive in the

expression of (29). This makes the derivation of a
simple closed-from solution for the Volterra kernels
from the system equations given by (29) possible.
Based on the above analysis, in the following we

consider the derivation of the optimal MMSE esti-
mate of the Volterra kernels for a 5th-order
nonlinear OFDM channel. In this case, the input
and output of the channel is related by (2) with K ¼
2, hence we need to solve the equations described
by (29) with K ¼ 2 and k ¼ 0; 1; 2: We assume the
QAM is adopted in the subchannels of OFDM in the
derivation. The PSK counterpart is simply a special
case of the derivation. By defining

mn

�
m
�¼E½jX�m�jn�; n¼2;4;6;8;10; ð33Þ
We consider different combinations of

�
k; k0

�
in

(30) as follows.
For

�
k; k0

� ¼ �
0; 0

�
in (30), we have

E½X*
�
m
�
X
�
m
��¼m2

�
m
� ð34Þ

For
�
k; k0

� ¼ �
0; 1

�
in (30), we have

E
�
X*

�
m
�
X
�
m0

1

�
X
�
m0

2

�
X*

��m0
3

��¼8>>><>>>:
m4ðmÞ; 〈m;m0

1;m
0
2;�m0

3〉 /1

m2

�
m
�
m2

�
m0

2

�
; 〈m;m0

1〉〈m
0
2;�m0

3〉 /2;

0; otherwise

ð35Þ

where (15) has been used in deriving (35). In addi-
tion, we have used the notation 〈 〉 to denote that all
the indices within the same 〈 〉 are equal, but the
indices in different 〈 〉 are different. Furthermore,
one should keep in mind that m0

1 and m0
2 (but not �

m0
3) are interchangeable.
For

�
k; k0

� ¼ �
0; 2

�
in (30), we apply (15) to obtain

E
�
X*

�
m
�
X
�
m0

1

�
X
�
m0

2

�
X
�
m0

3

�
X*

��m0
4

�
X*

��m0
5

��¼8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m6

�
m
�
;

〈m;m0
1;m

0
2;m

0
3;�m0

4;�m0
5〉

m4

�
m0

1

�
m2

�
m
�
;

〈m;m0
3〉〈m

0
1;m

0
2;�m0

4;�m0
5〉

m4

�
m
�
m2

�
m0

1

�
;

〈m;m0
2;m

0
3;�m0

4〉〈m
0
1;�m0

5〉

m2

�
m
�
m2

�
m0

1

�
m2

�
m0

2

�
;

〈m;m0
3〉〈m

0
1;�m0

5〉〈m
0
2;�m0

4〉

0; otherwise

ð36Þ
Similarly in (36), it is understood that m0

1, m
0
2,

and m0
3 are interchangeable, and �m0

4 and �m0
5 are

interchangeable.
For

�
k; k0

� ¼ �
1; 1

�
in (30), we again apply (15) to

yield

E
�
X*

�
m1

�
X*

�
m2

�
X
��m3

�
X
�
m0

1

�
X
�
m0

2

�
X*

��m0
3

��¼8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m6

�
m
�
;

〈m;m1;m2;�m3;m0
1;�m0

2;�m0
3〉 /1

m4ðm1Þm2ð �m3Þ;
〈m1;m0

1;m2;m0
2〉〈�m3;�m0

3〉 /2

m4

�
m2

�
m2

�
m
�
;

〈m;m1;m0
1〉〈m2;�m3;m0

2;�m0
3〉 /3

m4

�
m
�
m2

�
m20

�
;

〈m;m1;m2;�m3;m0
1〉〈m

0
2;�m0

3〉 /4

m4

�
m
�
m2

�
m2

�
;

〈m;m0
1;m

0
2;�m3;m1〉〈m2;�m0

3〉 /5

m2ðm1Þm2ðm2Þm2ð �m3Þ;
〈m1;m0

1〉〈m2;m0
2〉〈�m3;�m0

3〉 /6

m2

�
m
�
m2

�
m2

�
m2

��m3
�
;

〈m;m1;m0
1〉〈m2;�m3〉〈m0

2;�m0
3〉 /7

0; otherwise

ð37Þ
In (37), it is understood that m1 and m2 are

interchangeable, and m0
1 and m0

2 are
interchangeable.
For

�
k; k0

� ¼ �
1; 2

�
in (30), we follow the same

scenario to get
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In (38), it is understood that m1 and m2 are inter-
changeable, m0

1, m
0
2, and m0

3 are interchangeable, and
�m0

4 and �m0
5 are interchangeable. Notice that there

are two cares which lead to the same result
m6
�
m1

�
m2
�
m2

�
, they are listed separatelyar (38-3) and

(38-4). Similarly, the two cares (38-10) and (38-11)
both yield the same result m4

�
m1

�
m2
�
m2

�
m2
�
m0

3

�
and

are also listed separately.
Finally, for

�
k; k0

� ¼ �
2; 2

�
in (30), the analysis can

be categorized into the following cases.
Case 1: all the frequency indices are equal, we will

refer to this case as the 〈10〉 case hereafter. In this
case,

Eq:
�
30

�¼ E
�
X*

�
m1

�
X*

�
m2

�
X*

�
m3

�
X
��m4

�
X
��m5

�
X
�
m0

1

�
X
�
m0

2

�
X
�
m0

3

�
X*

��m0
4

�
X*

��m0
5

��
¼ m10

�
m1

�
; 〈m1;m2;m3;�m4;�m5;m0

1;m
0
2;m

0
3;

�m0
4;�m0

5〉

ð39Þ

Case 2: the 〈8〉〈2〉 case. That is, eight of the ten
frequency indices are equal but different from the
other two, and the rest two frequency indices are
equal. In this case,

Eq: ð30Þ ¼8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

m8ðm1Þm2ðm0
3Þ;

〈m1;m2;m3;�m4;�m5;m0
1;m

0
2 �m0

4〉〈m
0
3;�m0

5〉/1

m8ðm1Þm2ðm3Þ;
〈m1;m2;�m4;m0

1;m
0
2;m

0
3;�m0

4;�m0
5〉〈m3;�m5〉;/2

〈m1;m2;�m4;�m5;m0
1;m

0
2;�m0

4;�m0
5〉〈m3;m0

3〉/3

m8ðm1Þm2ð�m5Þ;
〈m1;m2;m3;�m4;m0

1;m
0
2;m

0
3;�m0

4〉〈�m5; �m0
5〉/4

0; otherwise

ð40Þ

Case 3: the 〈6〉〈4〉 case.

E
�
X*ðm1ÞX*ðm2ÞXð�m3ÞX

�
m0

1

�
X
�
m0

2

�
X
�
m0

3

�
X*

��m0
4

�
X*

��m0
5

��¼
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m8ðm1Þ;
〈m1;m2;�m3;m0

1;m
0
2;m

0
3;�m0

4;�m0
5〉 /1

m6ðm1Þm2

�
m0

3

�
;

〈m1;m2;�m3;m0
1;m

0
2;�m0

5〉〈m
0
3;�m0

4〉 /2

m6ðm1Þm2ðm2Þ;
〈m1;m0

1;m
0
2;m

0
3;�m0

4;�m0
5〉〈m2;�m3〉; /3

〈m1;�m3;m0
1;m

0
2;�m0

4;�m0
5〉〈m2;m0

3〉 /4

m6ðm1Þm2ð�m3Þ;
〈m1;m2;m0

1;m
0
2;m

0
3;�m0

5〉〈�m3;�m0
4〉 /5

m4ðm1Þm4

�
m0

2

�
;

〈m1;m2;�m3;m0
1〉〈m

0
2;m

0
3;�m0

4;�m0
5〉 /6

m4ðm1Þm4ðm2Þ;
〈m1;m0

1;m
0
2;�m0

5〉〈m2;�m3;m0
3;�m0

4〉 /7

m4ðm1Þm4ð�m3Þ;
〈m1;m2;m0

1;m
0
2〉〈�m3;m0

3;�m0
4;�m0

5〉 /8

m4ðm1Þm2

�
m0

2

�
m2

�
m0

3

�
;

〈m1;m2;�m3;m0
1〉〈m

0
2;�m0

4〉〈m
0
3;�m0

5〉 /9

m4ðm1Þm2ðm2Þm2

�
m0

3

�
;

〈m1;m0
1;m

0
2;�m0

4〉〈m2;�m3〉〈m0
3;�m0

5〉;

〈m1;�m3;m0
1;�m0

4〉〈m2;m0
2〉〈m

0
3;�m0

5〉

/10

/11

m4ðm1Þm2ð�m3Þm2

�
m0

3

�
;

〈m1;m2;m0
1;m

0
2〉〈�m3;�m0

4〉〈m
0
3;�m0

5〉 /12

m4ðm1Þm2ðm2Þm2ð�m3Þ;
〈m1;m0

1;m
0
2;�m0

4〉〈m2;m0
3〉〈�m3;�m0

5〉 /13

m4ð�m3Þm2ðm1Þm2ðm2Þ;
〈�m3;m0

1;�m0
4;�m0

5〉〈m1;m0
2〉〈m2;m0

3〉 /14

m4

�
m0

1

�
m2ðm1Þm2ðm2Þ;

〈m0
1;m

0
2;�m0

4;�m0
5〉〈m1;m0

3〉〈m2;�m3〉 /15

m2ðm1Þm2ðm2Þm2

�
m0

2

�
m2

�
m0

3

�
;

〈m1;m0
1〉〈m2;�m3〉〈m0

2;�m0
4〉〈m

0
3;�m0

5〉 /16

m2ðm1Þm2ðm2Þm2ð�m3Þm2

�
m0

3

�
;

〈m1;m0
1〉〈m2;m0

2〉〈�m3;�m0
4〉〈m

0
3;�m0

5〉 /17

0; otherwise

ð38Þ
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Eq:
�
30

�¼8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m6

�
m1

�
m4

�
m0

2

�
;

〈m1;m2;m3;�m4;�m5;m0
1〉〈m

0
2;m

0
3;�m0

4;�m0
5〉 /1

m6

�
m1

�
m4

��m5
�
;

〈m1;m2;m3;�m4;m0
1;m

0
2〉〈�m5;m0

3;�m0
4;�m0

5〉;

〈m1;m2;m3;m0
1;m

0
2;m

0
3〉〈�m4;�m5;�m0

4;�m0
5〉

/2

/3

m6

�
m1

�
m4

�
m3

�
;

〈m1;m2;m0
1;m

0
2;m

0
3;�m0

4〉〈m3;�m4;�m5;�m0
5〉; /4

〈m1;�m4;�m5;m0
1;�m0

4;�m0
5〉〈m2;m3;m0

2;m
0
3〉; /5

〈m1;m2;�m4;�m5;m0
1;�m0

4〉〈m3;m0
2;m

0
3;�m0

5〉; /6

〈m1;m0
1;m

0
2;m

0
3;�m0

4;�m0
5〉〈m2;m3;�m4;�m5〉; /7

〈m1;�m4;m0
1;m

0
2;�m0

4;�m0
5〉〈m2;m3;�m5;m0

3〉;

〈m1;m2;�m4;m0
1;m

0
2;�m0

4〉〈m3;�m5;m0
3;�m0

5〉

/8

/9

0; otherwise

ð41Þ
Case 4: the 〈6〉〈2〉〈2〉 case.

Eq:
�
30

�¼8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m6

�
m1

�
m2

�
m0

2

�
m2

�
m0

3

�
;

〈m1;m2;m3;�m4;�m5;m0
1〉〈m

0
2;�m0

4〉〈m
0
3;�m0

5〉 /1

m6

�
m1

�
m2

��m5
�
m2

�
m0

3

�
;

〈m1;m2;m3;�m4;m0
1;m

0
2〉〈�m5;�m0

4〉〈m
0
3;�m0

5〉 /2

m6

�
m1

�
m2

�
m3

�
m2

�
m0

3

�
;

〈m1;m2;�m4;m0
1;m

0
2;�m0

4〉〈m3;�m5〉〈m0
3;�m0

5〉; /3

〈m1;m2;�m4;�m5;m0
1;�m0

4〉〈m3;m0
2〉〈m

0
3;�m0

5〉 /4

m6

�
m1

�
m2

��m4
�
m2

��m5
�
;

〈m1;m2;m3;m0
1;m

0
2;m

0
3〉〈�m4;�m0

4〉〈�m5;�m0
5〉 /5

m6

�
m1

�
m2

�
m3

�
m2

��m5
�
;

〈m1;m2;m0
1;m

0
2;m

0
3;�m0

4〉〈m3;�m4〉〈�m5;�m0
5〉; /6

〈m1;m2;�m4;m0
1;m

0
2;�m0

4〉〈m3;m0
3〉〈�m5;�m0

5〉 /7

m6

�
m1

�
m2

�
m2

�
m2

�
m3

�
;

〈m1;�m4;m0
1;m

0
2;�m0

4;�m0
5〉〈m2;�m5〉〈m3;m0

3〉; /8

〈m1;m0
1;m

0
2;m

0
3;�m0

4;�m0
5〉〈m2;�m4〉〈m3;�m5〉; /9

〈m1;�m4;�m5;m0
1;�m0

4;�m0
5〉〈m2;m0

2〉〈m3;m0
3〉 /10

0; otherwise

ð42Þ

Case 5: the 〈4〉〈4〉〈2〉 case.

Eq:
�
30

�¼8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m4

�
m1

�
m4

�
m2

�
m2

�
m3

�
;

〈m1;�m4;m0
1;�m0

4〉〈m2;�m5;m0
2;�m0

5〉〈m3;m0
3〉; /1

〈m1;�m4;m0
1;�m0

4〉〈m2;m0
2;m

0
3;�m0

5〉〈m3;�m5〉; /2

〈m1;�m4;�m5;�m0
4〉〈m2;m0

1;m
0
2;�m0

5〉〈m3;m0
3〉 /3

m4

�
m1

�
m4

�
m2

�
m2

��m5
�
;

〈m1;�m4;m0
1;�m0

4〉〈m2;m3;m0
2;m

0
3〉〈�m5;�m0

5〉; /4

〈m1;m2;�m4;m0
1〉〈m3;m0

2;m
0
3;�m0

4〉〈�m5;�m0
5〉 /5

m4

�
m1

�
m4

��m5
�
m2

�
m3

�
;

〈m1;m2;�m4;m0
1〉〈�m5;m0

2;�m0
4;�m0

5〉〈m3;m0
3〉; /6

〈m1;m2;m0
1;m

0
2〉〈�m4;�m5;�m0

4;�m0
5〉〈m3;m0

3〉; /7

〈m1;m2;m0
1;m

0
2〉〈�m4;m0

3;�m0
4;�m0

5〉〈m3;�m5〉 /8

m4

�
m1

�
m4

�
m2

�
m2

�
m0

3

�
;

〈m1;�m4;m0
1;�m0

4〉〈m2;m3;�m5;m0
2〉〈m

0
3;�m0

5〉; /9

〈m1;m2;�m4;�m5〉〈m3;m0
1;m

0
2;�m0

4〉〈m
0
3;�m0

5〉; /10

〈m1;�m4;�m5;�m0
4〉〈m2;m3;m0

1;m
0
2〉〈m

0
3;�m0

5〉 /11

m4

�
m1

�
m4

�
m0

2

�
m2

�
m3

�
;

〈m1;m2;�m4;m0
1〉〈m

0
2;m

0
3;�m0

4;�m0
5〉〈m3;�m5〉; /12

〈m1;m2;�m4;�m5〉〈m0
1;m

0
2;�m0

4;�m0
5〉〈m3;m0

3〉 /13

0; otherwise

ð43Þ
Case 6: the 〈4〉〈2〉〈2〉〈2〉 case.
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Eq:
�
30

�¼8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

m4

�
m1

�
m2

�
m2

�
m2

�
m3

�
m2

�
m0

3

�
;

〈m1;�m4;m0
1;�m0

4〉〈m2;�m5〉〈m3;m0
2〉〈m

0
3;�m0

5〉; /1

〈m1;m0
1;m

0
2;�m0

4〉〈m2;�m4〉〈m3;�m5〉〈m0
3;�m0

5〉; /2

〈m1;�m4;�m5;�m0
4〉〈m2;m0

1〉〈m3;m0
2〉〈m

0
3;�m0

5〉 /3

m4

�
m0

1

�
m2

�
m1

�
m2

�
m2

�
m2

�
m3

�
;

〈m0
1;m

0
2;�m0

4;�m0
5〉〈m1;�m4〉〈m2;�m5〉〈m3;m0

3〉 /4

m4

�
m1

�
m2

�
m3

�
m2

�
m0

2

�
m2

�
m0

3

�
;

〈m1;m2;�m4;m0
1〉〈m3;�m5〉〈m0

2;�m0
4〉〈m

0
3;�m0

5〉; /5

〈m1;m2;�m4;�m5〉〈m3;m0
1〉〈m

0
2;�m0

4〉〈m
0
3;�m0

5〉 /6

m4

�
m1

�
m2

��m4
�
m2

�
m0

3

�
m2

�
m3

�
;

〈m1;m2;m0
1;m

0
2〉〈�m4;�m0

4〉〈m
0
3;�m0

5〉〈m3;�m5〉; /7

〈m1;m2;�m4;m0
1〉〈�m5;�m0

4〉〈m
0
2;�m0

5〉〈m3;m0
3〉 /8

m4

�
m1

�
m2

�
m3

�
m2

��m4
�
m2

��m5
�
;

〈m1;m2;m0
1;m

0
2〉〈m3;m0

3〉〈�m4;�m0
4〉〈�m5;�m0

5〉 /9

m4

�
m1

�
m2

�
m2

�
m2

�
m3

�
m2

��m5
�
;

〈m1;�m4;m0
1;�m0

4〉〈m2;m0
2〉〈m3;m0

3〉〈�m5;�m0
5〉; /10

〈m1;m0
1;m

0
2;�m0

4〉〈m2;�m4〉〈m3;m0
3〉〈�m5;�m0

5〉 /11

m4

��m4
�
m2

�
m1

�
m2

�
m2

�
m2

�
m3

�
;

〈�m4;m0
1;�m0

4;�m0
5〉〈m1;�m5〉〈m2;m0

2〉〈m3;m0
3〉; /12

〈�m4;�m5;�m0
4;�m0

5〉〈m1;m0
1〉〈m2;m0

2〉〈m3;m0
3〉 /13

0; otherwise

ð44Þ
Case 7: the 〈2〉〈2〉〈2〉〈2〉〈2〉 case.

Eq:
�
30

�¼8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

m2

�
m1

�
m2

�
m2

�
m2

�
m3

�
m2

��m5
�
m2

�
m0

3

�
;

〈m1;�m4〉〈m2;m0
1〉〈m3;m0

2〉〈�m5;�m0
4〉〈m

0
3;�m0

5〉 /1

m2

�
m1

�
m2

�
m2

�
m2

�
m3

�
m2

�
m0

2

�
m2

�
m0

3

�
;

〈m1;�m4〉〈m2;�m5〉〈m3;m0
1〉〈m

0
2;�m0

4〉〈m
0
3;�m0

5〉 /2

m2

�
m1

�
m2

�
m2

�
m2

�
m3

�
m2

��m4
�
m2

��m5
�
;

〈m1;m0
1〉〈m2;m0

2〉〈m3;m0
3〉〈�m4;�m0

4〉〈�m5;�m0
5〉 /3

0; otherwise

ð45Þ
Case 8: other than Cases 1 to 7.

Eq:
�
30

�¼0 ð46Þ
One should keep in mind that, In (39)e(45), we

implicitly imply m1, m2, and m3 are interchangeable,
�m4 and �m5 are interchangeable, m0

1, m
0
2, and m0

3

are interchangeable, and �m0
4 and �m0

5 are
interchangeable.
Note that only k � k0 is considered in the above

derivation, one can easily see that the result for the
k> k0 case is simply the conjugate of that for the k<
k0 case.

5. Derivation of the formula for 5th-order
nonlinear OFDM channels

The analysis in Section 4 indicates that, most of
the higher-order auto-moment spectra in (29) are
equal to zero, and the remaining non-zero ones can
be expressed in terms of mn

�
m
�
; n ¼ 2; 4; 6; 8; 10; as

shown in (34)e(45).
By substituting the obtained higher-order auto-

moment spectra into (29), we are able to solve the
system equations in the form of (29) and obtain a
simple formula for the Volterra kernels. As
explained in (8)e(13), there are some indistin-
guishable Volterra kernel coefficients due to their
symmetry properties. To simplify the expression of
equations in the derivation, we define the following
modified Volterra kernels:

H 3
�
m j21;m3

�¼H3
�
mj21;m3

�
P
�
mj21;m3

� ð47Þ

H 5
�
m j31;m j54

�¼H5
�
mj31;mj54

�
P
�
mj31;mj54

� ð48Þ

where P
�
mj21;m3

�
and P

�
mj31;mj54

�
are defined in (13).

The modified Volterra kernels are simply the sums
of their corresponding original Volterra kernels
which are considered as the same under the sym-
metry properties. For example, the two kernel co-
efficients H3(1,2,3) and H3(2,1,3) are multiplied by
the same input product X(1)X(2)X*(3) and hence are
considered as equal. Therefore,
H 3

�
1; 2; 3

� ¼ 2H3
�
1; 2; 3

�
: Similarly, there are 12

kernel coefficients in the form of H5(1,2,3,4,5) that
are multiplied by the same input product
X
�
1
�
X
�
2
�
X
�
3
�
X*

�
4
�
X*

�
5
�
; they are considered as

equal and hence H 5
�
1; 2; 3;4; 5

� ¼ 12H5
�
1; 2; 3; 4; 5

�
:

In the following, we will first solve H 5
�
m j31;m j54

�
and H 3

�
m j21;m3

�
then use (48) and (47) to obtain

H5
�
mj31;mj54

�
and H3

�
mj21;m3

�
; respectively.

We start from considering k ¼ 2 and K ¼ 2 in (29),
where the lefthand side of the equation
is E½X*

�
m1

�
X*

�
m2

�
X*

�
m3

�
X
��m4

�
X
��m5

�
Y
�
m
��:

Assume there are I distinct values in the set
fm1;m2;m3;�m4;�m5g; we can denote the I distinct
values as i1, i2, …, iI :
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We first consider I ¼ 5. Under the circumstances,
the only possible situation where (30) can be nonzero
is given by (45-3) in Case 7 (i.e., Case 〈2〉〈2〉〈2〉〈2〉〈2〉).
This is because that in any other situation there
must be at least one X(i) which can not be paired
with its own kind and hence would be equal to
zero due to the fact that X(i) is zero mean. Taking
the 3rd-order kernel coefficient H3(1,2,3) in Eq. (29)
as an example, it is multiplied by the quantity
E½X*

�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i4
�
X
�
i5
�
,X

�
i1
�
X
�
i2
�
X*

�
i3
��.

Since X(i1),…,X(i5) are zero-mean independent
random variables, we have

E½X*
�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i4
�
X
�
i5
�
,X

�
i1
�
X
�
i2
�
X*

�
i3
��

¼ E
���X�i1�j2�E���X�i2�j2�E��X*

�
i3
��2�E�X�i4��

E½X�i5�� ¼ 0

ð49Þ
as a consequence of E½X�i4�� ¼ E½X�i5�� ¼ 0: The fact
that only Case 〈2〉〈2〉〈2〉〈2〉〈2〉 survives in the right-
hand side of (29) makes (29) to become

E½X*
�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i4
�
X
�
i5
�
Y
�
m
��

¼m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
m2

�
i4
�
m2

�
i5
�
,H 5

�
i1; i2; i3; i4; i5

�
;

ð50Þ
where (45-3) and (48) have been used in deriving
(50).
Next we consider I ¼ 4. This implies that two of

the indices in the set of {m1, m2, m3, �m4, �m5} are
equal. Recall that m1, m2, and m3 are interchange-
able, and �m4 and �m5 are interchangeable. This
suggests that the two equal indices can be both in
{m1, m2, m3} or both in f � m4; � m5g, or one in {m1,
m2, m3} and the other in f�m4;�m5g Therefore,
there are three possible distinct equations in the
form of (29) for k ¼ 2 and I ¼ 4. For equal indices
both in fm1;m2;m3g; the only possible situation
where (30) can be nonzero is given by (44-9) in Case
6 (i.e., the 〈4〉〈2〉〈2〉〈2〉 case). This causes (29) to
become

E½X*
�
i1
�
X*

�
i1
�
X*

�
i2
�
X
�
i3
�
X
�
i4
�
Y
�
m
�� ¼

m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
m2

�
i4
�
,H 5

�
i1; i1; i2; i3; i4

�
:

ð51Þ

Similarly, for equal indices both in
f�m4;�m5g; one can easily see that (29) becomes
(by using (44-13) in Case 6)

E½X*
�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i4
�
X
�
i4
�
Y
�
m
��

¼m4

�
i4
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H 5

�
i1; i2; i3; i4; i4

�
:

ð52Þ

Following the same Scenario, for one in {m1, m2,
m3} and the other in f�m4;�m5g; we find that there
are several nonzero terms on the right hand side of
(29). These terms are resulted from the situations
given by (38-17), (44-3), (44-8), (44-10), and (45-1).
This simplifies (29) to become

E½X*
�
i1
�
X*

�
i3
�
X*

�
i4
�
X
�
i2
�
X
�
i4
�
Y
�
m
�� ¼

m2

�
i4
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H35

�
i1; i3; i2

�þ
m4

�
i3
�
m2

�
i1
�
m2

�
i2
�
m2

�
i4
�
,H 5

�
i1; i3; i3; i2; i3

�þ
m4

�
i2
�
m2

�
i1
�
m2

�
i3
�
m2

�
i4
�
,H 5

�
i1; i2; i3; i2; i2

�þ
m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
m2

�
i4
�
,H 5

�
i1; i1; i3; i1; i2

�þ�
m4

�
i4
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
��

m2

�
i4
�2
m2

�
i1
�
m2

�
i2
�
m2

�
i3
��
,H 5

�
i1; i3; i4; i2; i4

�
;

ð53Þ

where the new symbol H35
�
,; ,; ,

�
denotes the sum

of certain 3rd- and 5th-order Volterra kernel co-
efficients and is defined by

H35
�
i; j;k

�¼ H 3
�
i; j;k

�þ
XM

k0¼�M;k0si;j;k

m2

�
k0
�
,H 5

�
i; j;k0;k;�k0

�
:

ð54Þ

For I ¼ 3, the three distinct indices can be
distributed as 〈3〉〈1〉〈1〉 (i.e., 3 out of the 5 indices are
equal) or 〈2〉〈2〉〈1〉 (i.e., two pairs of equal indices).
For the 〈3〉〈1〉〈1〉 case, the three equal indices can be
all in fm1;m2;m3g; two in fm1;m2;m3g; or just one in
fm1;m2;m3g In these situations, Eq. (29) yields the
following three equations accordingly:

E½X*
�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i2
�
X
�
i3
�
Y
�
m
��

¼m6

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i1; i2; i3

� ð55Þ

E½X*
�
i1
�
X*

�
i1
�
X*

�
i3
�
X
�
i1
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H35

�
i1; i3; i2

�þ
m4

�
i1
�
m4

�
i3
�
m2

�
i2
�
,H 5

�
i1; i3; i3; i2; i3

�þ
m4

�
i1
�
m4

�
i2
�
m2

�
i3
�
,H 5

�
i1; i2; i3; i2; i2

�þ
m6

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i3; i1; i2

�
ð56Þ
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E½X*
�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i2
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i2
�
m2

�
i1
�
m2

�
i3
�
,H35

�
i1; i3; i2

�þ
m4

�
i2
�
m4

�
i3
�
m2

�
i1
�
,H 5

�
i1; i3; i3; i2; i3

�þ
m6

�
i2
�
m2

�
i1
�
m2

�
i3
�
,H 5

�
i1; i2; i3; i2; i2

�þ
m4

�
i1
�
m4

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i3; i1; i2

�
ð57Þ

where (42-5) has been used in deriving (55), Eqs.
(38e13), (42e7), (43e3), (43e5), and (44-10) have
been used in deriving (56), and Eqs. (38e14),
(42e10), (43e6), and (44e12) have been used in
deriving (57).
For the 〈2〉〈2〉〈1〉 case, the two pairs can be one in

{m1, m2, m3} the other in f�m4;�m5g; one in {m1, m2,
m3} the other splits across {m1, m2, m3} and
f�m4;�m5g; or both split across {m1, m2, m3} and
f�m4;�m5g These correspondingly simplify (29) to
the following three equations:

E½X*
�
i1
�
X*

�
i1
�
X*

�
i3
�
X
�
i2
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i1
�
m4

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i3; i2; i2

� ð58Þ

E½X*
�
i1
�
X*

�
i1
�
X*

�
i3
�
X
�
i2
�
X
�
i3
�
Y
�
m
�� ¼

m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H35

�
i1; i1; i2

�þ
m6

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i1; i1; i2

�þ m4

�
i1
�
m4

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i2; i2; i2

�þ �
m4

�
i1
�
m4

�
i3
�
m2

�
i2
�� m4

�
i1
�
m2

�
i3
�2
m2

�
i2
�

ð59Þ

E½X*
�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i2
�
X
�
i3
�
Y
�
m
�� ¼

m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H135

�
i1
�þ �

m4

�
i2
�
m2

�
i1
�
m2

�
i3
��

m2

�
i2
�2�

m2

�
i1
�
m2

�
i3
�
,H35

�
i1; i2; i2

�þ
m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H35

�
i1; i1; i1

�þ�
m4

�
i3
�
m2

�
i1
�
m2

�
i2
�� m2

�
i3
�2
m2

�
i1
�
m2

�
i2
��
,

H35

�
i1; i3; i3

�þ m6

�
i1
�
m2

�
i2
�
m2

�
i3
�
,

H 5
�
i1; i1; i1; i1; i1

�þ �
m6

�
i2
�
m2

�
i1
�
m2

�
i3
��

m4

�
i2
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
��
,H 5

�
i1; i2; i2; i2; i2

�þ�
m4

�
i1
�
m4

�
i2
�
m2

�
i3
�� m4

�
i1
�
m2

�
i2
�2
m2

�
i3
��
,

H 5
�
i1; i1; i2; i1; i2

�þ �
m6

�
i3
�
m2

�
i1
�
m2

�
i2
��

m4

�
i3
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
��
,H 5

�
i1; i3; i3; i3; i3

�þ�
m4

�
i1
�
m4

�
i3
�
m2

�
i2
�� m4

�
i1
�
m2

�
i3
�2
m2

�
i2
��
,

H 5
�
i1; i1; i3; i1; i3

�þ �
m4

�
i2
�
m4

�
i3
�
m2

�
i1
��

m4

�
i2
�
m2

�
i3
�2
m2

�
i1
�� m4

�
i3
�
m2

�
i2
�2
m2

�
i1
�þ

m2

�
i2
�2
m2

�
i3
�2
m2

�
i1
��
,H 5

�
i1; i2; i3; i2; i3

�
ð60Þ

where the new symbol H135
�
,
�
in (60) denotes the

sum of certain first-, 3rd-, and 5th-order Volterra
kernel coefficients and is defined by

H135
�
i
�¼H

�
i
�þ XM

j0¼�M;j0si

m2

�
j0
�
,H35

�
i; j0; j0

� ð61Þ

Note that (43-7) has been used in deriving (58),
Eqs. (38e10), (38e12), (38e16), (42e2), (43e11), and
(44e7) have been used in deriving (59), and Eqs.
(36e4), (38e9), (38e10), (38e16), (42e1), (42e4),
(43e1), (43e12), (44e1), (44e5), (44e6), (45e1), and
(45e2) have been used in deriving (60).
Similarly, For I ¼ 2, the two distinct indices can

only be distributed as 〈3〉〈2〉 or 〈4〉〈1〉. For the 〈3〉〈2〉
case, the three equal indices can be all in {m1, m2,
m3}, one in {m1, m2, m3} and two in {�m4, �m5}, or
two in {m1, m2, m3} and one in {�m4, �m5}. Under
these circumstances, Eq. (29) results in the following
three equations accordingly:

E½X*
�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i2
�
X
�
i2
�
Y
�
m
�� ¼

m6

�
i1
�
m4

�
i2
�
,H 5

�
i1; i1; i1; i2; i2

� ð62Þ

E½X*
�
i1
�
X*

�
i1
�
X*

�
i2
�
X
�
i2
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i2
�
m4

�
i1
�
,H35

�
i1; i1; i2

�þ
m6

�
i1
�
m4

�
i2
�
,H 5

�
i1; i1; i1; i1; i2

�þ
m6

�
i2
�
m4

�
i1
�
,H 5

�
i1; i1; i2; i2; i2

� ð63Þ

JOURNAL OF MARINE SCIENCE AND TECHNOLOGY 2021;29:433e452 443



E½X*
�
i1
�
X*

�
i1
�
X*

�
i2
�
X
�
i1
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i1
�
m2

�
i2
�
,H135

�
i1
�þ�

m4

�
i1
�
m4

�
i2
�� m4

�
i1
�
m2

�
i2
�2�

,H35
�
i1; i2; i2

�þ
m6

�
i1
�
m2

�
i2
�
,H35

�
i1; i1; i1

�þ
m8

�
i1
�
m2

�
i2
�
,H 5

�
i1; i1; i1; i1; i1

�þ�
m6

�
i2
�
m4

�
i1
�� m4

�
i1
�
m4

�
i2
�
m2

�
i2
��
,

H 5
�
i1; i2; i2; i2; i2

�þ �
m6

�
i1
�
m4

�
i2
�� m6

�
i1
�
m2

�
i2
�2�

,

H 5
�
i1; i1; i2; i1; i2

�
ð64Þ

where (41-3) has been used in deriving (62), Eqs.
(38e8), (41e2), (41e5), and (43e4) have been used in
deriving (63), and Eqs. (36e3), (38e2), (38e7),
(38e10), (40e1), (41e6), (41e8), (42e3), (43e1),
(43e10), and (44e2) have been used in deriving (64).
For the 〈4〉〈1〉 case, the only different index can be

in either {�m4, �m5} or fm1;m2;m3g These make (29)
to give the following two equations correspondingly:

E½X*
�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i1
�
X
�
i2
�
Y
�
m
�� ¼

m6

�
i1
�
m2

�
i2
�
,H35

�
i1; i1; i2

�þ
m8

�
i1
�
m2

�
i2
�
,H 5

�
i1; i1; i1; i1; i2

�þ
m6

�
i1
�
m4

�
i2
�
,H 5

�
i1; i1; i2; i2; i2

� ð65Þ

E½X*
�
i1
�
X*

�
i2
�
X*

�
i2
�
X
�
i2
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i1
�
m2

�
i2
�
,H135

�
i1
�þ �

m6

�
i2
�
m2

�
i1
��

m4

�
i2
�
m2

�
i1
�
m2

�
i2
��
,H35

�
i1; i2; i2

�þ
m4

�
i1
�
m4

�
i2
�
,H35

�
i1; i1; i1

�þ m6

�
i1
�
m4

�
i2
�
,

H 5
�
i1; i1; i1; i1; i1

�þ �
m8

�
i2
�
m2

�
i1
�� m4

�
i1
�2
m2

�
i1
��
,

H 5
�
i1; i2; i2; i2; i2

�þ �
m6

�
i2
�
m4

�
i1
��

m4

�
i1
�
m4

�
i2
�
m2

�
i2
��
,H 5

�
i1; i1; i2; i1; i2

�
ð66Þ

where Eqs. (38e5), (40e4), (41e4), and (42e6) have
been used in deriving (65), and Eqs. (36e3), (38e4),
(38e6), (38e10), (38e15), (40e3), (41e1), (41-8),
(42e8), (43e9), (43e10), (43e12), and (44e2) have
been used in deriving (66).
Finally, for I ¼ 1; all the indices are equal. Eq. (29)

yields (by using Eqs. (36e1), (38e1), (38e3), (39),
(40e2), (41e7), and (42e9))

E½X*
�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i1
�
X
�
i1
�
Y
�
m
�� ¼

m6

�
i1
�
,H135

�
i1
�þ m8

�
i1
�
,H35

�
i1; i1; i1

�þ
m10

�
i1
�
,H 5

�
i1; i1; i1; i1; i1

� ð67Þ

We next consider k ¼ 1 and K ¼ 2 in (29), where
the lefthand side of the equation is
E½X*

�
m1

�
X*

�
m2

�
X
� � m3

�
Y
�
m
��. Assume there are I

distinct values in the set fm1;m2;�m3g; we can

denote the distinct values as i1, i2,… iI. Following the
same scenario, one can easily see that I ¼ 3 leads
(29) to (by using (37-6), (38-13), (38-14), and (38-17))

E½X*
�
i1
�
X*

�
i3
�
X
�
i2
�
Y
�
m
�� ¼

m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H35

�
i1; i3; i2

�þ
m4

�
i3
�
m2

�
i1
�
m2

�
i2
�
,H 5

�
i1; i3; i3; i2; i3

�þ
m4

�
i2
�
m2

�
i1
�
m2

�
i3
�
,H 5

�
i1; i2; i3; i2; i2

�þ
m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i3; i1; i2

�
ð68Þ

The I ¼ 2 case can cause (29) to give either one
of the following two equations:

E½X*
�
i1
�
X*

�
i1
�
X
�
i2
�
Y
�
m
�� ¼

m4

�
i1
�
m2

�
i2
�
,H35

�
i1; i1; i2

�þ
m6

�
i1
�
m2

�
i2
�
,H 5

�
i1; i1; i1; i1; i2

�þ
m4

�
i1
�
m4

�
i2
�
,H 5

�
i1; i1; i2; i2; i2

� ð69Þ

E½X*
�
i1
�
X*

�
i2
�
X
�
i2
�
Y
�
m
�� ¼

m2

�
i1
�
m2

�
i2
�
,H135

�
i1
�þ �

m4

�
i2
�
m2

�
i1
��

m2

�
i2
�2
m2

�
i1
��
,H35

�
i1; i2; i2

�þ m4

�
i1
�
m2

�
i2
�
,

H35
�
i1; i1; i1

�þ m6

�
i1
�
m2

�
i2
�
,H 5

�
i1; i1; i1; i1; i1

�þ�
m6

�
i2
�
m2

�
i1
�� m4

�
i2
�
m2

�
i1
�
m2

�
i2
��
,

H 5
�
i1; i2; i2; i2; i2

�þ �
m4

�
i1
�
m4

�
i2
�� m4

�
i1
�
m2

�
i2
�2�

,

H 5
�
i1; i1; i2; i1; i2

�
ð70Þ

where (37-2), (38-5), (38-8), and (38-12) have been
used in deriving (69), and (35-2), (37-4), (37-5), (37-7),
(38-3), (38-4), (38-7), (38-10), (38-11), (38-15), and (38-
16) have been used in deriving (70). The I ¼ 1 case
can only lead (29) to (by using (35-1), (36-1), (37-4),
(38-1), (38-2), (38-6), and (38-9))

E½X*
�
i1
�
X*

�
i1
�
X
�
i1
�
Y
�
m
�� ¼

m4

�
i1
�
,H135

�
i1
�þ m6

�
i1
�
,H35

�
i1; i1; i1

�þ
m8

�
i1
�
,H 5

�
i1; i1; i1; i1; i1

� ð71Þ

Finally, we consider k ¼ 0 and K ¼ 2 in (29),
where the lefthand side of the equation is
E½X*

�
m1

�
Y
�
m
��. Since these is only one distinct

index, we assume m1 ¼ i1 and (29) becomes (by
using (34), (35-1), (35-2), (36-2), (36-3), (36-4), and
(37-1))

E½X*
�
i1
�
Y
�
m
�� ¼ m2

�
i1
�
,H135

�
i1
�þ

m4

�
i1
�
,H35

�
i1; i1; i1

�þ m6

�
i1
�
,H 5

�
i1; i1; i1; i1; i1

�
ð72Þ
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Note that (51)e(53), (55)e(60), and (62)e(72)
comprise all the different-type system equations in
the form of (29) for a 5th-order OFDM nonlinear
channel. By solving these system equations, we can
obtain the Volterra kernels of the 5th-order OFDM
nonlinear channel. We will proceed by solving the
5th-order Volterra kernel coefficients first, the 3rd-
order ones next, and the first-order ones last.
By observing (50), (51), (52), (55), (58), and (62) we

find that, there in only one Volterra kernel coeffi-
cient in each of the equations. Therefore, these
Volterra kernel coefficients can be easily solved
independently as follows, respectively:

H 5
�
i1; i2; i3; i4; i5

�¼
E½X*

�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i4
�
X
�
i5
�
Y
�
m
��

m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
m2

�
i4
�
m2

�
i5
� ð73Þ

H 5
�
i1; i1; i2; i3; i4

�¼
E½X*

�
i1
�
X*

�
i1
�
X*

�
i2
�
X
�
i3
�
X
�
i4
�
Y
�
m
��

m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
m2

�
i4
� ð74Þ

H 5

�
i1; i2; i3; i4; i4

�¼
E½X*

�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i4
�
X
�
i4
�
Y
�
m
��

m4

�
i4
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
� ð75Þ

H 5
�
i1; i1; i1; i2; i3

�¼
E½X*

�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i2
�
X
�
i3
�
Y
�
m
��

m6

�
i1
�
m2

�
i2
�
m2

�
i3
� ð76Þ

H 5
�
i1; i1; i3; i2; i2

�¼
E½X*

�
i1
�
X*

�
i1
�
X*

�
i3
�
X
�
i2
�
X
�
i2
�
Y
�
m
��

m4

�
i1
�
m4

�
i2
�
m2

�
i3
� ð77Þ

H 5
�
i1; i1; i1; i2; i2

�¼
E½X*

�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i2
�
X
�
i2
�
Y
�
m
��

m6

�
i1
�
m4

�
i2
� ð78Þ

Next we observe that (56), (57), and (68) contain
the same set of unknown kernel coefficients (i.e.,
H35

�
i1; i3; i2

�
; H 5

�
i1; i3; i3; i2; i3

�
; H 5

�
i1; i2; i3; i2; i2

�
;

and H 5
�
i1; i1; i3; i1; i2

�
), hence they can not be solved

independently and should be solved together. A
closer look at the equations one can find that

m4
�
i1
��(68) � m2

�
i1
��(56) eliminates 3 out of the 4

unknowns and gives H 5
�
i1; i1; i3; i1; i2

�
as follows:

H 5
�
i1;i1;i3;i1;i2

�¼�
m4

�
i1
�
,E½X*

�
i1
�
X*

�
i3
�
X
�
i2
�
Y
�
m
��

�m2

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X*

�
i3
�
X
�
i1
�
X
�
i2
�
Y
�
m
��g

=U1
�
i1;i2;i3

�
;

ð79Þ
where U1

�
i1; i2; i3

�
; is defined by (103) in the

Appendix.
Similarly, m4

�
i2
��(68) � m2

�
i2
��(57) also elimi-

nates 3 out of the 4 unknowns and gives

H 5

�
i1;i2;i3;i2;i2

�¼fm4

�
i2
�
,E

�
X*

�
i1
�
X*

�
i3
�
X
�
i2
�

Y
�
m
���m2

�
i2
�
,E½X*

�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i2
�

X
�
i2
�
Y
�
m
��g=U1

�
i1;i2;i3

�
:

ð80Þ

Note that the kernel coefficient
H 5

�
i1; i1; i3; i1; i2

�
becomes H 5

�
i1; i3; i3; i2; i3

�
when i1

and i3 are interchanged. Therefore, the formula for
H 5

�
i1; i3; i3; i2; i3

�
can be obtained from (79) by just

interchanging i1 and i3. By substituting
H 5

�
i1; i3; i3; i2; i3

�
; H 5

�
i1; i2; i3; i2; i2

�
; and H 5

�
i1; i1; i3;

i1; i2
�
into (68), one can easily solve the leftover un-

known H35
�
i1; i3; i2

�
as follows:

H35
�
i1; i3; i2

�¼ fE½X*
�
i1
�
X*

�
i3
�
X
�
i2
�
Y
�
m
���

m4

�
i3
�
m2

�
i1
�
m2

�
i2
�
,H 5

�
i1; i3; i3; i2; i3

��
m4

�
i2
�
m2

�
i1
�
m2

�
i3
�
,H 5

�
i1; i2; i3; i2; i2

��
m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H 5

�
i1; i1; i3; i1; i2

��	
fm2

�
i1
�
m2

�
i2
�
m2

�
i3
�g:

ð81Þ

We further notice that the similarity between
(53) and (68). With a closer look we find that (53) �
m2
�
i4
� � (68) leads to the following formula for

H 5
�
i1; i3; i4; i2; i4

�
:

H 5
�
i1;i3;i4;i2;i4

�¼fE�X*
�
i1
�
X*

�
i3
�
X*

�
i4
�
X
�
i2
�
X
�
i4
�

Y
�
m
���m2

�
i4
�
,E½X*

�
i1
�
X*

�
i3
�
X
�
i2
�
Y
�
m
��g=U2

�
i1;i2;i3

�
;

ð82Þ
where U1

�
i1; i2; i3

�
; is defined by (104) in the

Appendix.
The three equations (63), (65) and (69) have the

same three unknown kernel coefficientsH35
�
i1; i1; i2

�
;

H 5
�
i1; i1; i1; i1; i2

�
; and H 5

�
i1; i1; i2; i2; i2

�
, hence they
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should be solved together. Specifically, by con-
ducting m6

�
i1
��(69) � m4

�
i1
��(65) one can obtain

H 5
�
i1; i1; i1; i1; i2

�
as follows:

H 5

�
i1; i1; i1; i1; i2

�¼ fm6

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X
�
i2
�
Y
�
m
��

� m4

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i1
�
X
�
i2
�
Y
�
m
��g

=U3
�
i1; i2

�
;

ð83Þ
where U3

�
i1; i2

�
is defined by (105) in the Appendix.

Similarly, by conducting m4
�
i2
��(69) � m2

�
i2
��(63)

one gets

H 5

�
i1; i1; i2; i2; i2

�¼ fm4

�
i2
�
,E

�
X*

�
i1
�
X*

�
i1
�
X
�
i2
�

Y
�
m
�� � m2

�
i2
�
,E½X*

�
i1
�
X*

�
i1
�
X*

�
i2
�
X
�
i2
�

X
�
i2
�
Y
�
m
��g=U4

�
i1; i2

�
;

ð84Þ
where U4

�
i1; i2

�
is defined by (106) in the Appendix.

Once H 5
�
i1; i1; i1; i1; i2

�
and H 5

�
i1; i1; i2; i2; i2

�
are

solved via (83) and (84), they can be substituted into
(69), which results in

H35
�
i1; i1; i2

�¼ fE½X*
�
i1
�
X*

�
i1
�
X
�
i2
�
Y
�
m
���

m6

�
i1
�
m2

�
i2
�
,H 5

�
i1; i1; i1; i1; i2

�� m4

�
i1
�
m4

�
i2
�
,

H 5
�
i1; i1; i2; i2; i2

�g=fm4

�
i1
�
m4

�
i2
�g:

ð85Þ
In addition, by observing the similarity between

(59) and (69) we find that m2
�
i3
�� (69) � (59) leads to

H 5
�
i1; i1; i3; i2; i3

�¼ fm2

�
i3
�
,E½X*

�
i1
�
X*

�
i1
�
X
�
i2
�

Y
�
m
�� � E½X*

�
i1
�
X*

�
i1
�
X*

�
i3
�
X
�
i2
�
X
�
i3
�

Y
�
m
��g=U5

�
i1; i2; i3

�
;

ð86Þ

where U5
�
i1; i2; i3

�
is defined by (107) in the

Appendix.
Similarly, the three equations (67), (71) and (72)

have the same three unknown kernel coefficients
H135

�
i1
�
, H35

�
i1; i1; i1

�
; and H 5

�
i1; i1; i1; i1; i1

�
; hence

they are solved together as follows. By conducting
m6
�
i1
��(72) � m2

�
i1
��(67) and m4

�
i1
��(72) �

m2
�
i1
��(71), one can get two equations, say, Eq. (A)

and Eq. (B), with only the two unknowns
H 5

�
i1; i1; i1; i1; i1

�
and H35

�
i1; i1; i1

�
: By conducting

U8
�
i1
�� [Eq. (A)] - U6

�
i1
�� [Eq. (B)], one can get

H 5
�
i1; i1; i1; i1; i1

�¼ fU8
�
i1
�
,fm6

�
i1
�
,E½X*

�
i1
�
Y
�
m
���

m2

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X*

�
i1
�
X
�
i1
�
X
�
i1
�
Y
�
m
��g

�U6
�
i1
�
,fm4

�
i1
�
,E½X*

�
i1
�
Y
�
m
���

m2

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X
�
i1
�
Y
�
m
��gg	�

U8

�
i1
�
,U7

�
i1
��U6

�
i1
�2�

;

ð87Þ
where U6

�
i1
�
, U7

�
i1
�
, and U8

�
i1
�
are defined by (108),

(109), and (110), respectively in the Appendix.
Given (87), one then can use Eq. (B) to obtain

H35
�
i1; i1; i1

�¼ fm4

�
i1
�
,E½X*

�
i1
�
Y
�
m
���

m2

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X
�
i1
�
Y
�
m
���

U6
�
i1
�
,H 5

�
i1; i1; i1; i1; i1

�g=U8
�
i1
� ð88Þ

Once H 5
�
i1; i1; i1; i1; i1

�
and H35

�
i1; i1; i1

�
are

solved via (87) and (88), they can be substituted into
(72) to solve H135

�
i1
�
:

H135

�
i1
�¼fE½X*

�
i1
�
Y
�
m
���m4

�
i1
�
,H35

�
i1;i1;i1

��
m6

�
i1
�
,H 5

�
i1;i1;i1;i1;i1

�g=m2

�
i1
� ð89Þ

Following the same scenario, we find the three
equations (64), (66) and (70) have the same three
unknown kernel coefficients H35

�
i1; i2; i2

�
;

H 5
�
i1; i2; i2; i2; i2

�
; and H 5

�
i1; i1; i2; i1; i2

�
. The other

kernel coefficients H 5
�
i1; i1; i1; i1; i1

�
; H35

�
i1; i1; i1

�
;

and H135
�
i1
�
in the three equations have already

been solved in (87)e(89) and are known by now.
Therefore, by conducting m2

�
i1
�� (64) � m4

�
i1
��

(70), one can obtain

H 5
�
i1; i1; i2; i1; i2

�¼ fm2

�
i1
�
,E½X*

�
i1
�
X*

�
i1
�
X*

�
i2
�

X
�
i1
�
X
�
i2
�
Y
�
m
�� � m4

�
i1
�
,E½X*

�
i1
�
X*

�
i2
�

X
�
i2
�
Y
�
m
�� �U9

�
i1; i2

�
,H35

�
i1; i1; i1

��U10
�
i1; i2

�
,

H 5
�
i1; i1; i1; i1; i1

�g=U11
�
i1; i2

�
;

ð90Þ
where U9

�
i1; i2

�
; U10

�
i1; i2

�
; and U11

�
i1; i2

�
; are

defined by (111)e(113) respectively in the Appendix.
By conducting U13

�
i1; i2

�� (64) e U12
�
i1; i2

�� (66)
one obtains

H 5
�
i1; i2; i2; i2; i2

�¼fU13
�
i1; i2

�
,fE�X*

�
i1
�
X*

�
i1
�

X*
�
i2
�
X
�
i1
�
X
�
i2Y

�
m
���U12

�
i1; i2

�
,E½X*

�
i1
�

X*
�
i2
�
X*

�
i2
�
X
�
i2
�
X
�
i2Y

�
m
��g�U14

�
i1; i2

�
,

H135
�
i1
��U15

�
i1; i2

�
,H35

�
i1; i1; i1

��U16
�
i1; i2

�
,

H 5
�
i1; i1; i1; i1; i1

��U18
�
i1; i2

�
,H 5

�
i1; i1; i2; i1; i2

�g
=U17

�
i1; i2

�
;

ð91Þ
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where U12
�
i1; i2

�
; U13

�
i1; i2

�
; U14

�
i1; i2

�
; U15

�
i1; i2

�
;

U16
�
i1; i2

�
; U17

�
i1; i2

�
; and U18

�
i1; i2

�
are defined by

(114)e(120) respectively in the Appendix.
Once H 5

�
i1; i2; i2; i2; i2

�
and H 5

�
i1; i1; i2; i1; i2

�
are

solved via (90) and (91), one can substitute them into
(64) to yield

H35
�
i1; i2; i2

�¼ fE½X*
�
i1
�
X*

�
i1
�
X*

�
i2
�
X
�
i1
�
X
�
i2
�

Y
�
m
�� � m4

�
i1
�
m2

�
i2
�
,H135

�
i1
�� m6

�
i1
�
m2

�
i2
�
,

H35

�
i1; i1; i1

�� m8

�
i1
�
m2

�
i2
�
,H 5

�
i1; i1; i1; i1; i1

�
�U19

�
i1; i2

�
,H 5

�
i1; i2; i2; i2; i2

��U20
�
i1; i2

�
,

H 5

�
i1; i1; i2; i1; i2

�g	U12

�
i1; i2

�
;

ð92Þ
where U19

�
i1; i2

�
and U20

�
i1; i2

�
are defined by (112)

and (122), respectively, in the Appendix.
The last 5th-orderkernel coefficientweneed tosolve

is the H 5
�
i1; i2; i3; i2; i3

�
in (60). Note that all the other

kernel coefficients involved in (60) have already been
solved via (87)e(92) except H 5

�
i1; i1; i3; i1; i3

�
;

H 5
�
i1; i3; i3; i3; i3

�
; and H35

�
i1; i3; i3

�
: However, the

three kernel coefficients can simply be solved by
replacing i2 in (90)e(92) by i3; respectively. Therefore,
the three kernel coefficients can be considered known
given (90)e(92). Bearing this in mind, one can solve
H 5

�
i1; i2; i3; i2; i3

�
by simply using (60) as follows:

H 5
�
i1;i2;i3;i2;i3

�¼fE�X*
�
i1
�
X*

�
i2
�
X*

�
i3
�
X
�
i2
�
X
�
i3
�

Y
�
m
���m2

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H135

�
i1
��U21

�
i1;i2;i3

�
,

H35
�
i1;i2;i2

��m4

�
i1
�
m2

�
i2
�
m2

�
i3
�
,H35

�
i1;i1;i1

��
U21

�
i1;i2;i3

�
,H35

�
i1;i3;i3

�� m6

�
i1
�
m2

�
i2
�
m2

�
i3
�
,

H 5
�
i1;i1;i1;i1;i1

��U22
�
i1;i2;i3

�
,H 5

�
i1;i2;i2;i2;i2

��
U23

�
i1;i2;i3

�
,H 5

�
i1;i1;i2;i1;i2

��
U22

�
i1;i2;i3

�
,H 5

�
i1;i3;i3;i3;i3

��
U23

�
i1;i2;i3

�
,H 5

�
i1;i1;i3;i1;i3

�g	U24

�
i1;i2;i3

�
;

ð93Þ
where U21

�
i1; i2; i3

�
; U22

�
i1; i2; i3

�
; U23

�
i1; i2; i3

�
; and

U24
�
i1; i2; i3

�
are defined by (123)e(126) respectively

in the Appendix.
Having solved all the 5th-order kernel coefficients,

we now move on to solve the 3rd-order kernel co-
efficients. Given (81) and (82), one can easily use (54)
to yield

H 3
�
i1; i3; i2

�¼H35
�
i1; i3; i2

��
XM

k0¼�M;k0si1;i2;i3

m2

�
k0
�
,H 5

�
i1; i3;k0; i2;k0

�
ð94Þ

Given (85) and (86), one can use (54) to get

H 3
�
i1; i1; i2

�¼H35
�
i1; i1; i2

��XM
k0¼�M;k0si1;i2

m2

�
k0
�
,H 5

�
i1; i1;k0; i2;�k0

�
ð95Þ

Similarly, given (88) and (90), one can again use
(54) to obtain

H 3
�
i1; i1; i1

�¼H35
�
i1; i1; i1

�þXM
k0¼�M;k0si1

m2

�
k0
�
,H 5

�
i1; i1;k0; i1;�k0

�
ð96Þ

Finally, given (92) and (93), one can still use (54)
to obtain

H 3
�
i1; i2; i2

�¼H35
�
i1; i2; i2

�þ
XM

k0¼�M;k0si1;i2

m2

�
k0
�
,H 5

�
i1; i2;k0; i2;�k0

�
ð97Þ

This completes the solving of the 3rd-order
kernel coefficients.
For the first-order kernel coefficients, they can be

simply solved by

H
�
i1
�¼H135

�
i1
�� XM

j0¼�M;j0si1

m2

�
j0
�
,H35

�
i1; j0; j0

� ð98Þ

Note that H135
�
i1
�
and H35

�
i1; j0; j0

�
are already

solved in (89) and (92), respectively.
The equations (73)e(98) constitute the complete

formulas for estimating the Volterra kernels of 5th-
order nonlinear OFDM channels. However, one
should keep in mind that the obtained 3rd- and 5th-
order kernels are the modified Volterra kernels
defined in (47) and (48). They can be easily con-
verted back to the original Volterra kernels using
(47) and (48).

6. Design of pseudo random test sequences

In Section 4, we have analyzed the theoretical
values of the higher-order auto-moment spectra for
OFDM signals. However, the estimated higher-
order auto-moment spectra from a finite amount of
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random data may not be exactly equal to the theo-
retical ones. Generally speaking, they can only
approach to their theoretical values as we increase
the amount of random data. This suggests that the
higher-order auto-moment spectral properties
described in Section 4 can only be fulfilled approx-
imately when the amount of random data is limited.
To deal with this issue, we proposed in [18] to use

a specially designed input data sequence instead of
random data for the OFDM signal, so that the
higher-order auto-moment spectral properties in
Section 4 can be fulfilled precisely. Specifically, note
that the OFDM signal contains multiple parallel
QAM symbol streams. Each OFDM symbol interval
contains a particular permutation of parallel QAM
symbols. In [18] we chose the input parallel QAM
symbols to the subcarriers in a way that every
possible permutation of parallel QAM symbols ap-
pears the same number of times in the input data.
This guarantees that the estimated higher-order
auto-moment spectra coincide with the theoretical
ones precisely. The reader is referred to [18] for
further details.
Despite the idea of using a designed test sequence

in [18] does secure the usage of the higher-order
auto-moment spectral properties, it does not shed
light on how a test sequence can be constructed
efficiently. In the following, we propose a systematic
way to design the test sequence. Suppose that K-
QAM is used at the N subcarriers. In this case, the
input sequence X(m) is chosen from a set of K QAM
data symbols with an equal probability. Let Fi de-
notes the ith-order auto-moment spectrum of the
input. It has the following form:

Fi¼ fi
�
X
�
0
�
; X

�
1
�
; …; X

�
N�1

�� ð99Þ

where fi
�
,
�
is the function which generates the ith-

order auto-moment spectrum of the input. Since
each X(m) (m ¼ 0, ..., N�1) can be one of the K data
symbols, we see from (99) that for a particular Fi
there are KN different input permutations. There-
fore, if the test sequence includes all the KN per-
mutations with each permutation showing up the
same number of times, the estimated higher-order
auto-moment spectrum will match its analytical
result exactly. This secures the usage of the higher-
order auto-moment spectral properties derived in
Section 4 and hence guarantees the Volterra kernel
estimate acquired by the proposed method is opti-
mum in the MMSE sense.
An efficient way to generate such a sequence is to

use a feedback shift register specified by a degree N
primitive polynomial over a Galois field with K el-
ements (defined as GF

�
K
�
) [24]. The K-ary pseudo

random sequence generated by the degree N
primitive polynomial (or its corresponding feedback
shift register) with a non-zero initial condition has
the so-called window property that if a window of
width N is slid along the sequence, each of the KN�1
nonzero K-ary N-tuples is seen exactly once before
the initial condition reappears. The primitive poly-
nomial and the Galois field have been widely used
in error-correcting codes and the reader can refer to
[25] for their definitions and further properties. The
pseudo random sequence, when augmented with an
all-zero N-tuples, forms a length KN test sequence.
The general form of a primitive polynomial p(x) of
degree N can be written as

p
�
x
�¼ XN

k¼0

hkxk ð100Þ

where hk2GF
�
K
�
: The feedback shift register cor-

responding to the primitive polynomial p(x) is
shown in Fig. 3, where ai2GF

�
K
�
and the addition

and multiplication are defined in the GF
�
K
�
sense.

More details on generating a pseudo random
sequence can be found in [24]. Given the output
sequence {ai}, one only needs to map the K-QAM
symbols to the K elements in the GF

�
K
�
to obtain the

required test sequence for the Volterra kernel esti-
mation task.

7. Computer simulation

In this paper, we use a 5th-order nonlinear chan-
nel model that was used to characterize the traveling
wave tube (TWT) power amplifier for satellite com-
munications [13] to verify the correctness of the
derived formula. The time-domain input and output
of the channel are related by (1) with K ¼ 2. The
time-domain Volterra kernels of the satellite channel
were derived in [13] and are shown in Table 1.
Since the purpose of the simulation is to justify the

effectiveness of the proposed method, for simplicity,
we set M ¼ 2 in (14) to generate the OFDM signal

Fig. 3. The feedback shift register corresponding to the primitive poly-
nomial pðxÞ in (100) for generating the test sequence.
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x[n] as the input to the nonlinear satellite channel.
For each OFDM symbol interval, the parallel sym-
bols (i.e., X(m) in (14)) applied to the subcarriers
were chosen from the 16-QAM constellation shown
in Fig. 2.
The pseudo-random parallel symbol sequences

were generated by the feedback shift register
method we described in Section 6. Specifically, we
adopted the following degree 20 primitive poly-
nomial over GF(2) [24]:

p
�
x
�¼x20 þ x3 þ 1: ð101Þ
The shift register corresponding to the primi-

tive polynomial p(x) in (101) is shown in Fig. 4,
where the 20-bit initial condition of the shift register
is [1000 1000 1000 1000 1000]. According to the the-
ory we mentioned in Section 6, as we slide the 20-bit
widow through the output sequence, each of the
220�1¼1,048,575 non-zero 20-bit permutations
would be seen exactly once before the initial con-
dition reappears. The simulation result indeed
verified this argument, as shown in Table 2, where
state 1,048,575 is equal to state 0 and the states
repeat afterward. The 1,048,575 non-zero states,
when augmented with the all-zero state, constitute
all the possible 220 20-bit permutations with each
permutation appearing exactly once. Next we

divided the 20 bits of each state in Table 2 into five
4-bit groups and mapped each 4-bit group to a
16-QAM symbol according to the 16-QAM

constellation shown in Fig. 2, we obtained Table 3,
where the numbers under the “16-QAM Symbols”
columns indicate the symbol numbers labeled in-
side the parentheses in Fig. 2. Note that the bottom
row of Table 3 is the augmented all-zero state.
The data in Table 3 were used as the parallel

symbol sequences for the 5 subcarriers (i.e., m ¼ �2,
�1, ... , 2) to generate the OFDM input signal x[n].
Note that, for the 5 subcarriers we used in the
simulation, there are 165¼1,048,576 possible per-
mutations of parallel symbols, which are already
completely accounted for in Table 3. Therefore, the
input signal x[n] contained 1,048,576 OFDM symbol
intervals. Given x[n], the output y[n] of the nonlinear
channel was generated by using Table 1 and (1) with
K ¼ 2. The power spectra of the input and output are
shown in Fig. 5. Notice that, although the discrete
frequency range for the input is from �2 to 2, the
output's discrete frequency range is from �10 to 10.
This is due to the fact that a nonlinear system can
yield out-of-band frequency components [12,20].
These data were used by the proposed method to

estimate the frequency-domain Volterra kernels of
the nonlinear channel. The normalized mean square
errors (NMSEs) of the estimated linear, cubic, 5th-

Table 1. The time-domain volterra kernels of a sat-
ellite communication system.

Order Kernel Coefficients

1st h1½0� ¼ 1:22þ j0:646
h1½1� ¼ 0:063� j0:001
h1½2� ¼ �0:024� j0:014
h1½3� ¼ 0:036þ j0:031

3rd h3½0; 0; 2� ¼ 0:039� j0:022
h3½3; 3; 0� ¼ 0:018� j0:018
h3½0; 0; 1� ¼ 0:035� j0:035
h3½0; 0; 3� ¼ �0:040� j0:009
h3½1; 1; 0� ¼ �0:010� j0:017

5th h5½0; 0; 0; 1; 1� ¼ 0:039� j0:022

Fig. 4. The shift register corresponds to the primitive polynomial pðxÞ ¼
x20 þ x3 þ 1 in (101). The 20-bit sequence inside the sliding window
indicates the initial condition of the shift register.

Table 2. The states of the shift register in Fig. 4.

State No. State

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
2 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
4 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
« « « « « «
1,048,573 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1,048,574 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1,048,575 ¼ 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1,048,576 ¼ 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
« (REPEATS)

Table 3. The corresponding 16-QAM symbols for the output sequence in
Table 2.

State No. 16-QAM Symbols

0 8 8 8 8 8
1 12 4 4 4 4
2 6 2 2 2 2
3 3 1 1 1 1
4 9 8 8 8 8
« « « « « «
1,048,573 2 2 2 2 2
1,048,574 1 1 1 1 1
Augmented 0 0 0 0 0
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order, and total frequency-domain Volterra kernels
under various signal-to-noise ratios (SNRs) are
shown in Table 4 and are also plotted in Fig. 6. Here
the NMSE is defined as

NMSE¼ ����bh �h
����2 	����h����2; ð102Þ

where h and bh are vectors containing the actual and
estimated frequency-domain Volterra kernel co-
efficients, respectively. Note that the actual fre-
quency-domain Volterra kernel coefficients were
calculated from the time-domain Volterra kernel
coefficients shown in Table 1 by using multi-
dimensional Fourier transforms. Generally
speaking, one can see from Table 4 that the esti-
mation result is quite accurate under various SNRs.
For example, even under SNR ¼ 0 dB, the estimated
linear, cubic, 5th-order, and total frequency-domain
Volterra kernels still achieved relatively good
NMSEs of 1:716� 10�3; 2:921� 10�2; and
1:559� 10�3; 3:319� 10�3; respectively. In addition,
the consistent trend of decreasing NMSE with
increasing SNR shown in Fig. 6 suggests the reli-
ability of the proposed method. These results justify
the correctness of the derived formula.
One may have noticed that the linear kernel has a

better NMSE performance than the cubic and 5th-
order kernels in most cases in the simulation. A
possible reason for this phenomenon is that the
linear kernel is dominant in the simulated satellite
channel. Specifically, the linear kernel coefficient
h1[0] ¼ 1.22 þ j0.646 (see Table 1), which is almost
two order of magnitude larger than those cubic and
5th-order kernel coefficients. Given the definition of
the NMSE in (102), the kernel having a larger jjhjj
tends to have a smaller NMSE.
In [18], the proposed approach was compared to

the method in [17] using the same simulated

Fig. 6. The NMSEs of the estimated linear, cubic, 5th-order, and total frequency-domain Volterra kernels versus SNRs.

Table 4. The NMSES for the linear, cubic, 5th-order, and total fre-
quency-domain Volterra Kernels achieved by the proposed method
under various SNRS.

SNR(dB) NMSE

Linear Cubic 5th-order Total

0 1:716� 10�3 2:921� 10�2 1:559� 10�3 3:319� 10�3

10 5:669� 10�5 2:905� 10�3 1:367� 10�4 2:302� 10�4

20 4:566� 10�6 2:932� 10�4 1:966� 10�5 2:285� 10�5

30 1:716� 10�6 2:921� 10�5 1:559� 10�6 3:319� 10�6

40 8:397� 10�8 2:277� 10�6 1:524� 10�7 2:191� 10�7

50 1:716� 10�8 2:921� 10�7 1:559� 10�8 3:319� 10�8

60 1:117� 10�9 3:086� 10�8 2:041� 10�9 2:945� 10�9

70 4:337� 10�11 3:907� 10�9 2:631� 10�10 2:889� 10�10

Fig. 5. The power spectra of the input and output signals of the simu-
lated nonlinear satellite channel.
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satellite channel in this paper but up to the 3rd
order. The result showed that the proposed
approach achieved a significantly better NMSE. This
is due to the fact that the derivation of the method in
[17] relies on the complex Gaussianity assumption
on the OFDM signal. In practice, whether the
OFDM signal is sufficiently Gaussian could be in
doubt. The deviation from Gaussianity of the OFDM
signal can lead to an unsatisfactory estimation
result. The proposed approach, on the other hand,
makes the assumption that the complex data se-
quences for all the subcarriers of the OFDM signal
are zero mean and mutually independent. The sat-
isfication of this assumption, however, can be
guaranteed in practice by using the pseudo random
test sequences designed in Section 6. This in turn
guarantees the proposed method to obtain the
optimal minimum mean square error (MMSE) es-
timate of the Volterra kernels.

8. Conclusion

In this paper, we have proposed a general
approach to derive simple formulas for estimating
the frequency-domain Volterra kernels of bandpass
nonlinear OFDM systems. By exploring higher-
order auto-moment spectral properties of the
OFDM signal, we have shown that the proposed
approach can greatly simplify the complexity of the
kernel estimation process. Based on this approach, a
simple and computationally efficient formula for
identifying 5th-order nonlinear OFDM channels is
derived. In addition, the estimated Volterra kernels
by the proposed method are optimal in the MMSE
sense. Furthermore, a shift-register based method
for systematically generating test sequences that
guarantee the attainment of the optimal MMSE so-
lution is developed. This suggests that the proposed
method can indeed offer a simple yet accurate way
to identify the frequency-domain Volterra kernels of
nonlinear OFDM systems. The result of this paper
can not only consolidate the Volterra modeling
theory for nonlinear OFDM systems, but also come
in handy for Volterra model based nonlinear chan-
nel compensators.
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Appendix

The following are the definitions of the various
notations used in Section 5. Their values can be

easily determined given mn(m), �M�m�M, n ¼
2,4,6,8,10.

U1
�
i1; i2; i3

� ¼ m4

�
i1
�2
m2

�
i2
�
m2

�
i3
�� m6

�
i1
�

m2

�
i1
�
m2

�
i2
�
m2

�
i3
� ð103Þ

U2
�
i1; i2; i3

� ¼ m4

�
i4
�
m2

�
i1
�
m2

�
i2
�
m2

�
i3
��

m2

�
i4
�2
m2

�
i1
�
m2

�
i2
�
m2

�
i3
� ð104Þ

U3
�
i1; i2

� ¼ m6

�
i1
�2
m2

�
i2
�� m8

�
i1
�
m4

�
i1
�
m2

�
i2
�

ð105Þ

U4
�
i1; i2

� ¼ m4

�
i2
�2
m4

�
i1
��

m6

�
i2
�
m4

�
i1
�
m2

�
i2
� ð106Þ

U5
�
i1; i2; i3

� ¼ m4

�
i1
�
m2

�
i3
�2
m2

�
i2
��

m4

�
i1
�
m4

�
i3
�
m2

�
i2
� ð107Þ

U6
�
i1
� ¼ m6

�
i1
�
m4

�
i1
�� m8

�
i1
�
m2

�
i1
� ð108Þ

U7
�
i1
� ¼ m6

�
i1
�2 �m10

�
i1
�
m2

�
i1
� ð109Þ

U8

�
i1
� ¼ m4

�
i1
�2 �m6

�
i1
�
m2

�
i1
� ð110Þ

U9
�
i1; i2

� ¼ m6

�
i1
�
m2

�
i1
�
m2

�
i2
��

m4

�
i1
�2
m2

�
i2
� ð111Þ

U10
�
i1; i2

� ¼ m8

�
i1
�
m2

�
i1
�
m2

�
i2
��

m6

�
i1
�
m4

�
i1
�
m2

�
i2
� ð112Þ

U11
�
i1; i2

� ¼ m6

�
i1
�
m4

�
i2
�
m2

�
i1
�� m6

�
i1
�

m2

�
i2
�2
m2

�
i1
�� m4

�
i1
�2

m4

�
i2
�þ m4

�
i1
�2
m2

�
i2
�2 ð113Þ

U12
�
i1; i2

� ¼ m4

�
i1
�
m4

�
i2
�� m4

�
i1
�
m2

�
i2
�2 ð114Þ

U13
�
i1; i2

� ¼ m6

�
i2
�
m2

�
i1
�� m4

�
i2
�
m2

�
i1
�
m2

�
i2
�
ð115Þ

U14
�
i1; i2

� ¼ U13
�
i1; i2

�� m4

�
i1
�
m2

�
i2
��

U12
�
i1; i2

�� m4

�
i2
�
m2

�
i1
� ð116Þ

U15
�
i1; i2

� ¼ U13
�
i1; i2

�� m6

�
i1
�
m2

�
i2
��

U12
�
i1; i2

�� m4

�
i1
�
m4

�
i2
� ð117Þ
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