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ABSTRACT 

For facilitating the release of bionutrients from noni, 6 h of 
hydrolysis with 100 U/mL cellulase at 50C and an additional 
48 h of fermentation with Pediococcus pentosaceus BCRC 
14053 at 37C were performed.  Increases in the extraction 
yields (87.8-607.8 mg/g) and the total phenolic content 
(2.02-7.45 mg/g) of various extracts were obtained, suggesting 
that bionutrients were released from noni during hydrolysis or 
fermentation.  In hydrolyzed and/or additionally fermented 
samples, significant decreases in the half maximal inhibitory 
concentration (IC50) against α-amylase (10.28-1.61 mg/mL) 
and α-glucosidase (46.47-3.73 mg/mL) were observed.  Gas 
chromatography–mass spectrometry results revealed that the 
major components with these inhibition abilities were sco-
poletin and octanoic acid.  Octanoic acid substantially inhibited 
both α-amylase and α-glucosidase, whereas scopoletin inhib-
ited α-glucosidase with an IC50 of 9.7 g/mL, which is much 
lower than that of acarbose (a positive control, 780.8 g/mL). 

 
I. INTRODUCTION 

Morinda citrifolia (noni), growing in tropical and sub-
tropical areas (Lin, 2013), is rich in polyphenols, flavonoids, 
phenolic acid (vanillic acid), vanillin, and iridoids (asperu-
losidic acid and deacetylasperulosidic acid) (Dussossoy et al., 
2011; West et al., 2011).  The quality of commercial noni fruit 
products varies significantly with geographical conditions 
(Deng et al., 2010).  Their fruits, leaves, roots, stem, and bark 
are frequently used in folk medicines with effectiveness in 
minimizing the symptoms of lifestyle-related diseases such as 
hypertension, atherosclerosis, stroke and cancer in Polynesia, 
Tahiti, Southeast Asia, Australia, and Hawaii (Mandukhail, 
2010).  Diabetes is a major metabolic syndrome affecting ap-
proximately 200 million people worldwide (Hashim Hashim  
et al., 2013) and the number is expected to exceed 300 million 
globally by 2025 (Nguyen et al., 2013).  Lee et al. (2012) ob-
served the antidiabetic effect of noni fermented by Cheong-
gukjang on KK-Ay diabetic mice.  A methanol extract of M. 
citrifolia revealed potential stimulatory effects on glucose 
uptake in 3T3-L1 adipocyte cells and inhibitory effects on 
protein tyrosine phosphatase 1B (Nguyen et al., 2013).  The 
n-BuOH soluble phase of methanol extract of M. citrifolia 
roots significantly reduced the blood glucose levels of strep-
tozotocin (STZ)-induced diabetic mice (Kamiya et al., 2008).  A 
practical method for managing diabetes controls postprandial 
hyperglycemia by inhibiting carbohydrases present in the 
gastrointestinal tract (Oboh, 2012). 

Cellulase plays important roles in the effective biological 
hydrolysis of cellulose (Perez et al., 2002).  An extract of noni 
leaves hydrolyzed with cellulase from Trichoderma reesei and 
Aspergillus niger reduces the glucose levels of STZ-induced 
diabetic mice (Sugiarto, 2013).  Lactic acid bacteria (LAB) 
improve the intestinal microflora and consequently reduce the 
risk of cancer (John et al., 2007; Zhang et al., 2014).  In addition, 
LAB increase immunity and antimicrobial activity (Pawlus and 
Kinghorn, 2007; Gupta and Patel, 2013) and reduce oxidative 
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stress (Wang et al., 2014).  Fermented noni fruits promote the 
growth of Lactobacillus and Bifidobacterium and regulate in- 
tracellular oxidation and inflammation in Caco-2 cells (Huang 
et al., 2015).  Moreover, fermenting noni juice by using Bifi-
dobacterium longum and Lactobacillus plantarum increases 
its antioxidant capacity (Wang et al., 2009). 

Most of the studies, thus far, have focused on identifying 
bio-nutrients in noni, their functions and structures, and proc-
esses of noni fruits, roots and leaves.  Studies on facilitating the 
release of bionutrients from noni fruits, roots, and leaves are 
scarce.  In this study, cellulase hydrolysis was used for facili-
tating the release of bionutrients from noni fruits.  Furthermore, 
the resulting hydrolysate was fermented using Pediococcus 
pentosaceus BCRC 14053.  In addition, the inhibition effects 
of released bio-nutrients on -amylase and -glucosidase were 
also examined.  The major components of bio-nutrients in noni 
extracts were identified using gas chromatography-mass spec-
trometry (GC-MS), and their inhibiton effects on -amylase and 
-glucosidase were further studied for elucidating the constitu-
ents inhibiting -amylase and -glucosidase activities. 

II. MATERIALS AND MATHODS 

1. Preparation of Raw Material 

Fresh noni, purchased from a noni farm in southern Taiwan, 
was homogenized using a homogenizer and used as raw  
material.  Cellulase (30,000 U/g) was purchased from Kwang 
Hwa Trading Corp., Rd. Chilin, Taipei, Tawian.  A P. pento-
saceus BCRC 14053 strain was obtained from the Biores- 
ource Collection and Research Center (BCRC) at the Food 
Industry Research and Development Institute, Rd. Shih-Pin, 
Hsinchu, Taiwan.  De Man, Rogosa, and Sharpe (MRS) agar was 
purchased from Becton Dickinson and Company (Franklin 
Lakes, NJ, U.S.A.).  The bacterial strain was stored at -80C 
until use and was activated through cultivation in lactobacilli 
MRS broth for 24 h and transferred twice before use.  Porcine 
pancreatic -amylase (EC 3.2.1.1), Saccharomyces cerevisiae 
-glucosidase (EC 3.2.1.20), and p-nitrophenyl--D- 
glucopyranoside were purchased from Sigma-Aldrich Corp., 
St. Louis, Mo., U.S.A. 

2. Preparation of Noni Hydrolysate and Fermented  
Products 

For facilitating the release of bionutrients, 60 kg of homo- 
genized noni (noni: water = 1:1) using a homogenizer (FD24- 
3S-6P, King Mech, Taipei, Taiwan), was hydrolyzed with 100 
U/mL cellulase at 50C for 6 h with shaking at 130 rpm.  To 
the resulting hydrolysate, 1.5% glucose and 0.6% CaCO3 were 
added.  After we adjusted the pH to 6.5 by using Ca(OH)2, the 
hydrolysate was fermented with 5% P. pentosaceus BCRC 
14053 at 37C for 48 h in a 100L Bioreactor (MGT-SV100, Mi-
cro Giant, Taichung, Taiwan).  The hydrolysates and fermented 
product before freeze-dried (FD24-3S-6P, King Mech, Taipei, 
Taiwan) at -50C for 2 days to remove the seeds and stored in 
an electronic dry cabinet before extraction. 

3. Determination of Viable Microbial Counts 

Viable microbial counts were measured for evaluating whe- 
ther the noni slurry hydrolysate could be used by probiotics.  
Microbial growth during fermentation was measured using a 
plate count method with MRS agar, after we performed serial 
decimal dilutions from an initial 0.5 mL of sample in 4.5 mL of 
a sterile 0.85% NaCl solution.  The plates were incubated at 
37C for 48 h and the viable probiotics were counted (Dar-
mayanti et al., 2014). 

4. Extraction of Morinda Citrifolia 

The freeze-dried noni sample was mixed with solvents 
(water, methanol, and ethanol) in a 10-fold quantity and ho-
mogenized for 3 min in a refrigerator (approximately 4C).  
The homogenized samples were placed in a hood with venti-
lation at 25C for 4 h with shaking at 150 rpm.  All resulted 
samples were centrifuged at 5000 xg for 20 min to remove 
insoluble components.  The various resulting extracts were con- 
centrated to a minimum volume (approximately 80 mL) by 
using a rotary evaporator in vacuum at 40C and then freeze- 
dried.  All freeze-dried extracts were stored in an electronic 
dryer with < 20% relative humidity before analyses. 

5. Assays 

The total phenolic content (TPC) and inhibitory abilities  
of various freeze-dried noni extracts against -amylase and 
-glucosidase were measured, and GC-MS assays of these 
extracts were performed. 

1) Total Phenolic Content 

The TPC was measured using the Folin-Ciocalteu method.  
To 1.25 mL of 10% Folin-Ciocalteu phenol reagent, 0.25 mL 
of sample and 1.25 mL of 7.5% Na2CO3 were added.  After a 
45-min reaction at 25C in the dark, absorbance was measured 
at 765 nm.  TPC was calculated according to the standard curve 
calibrated using gallic acid (Singleton et al., 1999). 

2) Gas Chromatography–Mass Spectrometry 

A GC-MS system, equipped with the Thermo Trace 1300 
gas chromatograph, AI-1310 autosampler, and ISQ mass 
spectrometer, was used in a scanning range of 35-1000 m/z.  
The Rxi-5MS GC column measured 30 m  0.25 mm (internal 
diameter) with a 0.1-m film thickness.  The oven temperature 
was increased from 50C to 320C at 10C/min.  When the 
temperature reached 310C (injector temperature), 0.2 L of 
extract was injected, and the flow rate of helium gas was set at 
1.0 mL/min. 

3) Qualitative and Quantitative Analysis by Using GC-MS 

The phenolic compounds of various extracts were analyzed 
and identified by comparing their mass spectra with those of 
each reference compound in GC-MS libraries, namely the US 
National Institute of Standards and Technology and Wiley 10th 
edition libraries.  Quantification was performed using Xcalibur 
2.2 software (Thermo Fisher Scientific, Waltham, MA, U.S.A.). 
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Fig. 1. Changes in pH and microbial counts of noni hydrolysate after 48 
h fermentation by Pediococcus pentosaceus BCRC 14053.  Blank, 
un-hydrolyzed sample; C6, 6 h hydrolysis with 100 U/mL cellu-
lase; F0, 0 h fermented noni hydrolysate with 5% Pediococcus 
pentosaceus BCRC 14053; F48, 48 h fermented noni hydrolysate 
with 5% Pediococcus pentosaceus BCRC 14053. 

 
 

4) Inhibition Assay for -amylase 

The -amylase inhibitory activity of various extracts, sco-
poletin, and octanoic acid were determined by mixing 40 L of 
sample with 200 L of 1.0 U/mL -amylase in 20 mM phos-
phate buffer (pH 6.9 with 0.006 M NaCl), whereas the sample 
in the control group was replaced with 20 mM phosphate 
buffer.  After a 10-min reaction at 25C, 400 L of 0.25% 
starch in the same buffer was added.  After another 10-min re- 
action at 25C, 1.0 mL of a dinitrosalicylic reagent (1% 
3,5-dinitrosalicylic acid and 12% sodium potassium tartrate  
in 0.4 M NaOH) was added.  After a 5-min reaction at 100C 
(for stopping the reaction), the absorbance was measured at 
540 nm (A540).  Inhibitory activity against -amylase (%) = 
[(A540 (control) − A540 (sample)]/A540 (control)  100% (Kim 
et al., 2005; Dong et al., 2012).  The IC50 was defined as the 
inhibitor concentration required for inhibiting 50% of - 
amylase activity. 

5) Inhibition Assay for -glucosidase 

The -glucosidase inhibitory activity of various extracts, 
scopoletin, and octanoic acid was determined by mixing 60 L 
of sample with 50 L of 0.2 U/mL -glucosidase in 0.1 M 
phosphate buffer (pH 6.8), whereas the sample in the control 
group was replaced with 0.1 M phosphate buffer.  After a 10-min 
reaction at 37C, 50 L of 5 mM p-nitrophenyl--D- 
glucopyranoside in the same buffer (pH 6.8) was added.  After 
another 20-min reaction at 37C, the reaction was terminated 
using 160 L of 0.2 M Na2CO3.  The absorbance was meas-
ured at 405 nm (A405).  Inhibitory activity against -glucosidase 
(%) = [(A405 (control) − A405 (sample)]/A405 (control)  100% 
(Andrade-Cetto et al., 2008; Kwon et al., 2008).  The IC50 was 
defined as the inhibitor concentration required for inhibiting 
50% of -glucosidase activity. 

6) Statistical Analysis 

The Duncan multiple range test was used for determining 
the significance of differences within treatments.  For each 
treatment, 3 determinations were used, and mean values were 
calculated.  P < 0.05 was considered statistically significant 
(Norušis, 1993). 

III. RESULTS AND DISCUSSION 

1. pH and Microbial Counts 

After 6 h of hydrolysis with 100 U/mL cellulase at 50C, 
the pH slightly decreased from 4.71 to 4.26 (Fig. 1).  We pre-
viously tested several probiotics, but none of them could grow 
in the noni slurry and its cellulase-hydrolyzed samples, except 
for P. pentosaceus BCRC 14053, which grew in noni hydro-
lysate with 0.6% CaCO3 (Lee et al., 2015).  Therefore, 0.6% 
CaCO3 was added to the resulting hydrolysate.  After 48 h of 
fermentation with P. pentosaceus BCRC 14053 at 37C, LAB 
viable counts increased to 9.17 log CFU/mL, and the pH  
decreased to 5.27 (Fig. 1).  This increase in LAB counts and 
the decrease in pH suggested that the noni hydrolysate could 
be used by P. pentosaceus.  Although glucose is the main 
carbohydrate derived from cellulase hydrolysis and can be 
used by probiotics (Kimoto-Nira et al., 2010; Hernandez- 
Hernandez et al., 2012), the noni hydrolysate and commercial 
noni juice with no carbonates could not be used by the probi-
otics tested (Lee et al., 2015).  Adding CaCO3 in the noni 
hydrolysate was essential for successful LAB fermentation.  
MRS agar with 0.1% CaCO3 substantially improved probiotic 
growth during dongchimi kimchi fermentation because of the 
buffering effect (Chae et al., 2009).  Therefore, during LAB 
fermentation, probiotic growth is inhibited because of lactic 
acid.  Undissociated lactic acid passes through the bacterial 
cytoplasmic membrane and dissociates inside the cell, causing 
cytoplasmic acidification and proton motive force failure, 
which consequently reduces the amount of energy required for 
cell growth (Markovic et al., 2011). 

2. Effects of Hydrolysis and Fermentation on the Extrac-
tion Yield of Noni 

Unhydrolyzed, cellulase-hydrolyzed, and additionally fer- 
mented noni were extracted using water, methanol, and ethanol.  
The yields of the water extracts of unhydrolyzed, hydrolyzed, 
and fermented products were 123.7, 607.8, and 561.1 mg/g, 
respectively (in dry base), while those of methanol and ethanol 
extracts were 160.3, 346.7, and 415.8 mg/g and 87.8, 124.0, 
and 111.6 mg/g, respectively (Table 1).  Regardless of the sol- 
vent used for extraction, the extraction yields of hydrolyzed 
samples and fermented hydrolysates were much higher than 
those of unhydrolyzed samples (Table 1). 

Cellulase plays a major role in the effective biological hydro- 
lysis of cellulose into glucose through the synergistic actions 
of endo--1,4-glucanase (EC 3.2.1.4), cellobiohydrolase (EC 
3.2.1.91), and -D-glucosidase (EC 3.2.1.21) (Perez et al., 
2002).  The action mode of cellulases on polymers is either exo- 
cleavage or endocleavage, and all cellulases target the specific  
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Table 1. Extraction yield of Morinda citrifolia (noni)  
extracts. 

Extraction yield (mg/g) 

Extract solvent Blank* C6 F48 
Water 123.7  0.15a** 607.8  0.07c 561.1  0.69b

Methanol 160.3  0.36a 346.7  0.81b 415.8  0.59c
Ethanol 87.8  0.18a 124.0  0.38c 111.6  0.19b

*Blank: un-hydrolyzed sample; C6: 6 h hydrolysis with 100 U/mL 
cellulase; F48: 48 h fermented noni hydrolysate with 5% 
Pediococcus pentosaceus BCRC 14053. 

**a~c: Values with different letters at the same row are differ 
significantly (P < 0.05). 
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cleavage of -1,4-glycosidic bonds (Wood and McCrae, 1979).  
The higher extraction yields of hydrolyzed samples and fer-
mented hydrolysates than those of unhydrolyzed samples in- 
dicated that cell wall lysis occurs in noni fruits during cellulase 
hydrolysis, facilitating the release of these extracts. 

3. Effects of Hydrolysis and Fermentation on Total Phe-
nolic Content of Noni 

The TPCs of water extracts of unhydrolyzed, hydrolyzed, 
and fermented samples were 2.02, 7.45, and 6.71 mg/g (in dry 
base), respectively, while those of methanol and ethanol ex-
tracts were 3.54, 6.03, 5.48 mg/g and 2.03, 3.18, and 3.03 
mg/g, respectively (Fig. 2).  Both hydrolysis and fermentation 
significantly increased the TPCs of the extracts.  Although the 
TPC of a methanol extract of noni obtained by Krishnaiah et al. 
(2015) was higher than the TPC obtained in this study (4.3 
mg/g vs. 3.54 mg/g), this might be due to the differences in 
harvest area and season.  In the present study, significant in-
creases in the TPCs of various extraction solvents after cellu-
lase hydrolysis showed that cell wall disruption occurred 
during hydrolysis, releasing most bionutrients.  By contrast, 
slight decreases in the TPCs might be attributed to the utiliza-
tion by LAB (Fig. 2). 
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Fig. 3. Effects of hydrolysis and fermentation of noni on the inhibition 

(a) α-amylase, (b) α-glucosidase.  Blank, C6 and F48 refer to the 
footnote of Fig. 1. a~c: means with different extracts within the 
same solvent extraction are significantly different (P < 0.05). 

 
 

4. Effects of Hydrolysis and Fermentation on -amylase 
and -glucosidase Inhibition of Noni 

For -amylase, the IC50 of the water extracts of unhydro-
lyzed, hydrolyzed, and fermented products were 10.28, 2.62, 
and 2.35 mg/mL, respectively, while those of methanol and 
ethanol extracts were 2.32, 1.90, and 1.61 mg/mL and 18.53, 
5.88, and 2.57 mg/mL, respectively (Fig. 3a).  For -glucosidase, 
the IC50 of the water extracts of unhydrolyzed, hydrolyzed, 
and fermented products were 46.47, 9.07, and 11.29 mg/mL, 
respectively, while those of methanol and ethanol extracts were 
16.65, 6.94, and 3.73 mg/mL and 9.55, 5.62, and 9.27 mg/mL, 
respectively (Fig. 3b).  The biological functional effects of poly- 
phenols in fruits and vegetables fruits have long been studied.  
These compounds have inhibitory ability against carbohydrate 
hydrolyzing enzymes (Mai et al., 2007; Cheplick et al., 2010; 
Ranilla et al., 2010; Wongsa and Zamaludien, 2012). 

By using GC-MS, octanoic acid and scopoletin were iden-
tified as major bionutrients in all of the noni extracts (Figs. 4 
and 5).  The IC50 values of octanoic acid were 4.29 and 4.09 
mg/mL for inhibiting α-amylase and -glucosidase activities,  
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Fig. 4.  GC-MS chromatograms with qualitative of noni extract on scopoletin and octanoic acid. 

 
 

respectively (Table 2).  Scopoletin could not inhibit -amylase 
activity, but considerably inhibited -glucosidase activity.  
The IC50 of scopoletin was 9.7 g/mL, which was considera-
bly lower than that of the positive control acarbose (780.8 
g/mL), an anti-diabetic drug (Table 2).  This result showed 
that the inhibitory ability of scopoletin was almost 80-fold 
higher than that of acarbose.  Scopoletin also showed anti-
hyperglycemic activity in STZ-induced diabetic rats (Verma et 
al., 2013). 

The octanoic acid and scopoletin contents of various ex-
tracts significantly increased after cellulase hydrolysis and 
additional LAB fermentation (Fig. 6).  A slight decrease in 
scopoletin content after LAB fermentation was observed (Fig. 
6b) and may be attributed to phenol consumption by LAB.  
Othman et al. (2008) reported that probiotics use total phenols 
during fermentation.  According to the data obtained, consid-
erable amounts of octanoic acid and scopoletin were released 
after cellulase hydrolysis and additional LAB fermentation  
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Fig. 5. GC-MS chromatograms of various extracts of noni with 4 fold dilution.  Major changes were identified as scopoletin and octanoic acid.  (a) 

water extract-blank, (b) water extract-C6, (c) water extract-F48, (d) methanol extract-blank, (e) methanol extract-C6, (f) methanol 
extract-F48, (g) ethanol extract-blank, (h) ethanol extract-C6, (i) ethanol extract-F48.  Blank, un-hydrolyzed sample; C6, 6 h hydrolysis with 
100 U/mL cellulase; F48, 48 h fermented noni hydrolysate with 5% Pediococcus pentosaceus BCRC 14053. 

 
 

Table 2. Inhibitory activity (IC50) of scopoletin and octanoic 
acid on -amylase and -glucosidase. 

Compounds IC50 (mg/mL) 

 -Amylase -Glucosidase 

Acarbose* 0.0018  0.00 0.7808  0.01 

Scopoletin ND** 0.0097  0.00 

Octanoic acid 4.2849  0.24 4.0847  0.10 
*Acarbose, positive control. 
**ND, not detected. 

 
 

(Fig. 6).  Because of their low IC50 values, hydrolyzed and 
additionally fermented noni fruits may replace acarbose. 

5. Qualitative and Quantitative Analysis of Various Noni 
Extracts by Using GC-MS 

Two components, octanoic acid and scopoletin, of various 
noni extracts (water, methanol, and ethanol extracts) were 
identified and quantified using GC-MS (Figs. 4 and 5).  Fig. 6 
shows the amounts of octanoic acid and scopoletin after the 
quantitative results of GC-MS were calculated.  The octanoic 
acid contents of water extracts of unhydrolyzed, hydrolyzed, 
and fermented products were 1.74, 6.70, and 7.59 mg/g (in dry 
base), respectively, and those of methanol and ethanol extracts 
were 4.52, 6.71, and 7.90 mg/g and 3.47, 4.41, and 5.15 mg/g 
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Fig. 6. Quantitative ingredients in various extracts of noni samples (a) 

octanoic acid, (b) scopoletin.  Blank, C6 and F48 refer to the 
footnote of Fig. 1. 
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(in dry base), respectively (Fig. 6(a)).  Pino et al. (2009) used 
diethyl ether/pentane (2:1 v/v) for extracting octanoic acid and 
obtained octanoic acid at approximately 3.06 mg/g (in dry 
base) from edible noni fruits.  However, in this study, the 
octanoic acid content of various extracts after cellulase hy-
drolysis or LAB fermentation was almost 1.5-2.5-fold higher 
than that obtained by Pino et al. (2009). 

The scopoletin contents of water extracts of unhydrolyzed, 
hydrolyzed, and fermented products were 2.94, 6.04, and 3.97 
mg/g (in dry base), respectively, while those of methanol and 
ethanol extracts of unhydrolyzed, hydrolyzed, and fermented 
products were 3.33, 5.84, and 4.74 mg/g and 2.92, 3.83, and 
3.26 mg/g (in dry base), respectively (Fig. 6(b)).  The sco-
poletin content of various extracts in this study was much 
higher than that of a boiled water extract of noni powder [0.44 
g/g (in dry base)] obtained by Prapaitrakool and Itharat (2010) 
(Fig. 6(b)).  However, Pandy et al. (2014) obtained a higher 
scopoletin content (18.9 mg/g) in a methanol extract of noni 
than we did.  This difference may be attributed to differences 
in the extraction time (20 h vs. 4 h) and species. 

CONCLUSION 

The present study results revealed that cellulase hydrolysis 
and P. pentosaceus fermentation facilitated bionutrient release 
from noni fruits.  Increases in extraction yields and TPCs were 
obtained after hydrolysis and LAB fermentation, consequently 
increasing the inhibitory abilities against α-amylase and - 
glucosidase.  The major components in bionutrients that caused 
-amylase and -glucosidase inhibition were octanoic acid 
and scopoletin.  The obtained data suggest that cellulase hy-
drolysis and additionally fermented noni hydrolysates can be 
processed into nutritional supplements with antihypoglycemic 
properties. 
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