
Volume 29 Issue 3 Article 6 

Intelligent Fuzzy Control with State-Derivative Feedback for Takagi-Sugeno Intelligent Fuzzy Control with State-Derivative Feedback for Takagi-Sugeno 
Fuzzy Stochastic Singular Systems Fuzzy Stochastic Singular Systems 

Wen-Jer Chang 
Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan, R. O. C., 
wjchang@mail.ntou.edu.tw 

Kuang-Yow Lian 
Department of Electrical Engineering National Taipei University of Technology Taipei, Taiwan, R.O.C., 
kylian@mail.ntut.edu.tw 

Cheung-Chieh Ku 
Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan, R. O. C. 

Che-Lun Su 
epartment of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan, R. O. C. 

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal 

 Part of the Fresh Water Studies Commons, Marine Biology Commons, Ocean Engineering Commons, 
Oceanography Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons 

Recommended Citation Recommended Citation 
Chang, Wen-Jer; Lian, Kuang-Yow; Ku, Cheung-Chieh; and Su, Che-Lun (2021) "Intelligent Fuzzy Control with State-
Derivative Feedback for Takagi-Sugeno Fuzzy Stochastic Singular Systems," Journal of Marine Science and 
Technology: Vol. 29: Iss. 3, Article 6. 
DOI: 10.51400/2709-6998.1435 
Available at: https://jmstt.ntou.edu.tw/journal/vol29/iss3/6 

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been 
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and 
Technology. 

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol29
https://jmstt.ntou.edu.tw/journal/vol29/iss3
https://jmstt.ntou.edu.tw/journal/vol29/iss3/6
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/189?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1126?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/191?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/192?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol29/iss3/6?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol29%2Fiss3%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages


RESEARCH ARTICLE

Intelligent Fuzzy Control with State-Derivative
Feedback for Takagi-Sugeno Fuzzy Stochastic
Singular Systems

Wen-Jer Chang a,*, Kuang-Yow Lian b, Cheung-Chieh Ku a, Che-Lun Su a

a Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan, ROC
b Department of Electrical Engineering National Taipei University of Technology Taipei, Taiwan, ROC

Abstract

This document deals with the problem of passive fuzzy controller design with the state-derivative feedback approach
for the nonlinear stochastic singular systems. Recently, the singular systems have a greater focus on literature because
they can keep more physical system characteristics than conventional systems. At first, the Takagi-Sugeno fuzzy sto-
chastic singular models are used to represent the nonlinear stochastic singular systems. Then, the state-derivative
feedback approach and parallel distributed compensation method are employed to design the passive fuzzy controllers.
In the design process, the Lyapunov stability conditions are developed subject to multiple performance constraints,
including the passivity constraint and decay rate constraint. According to these Lyapunov stability conditions, the
proposed fuzzy control problem can be effectively shifted into the linear matrix inequality problem that can be solved
by using the convex optimal programming algorithm. At last, two examples are provided to verify the applicability and
effectivity of the proposed passive fuzzy controller design approach.

Keywords: Takagi-Sugeno fuzzy stochastic singular systems, Fuzzy control with state-derivative feedback, Passivity
constraint, Decay rate constraint

1. Introduction

T he singular systems [1e3] known as differ-
ential-algebraic systems, have drawn the

attention of several researchers in recent years.
Because the singular systems contain a particular
case form in the state-space, unlike nonsingular
systems, the singular systems can keep the sys-
tem's physical characteristics more than the con-
ventional systems. The singular systems are more
complicated for stability analysis, and it is usually
employed to describe a real system. Because of
the front reason, the singular system has a sig-
nificant effect on the field of research in control
engineering. For theoretical and practical

characteristics, the singular system has played an
important role. In recent years, many researchers
have spent a lot of effort on singular systems
because the singular system will be stabilized
once the only system is regularity and impulse-
free [4e5]. Although many pieces of research
have solved for the control problem in [6], the
singular system still involves semi-defined and
non-convex optimization terms, so it is chal-
lenging to solve numerically. It is well known that
jumping behavior often occurs in electrical sys-
tems. Jumping behavior is a seemingly discon-
tinuous change in the states of the system driven
by constrained dynamics. However, jumping
behavior may have singularities in the system. In

Received 24 December 2019; revised 26 February 2020; accepted 31 August 2020.
Available online 25 June 2021.

* Corresponding author.
E-mail addresses: wjchang@mail.ntou.edu.tw (W.-J. Chang), kylian@mail.ntut.edu.tw (K.-Y. Lian).

https://doi.org/10.514/2709-6998.1435
2709-6998/© 2021 National Taiwan Ocean University.

mailto:wjchang@mail.ntou.edu.tw
mailto:kylian@mail.ntut.edu.tw


[7], the authors proposed a method to solve these
singularities for the electrical systems. This kind
of singular system has many comfortable studies
and applications in engineering, e.g., the power
system [8] and the mechanical system [9].
In the past few decades, the Takagi-Sugeno (T-S)

fuzzy modeling technique has become a popular
and useful tool to represent a complex nonlinear
control system [10e12]. By using the T-S fuzzy
modeling method, the system dynamics of a
nonlinear system can be constructed by mixing
fuzzy sets based on linear local dynamic models.
According to the T-S fuzzy models, several systems
have been controlled by the T-S fuzzy control
method [13]. When designing the fuzzy controller
for corresponding T-S fuzzy models, one needs to
get the mathematical model for the original
nonlinear systems. Then, the overall complex
nonlinear systems can be represented by “blending”
of local linear sub-systems by way of membership
functions. Based on the T-S fuzzy models, one can
use various analysis approaches of linear systems to
design the fuzzy controllers for nonlinear systems.
Recently, the T-S fuzzy modeling method was also
successfully applied to the nonlinear singular sys-
tems. The control problems for continuous-time and
discrete-time T-S fuzzy singular models have been
introduced and studied in [14e15]. In modern in-
dustrial systems, network control becomes more
and more active. Considering the network control
problem, the system, controller, sensor, and actu-
ator are usually connected via a network. Due to the
limitation of network bandwidth, network delays
[16] and packet loss problems often exist in network
systems [17]. In recent years, some scholars have
studied the stability and performance of T-S fuzzy
singular network control systems [18].
The stochastic behavior is usually seen as an un-

measured signal and is considered as a disturbance
to the systems. By developing the stochastic system
modeling approach, the system's unmeasured
random signals were employed to construct a sto-
chastic system. Random behavior usually affects the
stability and performance of the system more than
the perturbations. As the stability criteria for the
stochastic systems are conservative, researchers
must pay great attention to the analysis and syn-
thesis of system stability. For stochastic systems, the
passivity theory has been successfully applied to
discuss stochastic behavior in the literature. In
[19e20], the passivity theory was investigated to
inhibit the disturbance of stochastic systems. The
basic principle of passivity theory is developed in
terms of system energy. It studies the energy

changes from the input to the output of a system.
Referring to [21e22], it can be found that a passive
system is defined that the energy in the system is
always dissipated or stored after some time. Using
the passivity theory, one can analyze the physical
system and design the controller through input-
output relationships based on energy consider-
ations. Some studies can be found in the literature to
apply T-S fuzzy control techniques for nonlinear
stochastic systems. In [23], the stability problem of
stochastic singular systems has been investigated.
Along with the criteria of stability, several perfor-
mance indexes play critical issues in the control
problems. The stability problem with other perfor-
mance constraints for the stochastic singular sys-
tems has been investigated [24].
The state-derivative feedback method was well

known as a useful method and can achieve the
required performance for the control systems
[25e26]. The motivation of using the state-derivative
feedback rather than state feedback derives from
some systems using accelerometers to measure the
motion of the systems. Some applications of the
state-derivative feedback method can be found in
the literature, e.g., the prevention of vibration in
mechanical systems [27], vibration control of bridge
cables [28], control of wheel suspension systems
[29], and vibration control of landing gear parts [30].
In the vibration suppression, it can be seen as a
good performance for the controller maintaining
steady-state stability of an uncontrolled system. We
only can find some literature for the state-derivative
feedback because it will cause the noise in the sys-
tem to be amplified by differential amplification of
the noise in the measured signal, and it is difficult to
achieve perfect signal derivatives of signals in
practice. According to the author's knowledge, there
have fewer works that studied the control problem
by using the state-derivative feedback method for
the T-S fuzzy singular systems. In this paper, it is
tried to develop a method to combine the state-de-
rivative feedback method and passivity theory to
simplify the passive fuzzy controller design
approach with system requirements.
The purpose of this paper is to investigate a pas-

sive fuzzy control approach to satisfy the Lyapunov
stability conditions and passivity requirements for
nonlinear stochastic singular systems. Firstly, the
nonlinear stochastic singular system is represented
as a T-S fuzzy stochastic singular model. The cor-
responding T-S fuzzy controller can be designed by
the Parallel Distributed Compensation (PDC)
method [31e32]. Then, the overall fuzzy controller
can be obtained by “blending” from the controllers
of each rule based on the membership functions.
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The main characteristic of the suggested fuzzy
control approach is to use the state-derivative
feedback method to analyze the stability of the T-S
fuzzy stochastic singular models. By employing the
state-derivative feedback method, the complicated
process of the passive fuzzy controller design can be
reduced. However, only considering the stability is
not enough for the designers; hence, the passivity
constraint and decay rate are also considered in the
suggested passive fuzzy control method. Several
sufficient conditions are developed in this approach
to satisfy the Lyapunov stability criteria, passivity
constraint, and decay rate constraint. These suffi-
cient conditions are effectively recast into the Linear
Matrix Inequalities (LMI) form by Schur comple-
ment [33]. Then, the MATLAB LMI-toolbox can be
used to solve the conditions to obtain feasible so-
lutions. To verify the effectiveness and correctness
of the proposed passive fuzzy control approach with
state-derivative feedback, a numerical example is
given to illustrate the control process for a nonlinear
stochastic singular system.
The various parts of this paper are constructed as

below. In Section II, a class of nonlinear stochastic
singular systems is represented by a T-S fuzzy
stochastic singular model. The control problem
studied in this paper is also introduced in this
section. In Section III, a complete introduction to
the stability of the T-S fuzzy stochastic singular
model, the state-derivative feedback method is
employed to derive sufficient stability conditions in
the disturbance-free situation. In Section IV, the
passivity theory and state-derivative feedback
method are used to design passive fuzzy control-
lers to deal with the external disturbances. The
stability criteria, passivity constraint, and decay
rate constraint are all considered in the sufficient
conditions derivations. Using the LMI technique,
the overall passive fuzzy controller can be obtained
via solving these sufficient conditions. In Section V,
the examples are given to show the applicability
and effectivity of the suggested passive fuzzy con-
trol method. Finally, the conclusions are given in
the last section.

2. System descriptions and problem
statements

The problem of passive fuzzy controller design
with state-derivative feedback is studied in this
paper for the nonlinear stochastic singular systems.
Considering the stochastic behaviors, the nonlinear
stochastic singular systems can be expressed by the
following T-S fuzzy stochastic singular model.

System Fuzzy Rule i:
IF ~r1ðtÞ is Mi1 and … and ~rnðtÞ is Min THEN

S _xðtÞ¼AixðtÞ þBiuðtÞ þGivnðtÞ ð1aÞ

yðtÞ¼CixðtÞ þDivnðtÞ ð1bÞ

where i ¼ 1; 2;/; r and r is the fuzzy rules number,
~r1ðtÞ; ~r2ðtÞ; :::; ~rnðtÞ are the premise variables,Min are
fuzzy sets, n is the number of premise variables,
xðtÞ2<n is the system state vector, uðtÞ2<m is the
control input vector, yðtÞ2<q is the system output
vector, vnðtÞ2<j is the external disturbance vector.
Ai2<n�n, Bi2<n�m, Gi2<n�j, Ci2<q�n, Di2<q�j

and S2<n�nare constant matrices.
Let us consider the system state vector xðtÞ and

the control input vector uðtÞ of the T-S fuzzy model
(1), the T-S fuzzy model can be rewritten as
follows:

S _xðtÞ¼
Xr
i¼1

zið~rðtÞÞfAixðtÞþBiuðtÞþGivnðtÞg ð2aÞ

yðtÞ¼
Xr
i¼1

zið~rðtÞÞfCixðtÞþDivnðtÞg ð2bÞ

where zið~rðtÞÞ ¼
Yn
j¼1

Mijð~rjðtÞÞ =
Pr

i¼1

Yn
j¼1

Mijð~rjðtÞÞ,

zið~rðtÞÞ � 0,
Pr

i¼1zið~rðtÞÞ¼ 1 and Mijð~rjðtÞÞ is the
grade of the membership of ~rjðtÞ in Mij. The premise

variables are ~rðtÞ ¼
h
~r1ðtÞ ~r2ðtÞ ::: ~rnðtÞ

i
.

Via the PDC method, one can design the fuzzy
controller for the T-S fuzzy model (1) by using the
state-derivative feedback method. In the PDC
method, each fuzzy control rule can be designed
according to the same premise parts of the T-S fuzzy
model. That is, the fuzzy controller has the same
membership functions of the T-S fuzzy model. Thus,
the overall state-derivative feedback fuzzy controller
can be constructed by “blending” from those
membership functions. The suggested state-deriva-
tive feedback fuzzy controller has the following
form:

Fuzzy Controller Rule i:
IF ~r1ðtÞ is Mi1 and … and ~rnðtÞ is Min THEN

uðtÞ¼ � Fi _xðtÞ ð3Þ
Then, the overall fuzzy controller can be rep-

resented as follows:

uðtÞ¼ �
Xr
i¼1

zið~rðtÞÞFi _xðtÞ ð4Þ
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Thus, the following closed-loop system can be
got by substituting (4) into (2).

S _xðtÞ¼
Xr
i¼1

Xr
j¼1

zið~rðtÞÞzjð~rðtÞÞ
�
AixðtÞ�BiFj _xðtÞ

þGivnðtÞ
� ð5aÞ

yðtÞ¼
Xr
i¼1

zið~rðtÞÞfCixðtÞþDivnðtÞg ð5bÞ

The first problem of the proposed fuzzy
controller design is to find the constant gain
matrices Fj2<m�n such that the matrices ðSþBiFjÞ
to be full rank. It should be noted that the matrices
ðSþBiFjÞ have full rank if the following conditions
hold.

rank½S; Bi�¼n ð6Þ
According to [34], it can be found that (6) is the

necessary condition for the state-derivative feed-
back method applied in the controller design for
singular systems. Some authors tried to apply the
state feedback method and state-derivative feed-
back method to solve the controller design problem
when the condition (6) does not hold. However,
these methods lead to complex solving processes
and unsuitable controller design. Therefore, it is
assumed that the condition (6) is held in this paper.
It can be found that (5a) is equivalent to 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!
_xðtÞ¼

Xr
i¼1

zið~rðtÞÞ

�fAixðtÞþGivnðtÞg
ð7Þ

According to (6), one can obtain that ðSþBiFjÞ is
a full rank matrix. In this case, the inverse of
ðSþBiFjÞ exists as well as the matrix
ðSþPr

k¼1
Pr

l¼1zkð~rðtÞÞzlð~rðtÞÞBkFlÞ can be inversed.
Therefore, (7) can be rewritten as follows:

_xðtÞ¼
 
Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞAixðtÞ

þ
 
Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞGivnðtÞ

ð8Þ
Remark 1

For any nonsymmetric matrix Q2<n�n ðQsQTÞ,
if QþQT < 0 then Q is a full rank matrix.
The passivity theory developed in literature is a

useful method to design controllers to achieve the
energy requirements for the control systems. It is

known that the characteristic of the passivity theory
is that the attenuation performance can be achieved
when the systems are affected by external distur-
bances. By using the definition of power supply
functions, the passivity requirement is introduced
below.

Definition 1. [19]
Given constant matrices Z1, Z2 � 0 and Z3. The
system is called passive with the external distur-
bance vnðtÞ and system output yðtÞ for all terminal
time tp > 0 if the following inequality is satisfied.

2
Ztp
0

yTðtÞZ1vnðtÞdt >
Ztp
0

yTðtÞZ2yðtÞdt

þ
Ztp
0

vTnðtÞZ3vnðtÞdt ð9Þ

Note that inequality (9) can be used to define
different performance requirements by setting
different matrices Z1, Z2 � 0, and Z3. In this paper,
let us consider the Strictly Input Passive Perfor-
mance Constraint (SIPPC) by setting Z1bI; Z2b0,
Z3bqI and q is a positive scalar. In this case, the
passivity requirement (9) considered in this paper
can be rewritten as

2
Ztp
0

yTðtÞvnðtÞdt>q

Ztp
0

vTn ðtÞvnðtÞdt ð10Þ

Considering the passivity constraint, the control
problem of this paper is to find fuzzy control gains
Fj for the state-derivative feedback passive fuzzy
controller (3) such that the SIPPC (10) is satisfied.
In order to solve this problem, the passivity theory
and Lyapunov stability theory are employed to
design the state-derivative feedback passive fuzzy
controller (3).

3. Stability condition derivations for Takagi-
Sugeno fuzzy stochastic singular systems

In order to study the stability analysis of T-S fuzzy
singular systems, let us first discuss the derivations
of stability conditions under the assumption of
without considering external disturbances. Consid-
ering the T-S fuzzy system (5) with disturbance-free,
the sufficient stability conditions for the closed-loop
system can be obtained by the following theorem.

Theorem 1. The closed-loop T-S fuzzy system (5)
with disturbance-free is asymptotically stable if
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there exists a positive definite matrix ~R, feedback
gains Kl satisfying the following conditions.

S~RAT
i þBkKlAT

i þAi
~RST þAiKT

l B
T
k <0;

for i;k; l¼ 1::::::r
ð11Þ

Proof:
Analyzing the stability of the closed-loop system (5),
one can define the Lyapunov function as

VðxðtÞÞ¼xTðtÞPxðtÞ ð12Þ
Taking differential of the Lyapunov function

VðxðtÞÞ, one can get

_VðxðtÞÞ¼ _xTðtÞPxðtÞ þ xTðtÞP _xðtÞ ð13Þ
In this theorem, the external disturbance is

assumed to disappear. Under the assumption
vnðtÞ ¼ 0, equation (13) can be rewritten as follows
by substituting (8) into (13).

_VðxðtÞÞ¼
( 

Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1

Xr
i¼1

zið~rðtÞÞAixðtÞ
)T

PxðtÞ

þxTðtÞP
( 

Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1

Xr
i¼1

zið~rðtÞÞAixðtÞ
ð14Þ

After arrangement (14) can be rewritten as

_VðxðtÞÞ¼xTðtÞ
(Xr

i¼1

zið~rðtÞÞAT
i

 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�T

P

þP

 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1

Xr
i¼1

zið~rðtÞÞAi

)
xðtÞ

ð15Þ

By pre-multiplying
ðSþPr

k¼1
Pr

l¼1zkð~rðtÞÞzlð~rðtÞÞBkFlÞP�1 and post-
multiplying P�1ðSþPr

k¼1
Pr

l¼1zkð~rðtÞÞzlð~rðtÞÞBkFlÞT
on both sides of (15), one can obtain

_VðxðtÞÞ¼
Xr
i¼1

Xr
k¼1

Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞ

�xTðtÞ�ðSþBkFlÞP�1AT
i þAiP�1ðSþBkFlÞT

�
xðtÞ

¼
Xr
i¼1

Xr
k¼1

Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞ

�xTðtÞ�SP�1AT
i þBkFlP�1AT

i þAiP�1STþAiP�1FT
l B

T
k

�
xðtÞ
ð16Þ

According to Remark 1, it is noted that the
matrices ðSþBkFlÞP�1AT

i are full rank, and so the
matrices ðSþBkFlÞ are also full rank.
Defining a variable ~R ¼ P�1, ~R> 0 and Kl ¼ Fl ~R, the
equation (16) can be rewritten as follows:

_VðxðtÞÞ¼
Xr
i¼1

Xr
k¼1

Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞ

�xTðtÞ
h
S~RAT

i þBkKlAT
i þAi

~RSTþAiKT
l B

T
k

i
xðtÞ

ð17Þ

Thus, if the condition (11) is satisfied, then the
closed-loop system (5) is asymptotically stable due
to _VðxðtÞÞ< 0.
The closed-loop singular system (5) with distur-
bance-free can be controlled by the state-derivative
feedback fuzzy controller (3). Comparing with the
traditional state feedback method, the proposed
results developed by using the state-derivative
feedback method are more convenient for the de-
signers. However, the stability constraint is just the
fundamental requirement for the control systems.
To increase the contributions of the proposed state-
derivative feedback fuzzy controller design method,
the SIPPC is considered when the T-S fuzzy singular
system (5) considers the external disturbance. In
addition to the SIPPC, the decay rate constraint is
also considered in the next section.

4. Passive fuzzy control with state-derivative
feedback for Takagi-Sugeno fuzzy stochastic
singular models

In the previous section, the state-derivative feed-
back method was applied to derive the Lyapunov
stability conditions for the T-S fuzzy singular sys-
tems with disturbance-free. Considering the
external disturbances, the aim of this section is to
derive stability conditions for the closed-loop sys-
tem (5) such that the SIPPC described in (10) can be
satisfied. Besides, the decay rate is also considered
in the proposed passive fuzzy controller design
process. Let us first apply the passivity theory to
treat the external disturbances of systems. The suf-
ficient stability conditions subject to SIPPC of (10)
are developed in the following theorem.
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Theorem 2. The closed-loop system (5) is asymp-
totically stable and satisfies SIPPC of (10) if there
exists a positive definite matrix ~R, feedback gains Kl
and matrices Z1, Z2 � 0 andZ3 satisfying the
following sufficient conditions.2
4CT

1Z2C1 þS~RAT
i þBkKlAT

i þAi
~RST þAiKT

l B
T
k

�ZT
1C1 þDT

1Z2C1 þGT
i

�
Z3 �DT

1Z1 �Z1D1 þDT
1Z2D1

#
<0

ð18Þ
Proof:

Defining the same Lyapunov function, one has

_VðxðtÞÞ¼xTðtÞPxðtÞ ð19Þ
Taking differential of the Lyapunov function

VðxðtÞÞ, one can obtain

_VðxðtÞÞ¼ _xTðtÞPxðtÞ þ xTðtÞP _xðtÞ ð20Þ
Substituting (8) into (20), _VðxðtÞÞ can be rewritten as

Equation (21) can be rewritten as follows after the
appropriate arrangement.

Arranging the equation (22), one has

_VðxðtÞÞ¼
�
xðtÞ
vnðtÞ

�T�
L *
U 0

��
xðtÞ
vnðtÞ

�
ð23Þ

where

L¼
Xr
i¼1

zið~rðtÞÞAT
i

 
Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�T

P

þP

 
Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞAixðtÞ

and

_VðxðtÞÞ ¼
( 

Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞAixðtÞ

þ
 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞGivnðtÞ
)T

PxðtÞ

þxTðtÞP
( 

Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞAixðtÞ

þ
 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞGivnðtÞ
)

ð21Þ

_VðxðtÞÞ¼xTðtÞ
(Xr

i¼1

zið~rðtÞÞAT
i

 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�T

P

þP

 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞAi

)
xðtÞ

þvTnðtÞ
Xr
i¼1

zið~rðtÞÞGT
i

 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�T

PxðtÞ

þxTðtÞP
 
Sþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�1Xr
i¼1

zið~rðtÞÞGivnðtÞ

ð22Þ
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U¼
Xr
i¼1

zið~rðtÞÞGT
i

 
Sþ
Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFl

!�T

P

Now, pre-multiplying2
4 ðSþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFlÞP�1 0

0 I

3
5 and post-

multiplying2
4P�1ðSþ

Xr
k¼1

Xr
l¼1

zkð~rðtÞÞzlð~rðtÞÞBkFlÞT 0

0 I

3
5 on both

sides of (23), then one can obtain the following
equation.

_VðxðtÞÞ¼
Xr
i¼1

Xr
k¼1

Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞ
�
xðtÞ
vnðtÞ

�T

�
"
ðSþBkFlÞP�1AT

i þAiP�1ðSþBkFlÞT *

GT
i 0

#�
xðtÞ
vnðtÞ

�

ð24Þ

Let ~R ¼ P�1, ~R> 0 and Kl ¼ Fl ~R, then equation
(24) can be rewritten as

_VðxðtÞÞ¼
Xr
i¼1

Xr
k¼1

�
Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞ
�
xðtÞ
vnðtÞ

�T"Q *

GT
i 0

#

�
�
xðtÞ
vnðtÞ

�
ð25Þ

where Q ¼ S~RAT
i þ BkKlAT

i þ Ai ~RST þ AiKT
l B

T
k .

Let us define a cost function as

XðxðtÞ;vnðtÞÞ¼
Ztp
0

yTðtÞZ2yðtÞþvTnðtÞZ3vnðtÞ

�2yTðtÞZ1vnðtÞdt

¼
Ztp
0

yTðtÞZ2yðtÞþvTnðtÞZ3vnðtÞ

�2yTðtÞZ1vnðtÞþ _VðxðtÞÞ�V
�
x
�
tp
		

�
Ztp
0

JðxðtÞ;vnðtÞÞdt

ð26Þ

where

JðxðtÞ;vnðtÞÞ¼yTðtÞZ2yðtÞþvTnðtÞZ3vnðtÞ�2yTðtÞZ1vnðtÞ
þ _VðxðtÞÞ

ð27Þ
Substituting (2b) and (25) into (27) yields

JðxðtÞ;vnðtÞÞ¼
Xr
i¼1

Xr
k¼1

�
Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞ
�
xðtÞ
vnðtÞ

�T
L

�
xðtÞ
vnðtÞ

�
ð28Þ

where L¼"
CT

1Z2C1þQ *

�ZT
1C1þDT

1Z2C1þGT
i Z3�DT

1Z1�Z1D1þDT
1Z2D1

#
.

The satisfaction of condition (18) leads to L< 0
that implies JðxðtÞ;vnðtÞÞ< 0. From (26), one can find
that JðxðtÞ; vnðtÞÞ< 0 implies

XðxðtÞ;vnðtÞÞ<0 ð29Þ
or

2
Ztp
0

yTðtÞZ1vnðtÞdt >
Ztp
0

yTðtÞZ2yðtÞdt

þ
Ztp
0

vTnðtÞZ3vnðtÞdt ð30Þ

Since (30) is equivalent to (9), it can be
concluded that the closed-loop system (5) satisfies
the passivity constraint. Subsequently, it is neces-
sary to prove the stability of the closed-loop system.
By assuming vnðtÞ ¼ 0, the following inequality can
be obtained from (28) with the condition (18).

_VðxðtÞÞ �
Xr
i¼1

Xr
k¼1

Xr
l¼1

zið~rðtÞÞzkð~rðtÞÞzlð~rðtÞÞxTðtÞ�
CT

1Z2C1þQ
	
xðtÞ

ð31Þ
Obviously, if Z2 � 0 is held, then _VðxðtÞÞ � 0

can be easily found from condition (31). Since
_VðxðtÞÞ � 0, the closed-loop system (5) is therefore
asymptotically stable.
From Theorem 2, it has been shown that the state-

derivative feedback passive fuzzy controller (3) can
be employed to control the T-S fuzzy stochastic
singular system (5) such that the closed-loop system
is asymptotically stable and satisfies passivity
constraint described in Definition 1. The conditions
(18) derived in Theorem 2 are of LMI forms that can
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be solved by the convex optimization algorithm and
MATLAB LMI-Toolbox. The passivity constraint led
to better steady-state performance for the controlled
systems. Another aspect, the decay rate constraint
will bring better transient performance for the
closed-loop systems. Hence, the passivity require-
ment is combined with the decay rate constraint in
the subsequent passive fuzzy controller design
process. For the T-S fuzzy stochastic singular system
(5), the passive state-derivative feedback fuzzy
controller design with the decay rate can be
accomplished in the following theorem.

Theorem 3. The closed-loop system (5) is asymp-
totically stable and satisfies SIPPC of (10) as well as
decay rate constraint if there exist positive definite
matrices ~R, Kl, decay rate g and matrices Z1, Z2 � 0
and Z3 satisfying the following stability conditions.2
4CT

1Z2C1þQþgP *

�ZT
1C1þDT

1Z2C1þGT
i Z3�DT

1Z1�Z1D1þDT
1Z2D1

3
5

< 0 for i;k; l¼1;2; :::;r

ð32Þ

where Q ¼ S~RAT
i þ BkKlAT

i þ Ai ~RST þ AiKT
l B

T
k .

Proof:
The condition (32) can be represented as follows:"
CT

1S2C1þQ *

�ZT
1C1þDT

1Z2C1þGT
i Z3�DT

1Z1�Z1D1þDT
1Z2D1

#

þ
�
gP 0
0 0

�
<0

ð33Þ
Furthermore, the inequation (33) can be rewritten

as follows:

~G<
��gP 0
0 0

�
ð34Þ

where

~G¼
"
CT

1Z2C1þQ *

�ZT
1C1þDT

1Z2C1þGT
i Z3�DT

1Z1�Z1D1þDT
1Z2D1

#

ð35Þ
The inequality (34) indicates that the condition

(32) satisfies the decay rate performance for g> 0.
From (34), it can be found that ~G< 0 is held because
g> 0 and P> 0. Note that ~G< 0 implies the condi-
tions (18) of Theorem 2 are satisfied. From Theorem
2, it can be found that if the conditions of (18) are
satisfied, then the closed-loop system (5) is

asymptotically stable and satisfied SIPPC of (10).
Therefore, the T-S fuzzy stochastic singular system
(5) controlled by the state-derivative feedback fuzzy
controller achieves SIPPC of (10), asymptotical sta-
bility, and decay rate constraint if conditions of (32)
are satisfied.
The feasible solutions to the conditions of Theorem
3 can be solved via the LMI technique by the
MATLAB LMI-Toolbox. Then, the passive fuzzy
controller can be designed by the state-derivative
feedback control method subject to SIPPC and
decay rate constraints. In the next section, a nu-
merical example is given to verify the applicability
and effectiveness of the proposed passive fuzzy
controller design approach.

5. Simulation examples

In this section, some examples are presented to
verify the practicality and applicability of the pro-
posed fuzzy controller design method.

Example 1. Consider a DC motor system described
in [35]. The dynamic equations for the motions of
the system are given as follows:

_x1ðtÞ¼x2ðtÞ ð36aÞ

_x2ðtÞ¼g
l
sin x1ðtÞ þNKm

ml2
x3 ð36bÞ

La _x3ðtÞ¼KbNx2ðtÞ �RðhtÞx3ðtÞ þ uðtÞ þ 0:1vnðtÞ ð36cÞ

yðtÞ¼x1ðtÞ þ vnðtÞ ð36dÞ

where x1ðtÞ ¼ qpðtÞ, x2ðtÞ ¼ _qpðtÞ, x3ðtÞ ¼ IaðtÞ, uðtÞ is
the control input and vnðtÞ is the external distur-
bance. Km is the motor torque constant, Kb is the
back emf constant, N is the gear ratio. The param-
eters are set as follows: La ¼ eH with e ¼ 0, g ¼
9:8m=s2, l ¼ 1m, m ¼ 1kg, N ¼ 10, Km ¼ 0:1Nm=A,
Kb ¼ 0:1Vs=rad, RðhtÞ ¼ 1U.

Fig. 1. Membership functions of x1ðtÞ for Example 1.
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The SIPPC of (10) is used to design passive fuzzy
controller to achieve the attenuation performance.
Here, let us set the parameter q ¼ 1. Let us consider
the above nonlinear system, which can be trans-
ferred into a two-rule T-S fuzzy model with mem-
bership functions of Fig. 1 as follows:

Rule 1: IF x1ðtÞ is about 0 THEN

S _xðtÞ¼A1xðtÞ þB1uðtÞ þG1vnðtÞ ð37aÞ

yðtÞ¼C1xðtÞ þD1vnðtÞ ð37bÞ
Rule 2: IF x1ðtÞ is about ±p

2 THEN

S _xðtÞ¼A2xðtÞ þB2uðtÞ þG2vnðtÞ ð37cÞ

yðtÞ¼C2xðtÞ þD2vnðtÞ ð37dÞ
The system parameters are given as follows:

S¼

2
64
1 0 0

0 1 0

0 0 0

3
75; A1 ¼

2
64
0 1 0

9:8 0 1

0 1 �1

3
75;

A2 ¼

2
64
0 1 0

6:2389 0 1

0 1 �1

3
75;

B1¼B2 ¼
2
400
1

3
5; C1 ¼ C2 ¼ ½1 0 0 �;G1 ¼G2

¼
2
400
1

3
5; D1 ¼D2 ¼ 1

By using LMI-Toolbox of MATLAB to solve the
conditions of Theorem 2, the common positive

definite matrix P and feedback gains of the fuzzy
controller can be obtained as follows:

P¼
2
40:2902 0:0954 0:0185
0:0954 0:0392 0:0056
0:0185 0:0056 0:0014

3
5 ð38Þ

F1¼½�26:0122 �10:9193 �1:4937 � ð39aÞ

F2¼½�26:0122 �10:9193 �1:4937 � ð39bÞ
According to the above feedback gains, the state-

derivative feedback fuzzy controller can be con-
structed by using the PDC approach as follows:
Rule 1: IF x1ðtÞ is about 0 THEN

Fig. 2. Response comparisons of state x1ðtÞ for Example 1.

Fig. 3. Response comparisons of state x2ðtÞ for Example 1.

Fig. 4. Response comparisons of state x3ðtÞ for Example 1.
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uðtÞ¼ � F1 _xðtÞ ð40aÞ
Rule 2: IF x1ðtÞ is about ±p

2 THEN

uðtÞ¼ � F2 _xðtÞ ð40bÞ
Considering the decay rate and solving the con-

ditions of Theorem 3 via MATLAB LMI-Toolbox,
one can get feasible solutions as follows:

P¼
2
40:3707 0:1288 0:0239
0:1288 0:0536 0:0077
0:0239 0:0077 0:0018

3
5 ð41Þ

F1¼½�34:9940 �14:8215 �1:9833 � ð42aÞ

F2¼½�34:9940 �14:8215 �1:9833 � ð42bÞ
For the simulations, the initial condition is chosen

as xð0Þ ¼
hp
4

0 �p
4

iT
. From the responses of

simulated results, the following specific value can be
calculated to verify the SIPPC of (10).

For Theorem 2 :
2
Z tp

0
yTðtÞvðtÞdt

q

Z tp

0
vTðtÞvðtÞdt

¼2:0732 ð43aÞ

For Theorem 3 :
2
Z tp

0
yTðtÞvðtÞdt

q

Z tp

0
vTðtÞvðtÞdt

¼2:0672 ð43bÞ

The simulation responses of system states were
shown in Fig. 2, Fig. 3 and Fig. 4. These figures
showed the comparisons between simulation re-
sponses of Theorem 2 and Theorem 3. From these
figures, one can find that Theorem 3 provided more
rapid responses than Theorem 2 because the decay
rate was considered in Theorem 3.

Example 2. In this example, the proposed passive
fuzzy controller design method was compared with
the fuzzy control approach developed in [36].

Consider the following T-S fuzzy singular system
described in [36].
Rule 1: IF x1ðtÞ is about 0 THEN

S _xðtÞ¼A1xðtÞ þB1uðtÞ þG1vnðtÞ ð44aÞ

yðtÞ¼C1xðtÞ þD1vnðtÞ ð44bÞ
Rule 2: IF x1ðtÞ is about ±5 THEN

S _xðtÞ¼A2xðtÞ þB2uðtÞ þG2vnðtÞ ð44cÞ

yðtÞ¼C2xðtÞ þD2vnðtÞ ð44dÞ
The system parameters are given as follows:

S¼

2
64
1 1 0

2 �5 0

�2 3:5 0

3
75; A1 ¼

2
64
�4 �1 0

5 8 1

1 5 1

3
75;

A2 ¼

2
64
�4 �1 1

�4 8 �3

1 5 1

3
75;

B1¼
2
410:2
1

3
5; B2 ¼

2
410:6
2

3
5; C1 ¼ C2 ¼ ½0 1 0 �; G1

¼G2 ¼
2
40:10
0

3
5; D1 ¼D2 ¼ 1

Consider the membership functions of x1ðtÞ
shown in Fig. 5. By using the LMI-Toolbox of
MATLAB, one can solve the conditions of Theorem
3 with the decay rate constraint. The passivity
constraint parameter was set as q ¼ 1. Then, the
common positive definite matrix P and state-

Fig. 5. Membership functions of x1ðtÞ for Example 2. Fig. 6. Response comparisons of state x1ðtÞ for Example 2.
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derivative feedback gains of the proposed fuzzy
controller can be obtained as follows:

P¼
2
40:2902 0:0954 0:0185
0:0954 0:0392 0:0056
0:0185 0:0056 0:0014

3
5 ð45Þ

F1¼½2:9202 �4:5618 �0:3619 � ð46aÞ

F2¼½2:9202 �4:5618 �0:3619 � ð46bÞ
According to the above feedback gains, the state-

derivative feedback fuzzy controller can be con-
structed by using the PDC approach as follows:

Rule 1: IF x1ðtÞ is about 0 THEN

uðtÞ¼ � F1 _xðtÞ ð47aÞ
Rule 2: IF x1ðtÞ is about ±5 THEN

uðtÞ¼ � F2 _xðtÞ ð47bÞ
On the other hand, the feedback gains solved by

the design method of [36] can be obtained as follows:

F1¼½�8:5415 2:7644 �9:0762 � ð48aÞ

F2¼½�7:5421 6:1982 �8:4471 � ð48bÞ
The initial condition of this example is chosen as

xð0Þ ¼ ½ 1 0 �1 �T. From the responses of simu-
lated results, the following specific value can be
calculated to verify the SIPPC of (10). In addition,
the simulation responses of the states are shown in
Fig. 6, Fig. 7 and Fig. 8.

Theorem 3 :
2

Z tp

0
yTðtÞvðtÞdt

q

Z tp

0
vTðtÞvðtÞdt

¼2:0142

ð49Þ

It can be found that the values of (43a), (43b), and
(49) are all bigger than 1. It implies the closed-loop
system achieving the SIPPC via the proposed pas-
sive fuzzy controller. The comparisons of settling
time between the proposed passive fuzzy control
method and the design method of [36] were given
in Table 1. From Table 1, one can find that the
proposed passive fuzzy control method has a
shorter settling time. Besides, the comparisons of
state variances were given in Table 2. From Table 2,
one can find that the proposed design method also
has a better ability to inhibit disturbance than the
approach of [36]. It can be concluded that a better
transient and steady-state response can be ob-
tained by using the passive fuzzy controller that
was designed via solving the conditions of Theo-

Fig. 7. Response comparisons of state x2ðtÞ for Example 2.

Fig. 8. Response comparisons of state x3ðtÞ for Example 2.

Table 1. Comparisons of settling time.

Settling Time Theorem 3 Reference [36]

x1ðtÞ 25 (sec.) 70 (sec.)
x2ðtÞ 40 (sec.) 85 (sec.)
x3ðtÞ 40 (sec.) 95 (sec.)

Table 2. Comparisons of system state variances.

State Variance Theorem 3 Reference [36]

x1ðtÞ 0.0098 0.0151
x2ðtÞ 0.0037 0.0041
x3ðtÞ 0.0590 0.0635
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rem 3. Applying the proposed passive fuzzy
controller design method, the nonlinear stochastic
singular systems can be controlled to satisfy sta-
bility, passivity, and decay rate constraints
simultaneously.

6. Conclusions

In this paper, a methodology of passive fuzzy
controller design has been studied for fulfilling
multiple performance requirements for continuous-
time nonlinear stochastic singular systems that were
represented by the T-S fuzzy stochastic singular
models. The performance requirements described
in this approach included the system stability, the
decay rate constraint, and the passivity requirement.
Sufficient conditions have been derived to meet the
previously mentioned multiple performance re-
quirements. Employing the LMI method to solve
these sufficient conditions, the state-derivative
feedback approach has been used to design a pas-
sive fuzzy controller for the T-S fuzzy stochastic
singular models. In the end, the practicality and
applicability of the proposed passive fuzzy control
method have been verified by the examples. Obvi-
ously, it can be seen that better transient behavior,
such as settling time and rising time, can be ob-
tained by considering the decay rate constraint. Via
the passivity theory, better steady-state perfor-
mance can be obtained after effectively attenuating
the external disturbances.
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