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ABSTRACT 

This paper proposes a modified hybrid particle swarm op-
timization (PSO) and the direct search method (DSM) for the 
solution of large-scale non-convex economic dispatch (NED) 
problem with valve-point effects.  A novel diversity based 
particle swarm optimization (DPSO) with a fewer iterations 
required is developed to increase the possibility of generating 
high quality initial solutions for the DSM.  The enhanced 
direct search method (EDSM) incorporates the parallel nature 
of evaluation programming into the direct search procedure to 
enhance its search capacity about global exploration and local 
optimization using the answer from DPSO as starting points.  
Many inequality and equality constraints can be handled 
properly in the direct search procedure.  Appropriate setting of 
control parameters of the proposed hybrid DPSO-EDSM al-
gorithm is also recommended to increase the possibility of 
occurrence of escaping from local optimal solution.  Numerical 
experiments are included to demonstrate that the proposed 
hybrid approach can obtain a higher quality solution with better 
performance than many existing techniques for the large-scale 
NED application. 

I. INTRODUCTION 

With increasing of the progressive exhaustion of traditional 
fossil energy sources and restructuring of the power industry, 
the non-convex economic dispatch (NED) problem may be-
come a more important issue for achieving the optimal utili-
zation of energy sources in a power system.  It is widely rec-
ognized that a proper schedule of available generating units 

may save utilities millions of dollars per year in production 
costs.  The main objective of solving the NED problem is to 
minimize the total production cost of power plants subjected 
to the operating constraints of a power system.  For simplicity, 
the fuel cost function for each generation unit in the NED 
problems has been approximately represented by a quadratic 
function and is solved using classical calculus-based techniques, 
such as the lambda dispatch approach, the gradient method 
and the Newton’s method (Wood and Wollenberg, 1996).  
Unfortunately, the generating units exhibit a greater variation 
in the fuel cost functions due to the physical operation limita-
tions of power plant components, such as valve-point loading, 
prohibited operating zones and combined cycle units (Walters 
and Sheble, 1993).  Even in a competitive electrical market 
environment, generator characteristics can also change with com- 
mercial interest, not just physical reality.  The classical calculus- 
based techniques, such as lambda-iteration dispatch method, 
cannot be directly applied to solve this complicated problem 
due to its non-smooth fuel cost function.  The importance of the 
NED problem is, thus, likely to increase, and more advanced 
algorithms for the NED problem are worth developing to ob- 
tain accurate dispatch results. 

Dynamic programming (DP) is a widely used algorithm 
which has been proved effective in solving complex NED op- 
timization problems.  However, the main problem of the DP 
methods is the curse of dimensionality (Wood and Wollenberg, 
1996) and may lead to sub-optimal solutions (Liang and Glover, 
1992).  Over the past decade, several optimization algorithms 
based on stochastic searching techniques, including simulated 
annealing (SA) (Wong and Fung, 1993), genetic algorithm (GA) 
(Walters and Sheble, 1993; Lee et al., 2011), evolutionary pro-
gramming (EP) (Yang et al., 1996; Sinha et al., 2003), particle 
swarm optimization (PSO) (Gaing, 2003; Lu et al., 2010) and 
direct search method (DSM) (Chen and Chen, 2001; Chen, 
2006) could be used to solve the highly nonlinear NED prob-
lem without any restrictions on the shape of the cost functions.  
Among them, the PSO algorithm has received great attention 
in solving the NED problem due to its simple concept and easy 
implementation.  With a parallel searching mechanism, the PSO 
has high probabilities of determining the global or near-global 
optimal solution for the NED problem.  However, one of the 
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main drawbacks of the PSO is attributed to provide a near- 
global optimal solution with long computing time for conver-
gence.  Recently, the DSM has also received great attention in 
solving the NED problem due to its flexibility and efficiency.  
However, the standard DSM has premature convergence pro- 
blem and easy to be trapped in local optima, especially while 
handling large-scale NED problems with more local optima and 
heavier constraints.  The degree of complexity of the NED pro- 
blem is related to the system-size.  The larger system-size in-
creases the non-linearity as well as the number of equality and 
inequality constraints in the NED problem.  Therefore, develop- 
ment of better hybrid algorithms is necessary to improve the so- 
lution quality and performance for the large-scale NED problem. 

Several hybrid optimization methods combining stochastic 
search techniques and deterministic techniques may prove to 
be very effective in solving the NED problem (Wong and Wong, 
1994; Bhagwan Das and Patvardhan, 1999; Victoire and Jeya-
kumar, 2004; Lu et al., 2008; Alsumait et al., 2010; Subathra  
et al., 2015), such as the hybrid evolutionary programming- 
sequential quadratic programming (EP-SQP), the hybrid par-
ticle swarm optimization-sequential quadratic programming 
(PSO-SQP), the hybrid simulated annealing-direct search 
method (SA-DSM) and the hybrid cross-entropy method- 
sequential quadratic programming (CEM-SQP).  In general, the 
stochastic search technique was responsible for “global ex-
ploration” and the deterministic technique was used to “local 
optimization” with the current solutions of the stochastic search 
technique as the starting points.  In this study, an alternative 
approach is proposed for the solution of large-scale NED prob-
lem with valve-point effects using a hybrid particle swarm 
optimization and direct search method.  A novel diversity based 
particle swarm optimization (DPSO) with a fewer iterations 
required is developed to increase the possibility of generating 
high quality initial solutions for the DSM.  The enhanced direct 
search method (EDSM) incorporates the parallel nature of 
evaluation programming into the direct search procedure to 
enhance its search capacity using the answer from DPSO as 
starting points.  A comparative analysis with other existing 
techniques demonstrates the superior performance of the pro- 
posed hybrid DPSO-EDSM algorithm in terms of both solu-
tion accuracy and convergence performances.  Numerical ex-
periments are also included to demonstrate that the proposed 
hybrid DPSO-EDSM approach can obtain a higher quality 
solution than the PSO or DSM for the large-scale NED appli-
cation. 

II. FORMULATION OF NON-CONVEX 
ECONOMIC DISPATCH PROBLEM 

The main objective of the NED problems is to determine an 
optimal combination of power outputs of the online generating 
units so that the fuel cost of generation can be minimized, 
while simultaneously satisfying all unit and system equality 
and inequality constraints.  Fig. 1 shows the configuration that 
will be studied in this paper.  This system consists of N thermal  
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Fig. 1.  N thermal units committed to serve a load of PD. 

 

 
generating units connected to a single bus-bar serving a received 
electrical load PD.  The objective function can be formulated as 
follows: 

 
1

( )
N

T i i
i

Minimize F F P


   (1) 

where FT is the total fuel cost.  N is the number of units in the 
system.  Fi(Pi) is the fuel cost function of unit i, and Pi is the 
power output of unit i.  Generally, fuel cost of generation unit 
will be in second-order polynomial function (Wood and Wol-
lenberg, 1996). 

 2( )i i i i i i iF P a b P c P    (2) 

where ai, bi and ci are the cost coefficients of unit i. 
However, the thermal units with multi-valve steam turbines 

exhibit a greater variation in the fuel cost functions.  Ref. (Walters 
and Sheble, 1993) has shown the input-output performance 
curve for a typical thermal unit with many valve points.  The 
cost curve function of units with valve point effects is depicted 
in Fig. 2.  The fuel cost functions should be replaced by the 
following to take into account the valve-point effects. 

 2 min( ) sin( ( ))i i i i i i i i i i iF P a b P c P e f P P      (3) 

where ei and fi are the cost coefficients of generator i reflecting 
valve-point effects. 

Subject to following constraints: 

 Power Balance Constraint 
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Fig. 2.  Fuel cost curve of units with valve-point effects. 

 
 

 Unit Capacity Constraints 

 min max
i i iP P P   (5) 

where DP  is the total load demand; LossP  is the transmission 

loss; min
iP  and max

iP  are minimum and maximum generation 

limits of unit i, respectively.  The transmission losses are tra-
ditionally represented by 

 0 00
1 1 1

N N N

Loss i ij j i i
i j i

P PB P B P B
  

      (6) 

where Bij is the coefficient of transmission losses. 

III. DEVELOPMENT OF PROPOSED HYBRID 
DPSO-EDSM ALGORITHM 

1. Traditional PSO Algorithm and its Improvement 

PSO was original presented by Kennedy and Eberhart 
(Kennedy and Eberhart, 1995; Shi and Eberhart, 1998).  It was 
inspired by observation of the behaviors in bird flocks and fish 
schools.  While searching for food, the birds are either scat-
tered or go together before they locate the place where they 
can find food.  While the birds are searching for food from 
one place to another, there is always a bird that can smell the 
food very well, that is, this bird is perceptible of the place 
where the food can be found, having the better food resource 
information.  Because they are transmitting the information, 
the birds will eventually flock to the place where food can be 
found.  Therefore, the most optimist solution can be worked 
out in PSO algorithm by the cooperation of each individual. 

In the traditional PSO, the movement of a particle (bird) is 
governed by three behaviors which are inertia, cognitive and 
social.  The inertia behavior simulates the particle to swarm in 
the previous direction (its present velocity).  The cognitive be- 
havior helps the particle to remember its previously visited best 
position (its previous experience; Pbest).  The social behavior 
models the memory of the particle about the best position among  
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Fig. 3. Depiction of the velocity and position updates in the traditional 

PSO. 

 
 

the particles (the experience of its neighbors; Gbest).  The posi-
tion of each particle is updated using its velocity vector as shown 
in Fig. 3.  The modified velocity and position of each particle 
can be calculated using the current velocity and the distance 
from qPbest  to Gbest as shown in the following formulas: 

 
1 1 ( )

2 ( )

k k k k
q q q q

k k
q

V V c rand Pbest X

c rand Gbest X

      

   
 (7) 

 
1 1,     = 1, 2, , k k k

q q qX X V  q NP   
 (8) 

 
max max min

max

( )
iter

iter
      

 (9) 

where NP is the population size; k
qV  is the velocity of particle 

q in iteration k; k
qX  is the position of particle q in iteration k; 

k
qPbest  is the best value of fitness function that has been 

achieved by particle q before iteration k; Gbestk is the best 
value of fitness function that has been achieved so far by any 
particle; c1 and c2 represent the weighting of the stochastic 
acceleration terms that pull each particle toward Pbestq and 
Gbest positions; rand means a random variable between 0.0 to 
1.0;  is the inertia weight factor; max  and min are the initial 

and final weight respectively; maxiter is the maximum iteration 

count, and iter is the current number of iterations. 
Similar to other evolutionary algorithms, the PSO has a 

number of parameters that must be selected.  The acceleration  
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constants c1 and c2 should be determined in advance that 
control the maximum step size.  The inertia weight  controls 
the impact of the previous velocity of the particle on its current 
one.  The appropriate selection of these parameters justifies 
the preliminary efforts required for their experimental deter-
mination.  It is obvious that the Gbest is also an important 
factor to provide the information guiding to the global solution.  
However, it is not reasonable for social behavior to only em-
ploy the Gbest which is not normally the global optimal 
solution, containing parts of non-optimal information.  The 
influence of social behavior to the next movement of the bird 
(particle) often is affected not only by the location of the bird 
(particle) which is in the best position of all, but also by the 
location of the bird (particle) which it randomly looked at 
when bird flocks start looking for food.  Therefore, the tradi-
tional PSO has premature convergence problem and easy to be 
trapped in local optima if a promising area where the global 
optimum is residing is not identified at the end of the optimi-
zation process. 

To increase the possibility of exploring the search space 
where the global optimal solution exists, we follow a slightly 
different approach about the social behavior to further provide 
a selection of the global best guide of the particle swarm.  The 
social behavior consists of two phases, the best particle posi-
tion ever obtained (Gbest) and the random another particle 
best position (Pbestap), namely, another behavior.  Fig. 4 pre-
sents the seeking algorithm of the proposed novel strategy.  
After increasing another behavior to the social behavior, the 
Pbestap provides parts of information guiding to the global 
solution and gives additional exploration capacity to swarm.  
However, the information guiding to the global solution from 
the Pbestap may contain in the best particle position ever ob-

tained, Gbest.  The Pbestap cannot normally present a positive 
guidance.  For maintaining population diversity, an intelligent 
judgment mechanism for the evaluation of the Pbestap behavior 
is developed to give a good direction to identify the near global 
region.  The new velocity of each particle can be calculated as 
shown in the following formulas. 
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 max max min
max

iter
3 3 ( 3 3 ) , 1, 2, ..., ;qc c c c NP ap q

i
q

ter
       

  (12) 

where c0 is the inertia weight factor;  1 ,Pbest
ap apPbest x   

2 , ...,Pbest Pbest
ap apNx x is the best position of a random another par-

ticle, called particle ap;  1 23 3 , 3 , ..., 3q q q qNc c c c  is the 

weight factor of another behavior; max3c  and min3c are the 

initial and final weight respectively. 
The weight factor 3qc  plays the role of maintaining a good 

spread of non-dominated solutions.  From (10), if the ( )k k
ap qx x  

and ( )k k
Gbest qx x  move at the same direction, the information 

guiding to the global solution from Pbestap and Gbest is too 

similar.  Compared with the Gbest, k
apx  is a bad position and 

the influence of particle ap to the movement of particle q is 
negative guidance.  Otherwise, the information guiding to the 
global solution from Pbestap and Gbest is much more different 

if the ( )k k
Gbest qx x  and ( )k k

ap qx x  do not move at the same 

direction.  As shown in Eq. (11), the influence of particle ap to 
the movement of particle q is positive guidance.  The main 
attractive feature of intelligent judgment mechanism for the 
evaluation of the Pbestap behavior described above is to main-
tain the population diversity, which increases the possibility of 
occurrence of escaping from local optimal solutions. 

2. Standard DSM Algorithm and its Improvement 

DSM, first introduced by Chen and Chen, has been suc-
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cessfully applied to economic dispatch problem considering 
transmission capacity constraints (Chen and Chen, 2001).  A 
salient feature of the DSM is to begin with an initial feasible 
solution and search for the optimal solution along a trajectory 
that maintains a feasible solution at all time.  The advantage of 
direct search procedure is to handle several inequality con-
straints without introducing any multipliers.  Furthermore, it 
can solve problems with derivatives unavailable or the fuel 
cost functions being much more complicated.  Results show 
that the algorithm is an efficient approach for determining the 
optimal generation schedules.  However, there are many 
problems in the solution process by the standard DSM for 
solving the NED problem.  Like many local search techniques, 
the standard DSM is more sensitive to the initial starting points 
and has a number of parameters that must be selected carefully.  
Like other stochastic searching techniques, the main problem 
of the DSM is that it gets easily trapped in a local optimal 
solution, especially while handling large-scale NED problems 
with more local optima and heavier constraints.  Therefore, the 
standard DSM still need further research and development to 
improve its performance and to obtain the robustness. 

A good initial solution could enhance the possibility to ob-
tain a better solution.  However, it is easily trapped in local 
minima since, with a single initial solution, it is hardly to ex-
plore the search space where the global optimal solution exists.  
To enhance the solution quality of DSM, the stochastic tech-
nique is applied for the standard DSM to generate a population 
of NP initial candidate solutions at random and finds solution 
in parallel using direct search procedure.  To further weaken 
the dependence of finding the global optimal solution on the 
initial starting solutions, the selection of calculation step S in 
the direct search procedure is also vital to the success of DSM 
to find the global optimal solution.  In the previous work (Chen, 
2006), the EDSM with large initial calculation step S1 and 
small reduced factor K is usually commended to enhance its 
search capacity.  The attractive feature of the EDSM is to reduce 
the step size gradually by using the multi-level convergence 
strategy to increase the possibility of occurrence of escaping 
from local optimal solution.  The numerical results show the 
EDSM can identify a near global region and perform a local 
search rapidly.  The efficient approach makes it an attractive 
method, and this methodology is very suitable for assessing 
costs of NED problem. 

3. Conventional Hybrid DPSO-EDSM Algorithm and its 
Improvement  

Usually, the stochastic search technique can identify a near 
global region but slows in a finely tuning local search.  In 
contrast, the local searching technique can climb hills rapidly 
but is easily trapped in local minima.  Development of hybrid 
DPSO-EDSM algorithm is necessary to improve the solution 
quality and performance for the large-scale NED problem.  In 
general, the DPSO algorithm was responsible for “global 
exploration” and the EDSM algorithm was used to “local 
optimization” with the current solutions of the DPSO as the  
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Initialize a population of particles
(NP) at random 

Update the velocity and position of
the particles 

Apply EDSM for local optimization

Termination criteria
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and Gbest 

Evaluate the value of the fitness
function for each particle

 
Fig. 5. Simplified flow chart for the conventional hybrid DPSO-EDSM 

algorithm. 

 
 

starting points.  The outline of the conventional DPSO-EDSM 
algorithm is shown in the flowchart in Fig. 5.  However, the 
conventional hybrid DPSO-EDSM has premature conver-
gence problem if a promising area where the global optimum 
is residing is not identified at the end of the optimization 
process.  Like DPSO algorithm, the EDSM may also get easily 
trapped in a local optimal solution because the initial starting 
points obtained by the DPSO are too similar.  Enhancement of 
solution quality becomes major concern to solve the large-scale 
NED problem.  Besides, it is obvious that the major portion of 
computing time is spent in performing the DPSO technique to 
explore the search space where the global optimal solution 
exists.  Improvement of solution performance becomes another 
concern to solve the large-scale NED problem.  Therefore, the 
conventional DPSO-EDSM algorithm still needs further re- 
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search and development to improve its performance and to 
obtain the robustness. 

To enhance its search capacity, a modified DPSO-EDSM 
algorithm is developed to improve the solution quality and 
performance for the large-scale NED problem.  In this study, 
the DPSO algorithm is only used to generate high quality 
initial starting points and the EDSM algorithm is responsible 
for both global exploration and local optimization.  It should 
be noted that the advantage of the EDSM algorithm is to begin 
with a coarse convergence step to enhance the global explo-
ration ability and end with a refined convergence step to en-
able quick convergence.  To enhance the solution quality of 

EDSM, a larger population size NP is desired to increase the 
possibility of finding the global optimal solution for the 
large-scale NED problem.  However, the main problem of the 
EDSM is more sensitive to the initial random starting points 
and it is hardly to explore the search space where the global 
optimal solution exists.  To identify a near global region, the 
DPSO with a fewer iterations required is used to increase the 
possibility of generating high quality initial solutions for the 
EDSM.  Like meta-heuristic approaches, the parallel searching 
mechanism incorporated in DSM algorithm is also used to 
enhance its search capacity, leads to a higher probability of 
obtaining the global optimal solution.  The outline of the pro-
posed modified DPSO*-EDSM algorithm is shown in the 
flowchart in Fig. 6. 

IV. IMPLEMENTATION OF  
MODIFIED DPSO-EDSM ALGORITHM  

FOR NED PROBLEMS 

1. Improved DSM with a Parallel Searching Mechanism 

Like meta-heuristic approaches, the parallel searching 
mechanism incorporated in standard DSM algorithm is used to 
enhance its search capacity, leads to a higher probability of 
obtaining the global optimal solution.  Let rand be uniform 
random value in the range [0,1].  The initial power outputs of 
N-1 generating units without violating (5) are generated ran-
domly by 

 min max min( )i i i iP P rand P P     (13) 

To satisfy the power balance equation, a dependent gener-
ating unit is arbitrarily selected among the committed N units 
and the output of the dependent generating unit Pd is deter-
mined by 

 
1

N

d D Loss i
i
i d

P P P P



    (14) 

Whereas Pd can be calculated directly from the quadratic 
equation as shown in below. 

 2

1

( 1) 0
N

d d D i
i
i d
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If Pd with violating (5), a repairing strategy is applied to 
pick one unit at random to increase (or decrease) its output by 
the random or predefined step (e.g., 10 MW), one by one, until 
it can satisfy all the constraints. 

2. Improved DSM with a High Quality Initial Solutions 
Mechanism 

To enhance the solution quality of DSM, a larger population 
size of NP initial candidate solutions is desired to increase the 
possibility of finding the global optimal solution for the large- 
scale NED problem.  To further explore the search space where 
the global optimal solution exists, the DPSO with a fewer 
iterations required, described in Section 3.2, is applied to gen-
erate high quality initial solutions for the EDSM.  The process 
of the DPSO* can be summarized as follows: 

Step 1: Establish the DPSO* parameters. 

Set up the set of parameters of DPSO*, such as number of 
particles NP, weighting factors c0, c1, c2, c3max, c3min, and 
predefined number of iterations (i.e. iter0 = 10 ~ 300). 

Step 2: Create an initial population of particles randomly. 

The stochastic technique, described in Section 4.1, is ap-
plied to generate an initial population of particles randomly. 

Step 3: Evaluate the value of the fitness function for each 
particle. 

Calculate the value of fitness function for each particle.  
The fitness function is an index to evaluate the fitness of par-
ticles.  Eq. (1) shows the fitness function of the NED problem. 

Step 4: Record and update the Pbest and Gbest. 

The two best values are recorded in the searching process.  
Each particle keeps track of its coordinate in the solution space 
that is associated with the best solution it has reached so far.  
This value is recorded as Pbest.  Another best value to be 
recorded is Gbest, which is the overall best value obtained so 
far by any particle. 

Step 5: Update the velocity and position of the particles. 

Eqs. (8), (10)-(12) are applied to update the velocity and 
position of particles.  The velocity of a particle represents a 
movement of the generation of the generators.  The position of 
a particle is the generation of the generators.  It represents a 
movement of a particle.  The new positions of the particles are 
forced to satisfy the unit’s generation limit constraint given by 
(5) and other constraints if they exist. 

Step 6: Check the end condition. 

If the predefined number of iterations (iter0) is reached, 
invoke the EDSM algorithm with the current solutions of the 

DPSO* as the starting points to further explore the final op-
timal solution, otherwise, repeat steps 3-5 until the end con-
ditions are satisfied. 

3. Direct Search Procedure for Candidates 

Exploration on initialization begins with finding the best 
direction for improvement.  One-at-a-time search is an effec-
tive strategy of direct search procedure for handling coupling 
constraints effectively without introducing any multipliers.  At 
each step of the searching process, only a particular pair of 
units (assume unit x and unit y, y  x) is selected to achieve the 
most reduction in the total fuel cost FT.  Once all units are 
examined and no improvement in the total operating cost is 
found, the search process is terminated.  The computation 
steps of the enhanced direct search procedure are shown as 
follows: 

 
Step 1: Units, without violating the maximum or minimum 

generation limits, are to increase or decrease their 
outputs by the predefined step S for calculating their 
incremental costs (IC) and decrement costs (DC).  
This is shown as follows: 
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 max minandi i i iP S P P S P     (18) 

Step 2: All units are examined to check if there is any im-
provement.  If no more improvement can be achieved, 
then stop; otherwise, go to step 3. 

Step 3: An independent unit with minimum incremental cost 
ICx (assume unit x) is chosen to increase its output by 
the predefined step S, and then, only a dependent unit 
DCy (assume unit y, y  x) while gaining the most 
reduction in the total operating cost TF , should be 

selected to reduce its output to satisfy the power bal-
ance equation. 

Step4: The outputs of this particular pair of units will be 
adjusted again by the predetermined step S if they do 
not violate the generation limits, and only the incre-
mental cost of unit x and the decrement cost of unit y 
need to be recalculated. 

Step 5: Go to step 2. 

4. Overall Hybrid DPSO*-EDSM Solution Procedure 

The overall procedure of the proposed DPSO*-EDSM al-
gorithm can be stated as follows: 
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Table 1.  Best parameter setting of various methods in the three test systems. 

Parameter Example 1: 13-unit system Example 2: 40-unit system Example 3: 80-unit system 

PSOIW 
NP = 100; c1 = 2.0; c2 = 2.0;  
max = 0.9; max = 0.4; itermax=1000 

NP = 300; c1 = 2.0; c2 = 2.0;  
max = 0.9; max = 0.4; itermax = 2000

NP = 600; c1 = 2.0; c2 = 2.0;  
max = 0.9; max = 0.4; itermax = 2000

DPSO 
NP = 100; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
c3max = 0.4; c3min = 0.01; itermax = 1000

NP = 300; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
c3max = 0.4; c3min = 0.01; itermax = 2000

NP = 600; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
c3max = 0.4; c3min = 0.01; itermax = 2000

EDSM NP = 100; S1 = 200; K = 1.2;  = 0.001 NP = 300; S1 = 200; K = 1.2;  = 0.001 NP = 600; S1 = 200; K = 1.2;  = 0.001

DPSO-EDSM 
NP = 100; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
c3max = 0.4; c3min = 0.01; itermax=1000; 
S1 = 200; K = 1.2;  = 0.001 

NP = 300; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
c3max = 0.4; c3min = 0.01; itermax = 
2000; S1 = 200; K = 1.2;  = 0.001 

NP = 600; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
c3max = 0.4; c3min = 0.01; itermax = 
2000; S1 = 200; K = 1.2;  = 0.001 

DPSO*-EDSM 
NP = 100; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
iter0 = 10; c3max = 0.4; c3min = 0.01;  
S1 = 200; K = 1.2;  = 0.001 

NP = 300; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
iter0 = 20; c3max=0.4; c3min=0.01;  
S1 = 200; K = 1.2;  = 0.001 

NP = 600; c0 = 0.3; c1 = 2.5; c2 = 0.8; 
iter0 = 100; c3max = 0.4; c3min = 0.01; 
S1 = 200; K = 1.2; ε = 0.001 

 
 

Table 2.  Comparison of dispatch results of each method for the system Example 1. 

Unit HSS ESA EP-SQP PSO-SQP DPSO*-EDSM 

1 628.23 628.3068 628.3136 628.3205 628.3185 

2 299.22 298.8529 299.1715 299.0524 299.1990 

3 299.17 298.7195 299.0474 298.9681 299.1990 

4 159.12 159.7211 159.6399 159.4680 159.7330 

5 159.95 159.5390 159.6560 159.1429 159.7330 

6 158.85 159.6340 158.4831 159.2724 159.7328 

7 157.26 159.0156 159.6749 159.5371 159.7328 

8 159.93 159.6087 159.7265 158.8522 159.7329 

9 159.86 159.0345 159.6653 159.7845 159.7329 

10 110.78 76.3879 114.0334 110.9618  77.3996 

11 75.00 77.1473 75.0000 75.0000  77.3996 

12 60.00 92.2443 60.0000 60.0000 92.3998 

13 92.62 91.7883 87.5884 91.6401 87.6868 

Cost ($) 24275.71 24174.17 24266.44 24261.05 24169.92 
 
 

Step 1: Read system data. 
Step 2: Set the proper values of initial step size S1 and re-

duced factor K. 
Step 3: Initialize a population of candidate solutions at ran-

dom. 
Step 4: Re-initialize this population of candidate solutions by 

using DPSO* with a fewer iterations required (iter0). 
Step 5: S = S1 

Step 6: Perform direct search procedure for candidates. 
Step 7: Is S greater than predefined resolution ? 

Yes, S = S/K, go to step 6; otherwise, go to step 8. 
Step 8: Print results. 

V. NUMERICAL EXPERIMENTS 

To verify the feasibility and effectiveness of the proposed 
hybrid algorithm, numerical studies have been performed for 
the several test systems, where valve-point effects are con-
sidered.  All the computation is performed on a PC Pentium (R) 
Dual CPU 2.00 GHz computer with 1.0 GRAM size, and sev-
eral computer programs were developed in FORTRAN: 

PSOIW: Particle swarm optimization with inertia 
weight 

DPSO: Diversity based particle swarm optimization 
EDSM: Enhanced direct search method 
DPSO-EDSM: DPSO with local optimization using the 

EDSM 
DPSO*-EDSM: EDSM with high quality initial solutions 

obtained by the DPSO* 
 
After testing and evaluating different parameter combina-

tions, parameters of the PSO-IW, DPSO, EDSM, DPSO-EDSM 
and DPSO*-EDSM algorithms used in the three test systems 
are listed in Table 1 for clarity.  The studied cases are stated in 
detail as follows: 

1. Example 1: Test for a 13-Unit System 

In the first example, a system with thirteen generating units 
considering the valve-point effects is studied.  The system unit 
data is given in Ref. (Victoire and Jeyakumar, 2004) and the 
total load demand is 2520 MW.  Network losses are neglected 
in the tests for comparison.  Table 2 depicts the numerical  
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Table 3.  Comparison of results after 30 trials for the system Example 1. 
Methods Best cost ($) Avg. cost ($) Worse cost ($) Avg. Time (s) 
PSOIW 24287.91 24451.40 24643.13 0.458 
DPSO 24171.29 24195.21 24242.83 0.605 
EDSM 24169.92 24175.83 24216.21 0.092 

DPSO-EDSM 24169.92 24170.62 24174.09 0.687 
DPSO*-EDSM 24169.92 24170.49 24174.09 0.107 

 
 

Table 4.  Comparison of dispatch results of each method for the system Example 2. 
Methods Best cost ($) Avg. cost ($) Worse cost ($) 
MFEP 122647.57 123489.74 --- 
IFEP 122624.35 123382.00 125740.63 

PSO-SQP 122094.67 122245.25 --- 
GA-PS-SQP 121458 122039 --- 

HCPSO 121865.23 122100.74 --- 
HCPSO-SQP 121458.54 122028.16 --- 

SOMA 121418.79 121449.88 --- 
CE-SQP 121412.88 121423.65 --- 

DPSO*-EDSM 121412.6 121412.8 121414.7 
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Fig. 7. Comparison of average costs under various iter0 for the system 

Example 1. 

 
 

results of the various methods.  The best result obtained by the 
proposed DPSO*-EDSM is compared with those of the HSS 
in (Bhagwan Das and Patvardhan, 1999), the ESA in (Lu et al., 
2008), the EP-SQP in (Victoire and Jeyakumar, 2004) and the 
PSO-SQP in (Victoire and Jeyakumar, 2004).  This table re-
veals that the proposed approach can obtain a higher quality 
solution than many existing techniques.  It shows that the best 
cost of the PSO-SQP is $24261.05 and that of proposed 
DPSO*-EDSM algorithm is $24169.92.  Details of the best 
solutions obtained by the proposed DPSO*-EDSM algorithm 
is shown in the sixth column of Table 2.  To further examine 
the merits of the DPSO*-EDSM algorithm, Table 3 shows the 
dispatch results of the PSOIW, DPSO, EDSM, DPSO-EDSM 
and DPSO*-EDSM algorithms for 30 trial runs.  The simula-
tion results reveal that the DPSO*-EDSM has provided better 
solution than the other approaches.  Also, the efficiency of the 
proposed hybrid algorithm has been demonstrated in the test 
case.  To investigate effects of initial trail solutions on the final 
results, different initial solutions obtained by DPSO* were 
given to the EDSM approach for comparison.  Fig. 7 shows the 
variation of the average cost of 30 runs versus a series of dif- 
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Fig. 8. Comparison of average costs under various NP for the system 

Example 1. 

 
 

ferent iter0 ranging from 0 to 60 in steps of 5 iterations.  Al-
though the average cost is oscillated as iter0 increases, the 
quality of the solution is improved with various iter0.  Fig. 8 
shows the solution obtained from EDSM, DPSO-EDSM and 
DPSO*-EDSM depends on the population size.  This figure 
reveals that the results obtained by the proposed DPSO*-EDSM 
is very close to that of DPSO-EDSM and finds a better solu-
tion than EDSM in the studied case.  The results show that the 
proposed DPSO*-EDSM provides an accurate algorithm to 
tackle efficiently the difficult NED problem. 

2. Example 2: Test for a 40-Unit System 

In the second example, a system with forty generating units 
is studied to test the solution quality and performance of the 
proposed hybrid algorithm.  The system unit data is shown in 
Ref. (Sinha et al., 2003) and the total load demand is 10500 
MW.  The corresponding costs of the obtained best solution 
from DPSO*-EDSM are compared with those of the previous 
researches in Table 4, such as MFEP (Sinha et al., 2003), IFEP  
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Table 5.  Comparison of costs under various S in the 40-unit system. 

Convergence Cost ($) Convergence Cost ($) Convergence Cost ($) 

Initialization 147941.1 S22 = 4.347 MW 121839.4 S45 = 0.065 MW 121422.0 

Re-initialization 135214.2 S23 = 3.622 MW 121786.8 S46 = 0.054 MW 121420.2 

S1 = 200.000 MW 124180.8 S24 = 3.018 MW 121724.4 S47 = 0.045 MW 121418.6 

S2 = 166.666 MW 124180.8 S25 = 2.515 MW 121647.6 S48 = 0.037MW 121418.1 

S3 = 138.888 MW 124180.8 S26 = 2.096 MW 121639.9 S49 = 0.031 MW 121417.0 

S4 = 115.740 MW 124180.8 S27 = 1.747 MW 121618.3 S50 = 0.026 MW 121416.2 

S5 = 96.450 MW 124176.0 S28 = 1.455 MW 121601.0 S51 = 0.021 MW 121415.8 

S6 = 80.375 MW 123729.2 S29 = 1.213 MW 121569.5 S52 = 0.018 MW 121415.0 

S7 = 66.979 MW 123729.2 S30 = 1.011 MW 121542.9 S53 = 0.015 MW 121414.7 

S8 = 55.816 MW 123409.5 S31 = 0.842 MW 121522.8 S54 = 0.012 MW 121414.4 

S9 = 46.513 MW 123032.8 S32 = 0.702 MW 121491.2 S55 = 0.010 MW 121414.0 

S10 = 38.761 MW 123032.8 S33 = 0.585 MW 121476.0 S56 = 0.0088 MW 121413.8 

S11 = 32.301 MW 122801.5 S34 = 0.487MW 121468.2 S57 = 0.0073 MW 121413.6 

S12 = 26.917 MW 122801.5 S35 = 0.406 MW 121461.5 S58 = 0.0061 MW 121413.4 

S13 = 22.431 MW 122639.4 S36 = 0.338 MW 121453.9 S59 = 0.0051MW 121413.2 

S14 = 18.692 MW 122625.9 S37 = 0.282 MW 121449.5 S60 = 0.0042 MW 121413.1 

S15 = 15.577 MW 122435.4 S38 = 0.235 MW 121444.7 S61 = 0.0035 MW 121413.0 

S16 = 12.981 MW 122373.4 S39 = 0.195 MW 121435.0 S62 = 0.0029 MW 121413.0 

S17 = 10.817 MW 122323.1 S40 = 0.163 MW 121433.1 S63 = 0.0024 MW 121412.9 

S18 = 9.014 MW 122296.0 S41 = 0.136 MW 121429.9 S64 = 0.0020 MW 121412.8 

S19 = 7.512 MW 122106.6 S42 = 0.113 MW 121427.9 S65 = 0.0017 MW 121412.8 

S20 = 6.260 MW 121976.2 S43 = 0.094 MW 121425.1 S66 = 0.0014 MW 121412.7 

S21 = 5.216 MW 121924.6 S44 = 0.078 MW 121423.6 S67 = 0.0011 MW 121412.6 

 
 

Table 6.  Best dispatch results for the 40-unit system. 

Unit No. Pi (MW) Unit No. Pi (MW) Unit No. Pi (MW) Unit No. Pi (MW) 

1 110.799600 11 94.000210 21 523.279900 31 189.999900 

2 110.799600 12 94.000120 22 523.279800 32 189.999800 

3 97.400350 13 214.759200 23 523.279100 33 189.999200 

4 179.733600 14 394.279700 24 523.280000 34 164.799500 

5 87.799680 15 394.278700 25 523.279000 35 199.999800 

6 139.999200 16 394.279600 26 523.279100 36 194.396800 

7 259.600200 17 489.278900 27 10.000210 37 109.999700 

8 284.599300 18 489.278900 28 10.000630 38 110.000000 

9 284.599300 19 511.279800 29 10.000220 39 109.999800 

10 130.000600 20 511.278900 30 87.800590 40 511.278900 
 
 

(Sinha et al., 2003), PSO-SQP (Victoire and Jeyakumar, 2004), 
GA-PS-SQP (Alsumait et al., 2010), HCPSO (Cai et al., 2012), 
HCPSO-SQP (Cai et al., 2012), SOMA (Coelho and Mariani, 
2010) and CE-SQP (Subathra et al., 2015).  From these results, 
the proposed hybrid algorithm can find a better solution 
($121412.6) than many existing techniques, and has clearly 
shown the superiority to the previous researches in terms of 
minimum cost as well as average cost.  To illustrate the good 
convergence property of the proposed algorithm, Table 5 gives 
a comparison of operation costs during each convergence level.  

Details of the best solutions obtained by the proposed 
DPSO*-EDSM algorithm is shown in the Table 6.  To dem-
onstrate the need for integrating the EDSM with the DPSO*, 
Table 7 shows the best cost, average cost, and worst cost 
achieved for 30 trial runs using various heuristic algorithms.  
From the results, the basic PSOIW has premature convergence 
problem and easy to be trapped in local optima (average cost: 
$121885.6).  Using an intelligent judgment mechanism, the 
proposed DPSO can find a better solution (average cost: 
$121485.8) than the basic PSOIW technique.  However, the  
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Table 7.  Comparison of results after 30 trials for the system Example 2. 

Methods Best cost ($) Avg. cost ($) Worse cost ($) Avg. Time (s) 

PSOIW  121745.5 121885.6 122213.5 8.13 

DPSO 121417.6 121485.8 121694.6 10.91 

EDSM 121412.6 121418.0 121440.1 0.80 

DPSO-EDSM  121412.6 121431.6 121502.9 11.67 

DPSO*-EDSM 121412.6 121412.8 121414.7 1.03 

 
 

Table 8.  Comparison of results with various iter0 in the 40-unit system. 

Convergence Initialization iter0 = 0 iter0 = 10 iter0 = 20 iter0 = 30 iter0 = 40 iter0 = 50 

Best cost ($) 134956.1 121467.3 121461.8 121414.9 121412.6 121412.6 121412.6 

 
 

Table 9.  Comparison of dispatch results of each method for the system Example 3. 

Methods Best cost ($) Avg. cost ($) Worse cost ($) 

CSO  243195.38 243546.63 --- 

PSO  244188.35 246375.87 --- 

SCA  250864.05 254579.79 --- 

CE-SQP  242883.04 242945.25 --- 

DPSO*-EDSM 242794.7 242813.9 242864.9 
 
 

DPSO makes no guarantee that the solutions are optimal or 
even close to the optimal solution.  Similar to conventional 
PSO algorithm in optimization, the main problem of the DPSO- 
EDSM is that it also gets trapped in a local optimal solution 
(average cost: $121431.6) since a promising area where the 
global optimal is residing is not identified at the end of the 
optimization process.  It is seen that the satisfactory solution 
(average cost: $121418.0) achieved by EDSM with better 
performance.  However, only the near global optimal solution 
can be obtained by the EDSM approach.  As shown in the sixth 
lows of Table 7, the final results (average cost: $121412.8) of 
DPSO*-EDSM with high quality initial starting points are bet-
ter than that of EDSM.  This test case study converges within 1 
sec for each run when the value of iter0 is chosen to be 20. 

To investigate effects of initial trail solutions on the final 
results, different initial solutions obtained by DPSO* and 
PSOIW* were given to the EDSM approach for comparison.  
Fig. 9 shows the variation of the average cost of 30 runs versus 
a series of different iter0 ranging from 0 to 300 iterations.  The 
results show that the DPSO* performs much better than 
PSOIW* as an optimizer for initialization and the superiority 
of the DPSO*-EDSM algorithm over PSOIW*-EDSM can 
also be noticed.  Although multiple local minimum solutions 
exist in this studied case, the proposed DPSO*-EDSM can still 
find a better solution than EDSM when the value of iter0 is 
less than 150.  It can also be seen that the average fuel cost of 
30 runs is lowest one in this figure when the value of iter0 is 
chosen to be 20.  But in certain cases, the average cost may be 
oscillated as iter0 increases.  To improve the final solution, an 
iterative process with different iter0 ranging from 0 to 300 in 
steps of 10 iterations can be placed outside the DPSO*-EDSM 

loop.  In this study, the proposed hybrid algorithm is terminated 
if the best cost is unchanged within three consecutive itera-
tions.  The quality of the solution is found with various iter0 as 
illustrated in Table 8 when the value of NP is chosen to be 50 
in a typical run.  Note that the best solution is always saved 
among the obtained solutions during iterative process.  Fig. 10 
shows the solution obtained from iterative DPSO*-EDSM 
depends on the population size.  Increasing of population size 
will provide a better solution but takes longer computing time.  
Note that the DPSO*-EDSM method still finds a satisfactory 
solution (average cost: $121413.6) even with a very small popu- 
lation size (NP = 40).  This test case study converges within 
1.67 sec for each run when the value of NP is chosen to be 100. 

3. Example 3: Test for a 80-Unit System 

In the last example, the simulation includes test runs for the 
large-scale system to demonstrate the robustness and effec-
tiveness of the proposed DPSO*-EDSM algorithm.  The 80-unit 
system is created simply by expanding example 2.  The degree 
of complexity of the NED problem is related to the system- 
size.  The larger system-size increases the non-linearity as well as 
the number of equality and inequality constraints in the NED 
problem.  There are many local optimal solutions for the dis-
patch problem and the problem is well suitable for testing and 
validating the developed hybrid algorithm.  The results ob-
tained by the proposed DPSO*-EDSM are compared with 
those obtained by using previously published methods, such as 
CSO (Selvakumar and Thanushkodi, 2009), PSO (Selvakumar 
and Thanushkodi, 2009), CSE (Selvakumar and Thanushkodi, 
2009) and CE-SQP (Subathra et al., 2015).  Table 9 depicts the 
numerical results of various methods.  This table reveals that  
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Table 10.  Best dispatch results for the 80-unit system. 

Unit No. Pi (MW) Unit No. Pi (MW) Unit No. Pi (MW) Unit No. Pi (MW) 

1 110.799820 21 523.279372 41 110.799830 61 523.279362 

2 110.799825 22 523.279363 42 110.799830 62 523.279365 

3 97.399915 23 523.279374 43 97.399915 63 523.279372 

4 179.733102 24 523.279376 44 179.733100 64 523.279374 

5 87.799903 25 523.279363 45 87.799905 65 523.279374 

6 140.000000 26 523.279374 46 140.000000 66 523.279365 

7 259.599659 27 10.000007 47 259.599659 67 10.000004 

8 284.599647 28 10.000005 48 284.599647 68 10.000000 

9 284.599647 29 10.000014 49 284.599647 69 10.000002 

10 130.000000 30 87.799903 50 130.000000 70 87.799905 

11 168.799817 31 189.999986 51 168.799822 71 190.000000 

12 94.000002 32 189.999995 52 94.000008 72 189.999999 

13 214.759788 33 189.999996 53 214.759787 73 190.000000 

14 394.279369 34 164.799820 54 394.279372 74 164.799820 

15 394.279370 35 199.356192 55 394.279360 75 199.999992 

16 394.279369 36 164.799832 56 304.519569 76 164.799832 

17 489.279372 37 109.999996 57 489.279375 77 109.999986 

18 489.279373 38 109.999995 58 489.279362 78 110.000000 

19 511.279365 39 109.999997 59 511.279361 79 109.999914 

20 511.279370 40 511.279373 60 511.279365 80 511.279373 
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Fig. 9. Comparison of average costs under various iter0 of the two PSO 
strategies for the system Example 2. 
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Fig. 10. Comparison of average costs under various NP for the system 

Example 2. 
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Fig. 11. Comparison of average costs under various iter0 for the system 

Example 3. 

 
 

the proposed hybrid algorithm outperforms other existing me- 
thods.  It shows that the best cost of the CE-SQP is $242883.04 
and that of proposed DPSO*-EDSM algorithm is $242794.7, 
which is the minimum cost found so far.  Details of the best 
solutions obtained by the proposed DPSO*-EDSM algorithm 
is shown in the Table 10.  Fig. 11 shows the variation of the 
average cost of 30 runs versus a series of different iter0 
ranging from 0 to 300 iterations.  It can also be seen that the 
average fuel cost of 30 runs is lowest one in this figure when 
the value of iter0 is chosen to be 100.  To further examine the 
merits of the DPSO*-EDSM algorithm, Table 11 depicts the 
numerical results of various methods.  From the results, the 
superiority of the DPSO*-EDSM algorithm over basic PSOIW, 
DPSO, EDSM and DPSO-EDSM can be noticed.  From these  
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Table 11.  Comparison of results after 30 trials for the system Example 3. 

Methods Best cost ($) Avg. cost ($) Worse cost ($) Avg. Time (s) 

PSOIW  243923.1 244206.5 245044.5 32.03 

DPSO 242865.6 243171.2 243865.6 44.10 

EDSM 242844.5 242926.3 243014.7 4.67 

DPSO-EDSM  242809.5 242903.0 243013.9 49.46 

DPSO*-EDSM 242794.7 242813.9 242864.9 7.60 

 
 

Table 12.  Comparison of results under various NP in the Example 3 by using DPSO*-EDSM algorithm. 

Particle numbers (NP) Best cost ($) Avg. cost ($) Avg. Time (s) 

100 242812.6 242836.5 1.31 

200 242801.5 242836.2 2.67 

300 242798.4 242827.8 4.00 

400 242794.7 242819.6 5.27 

500 242794.7 242816.5 6.47 

600 242794.7 242813.9 7.60 

700 242794.7 242813.7 9.10 

800 242794.7 242813.5 10.30 

900 242794.7 242813.4 11.53 

 
 

results, although multiple local minimum solutions exist in 
this studied case, the proposed DPSO*-EDSM can still find a 
better solution than EDSM, by 0.02 percent equivalent to 49.8 
(refer to Table 11).  Furthermore, the solution reached by the 
proposed DPSO*-EDSM is also better than DPSO-EDSM, by 
0.006 percent equivalent to 14.8.  Table 12 shows the solution 
of DPSO*-EDSM after thirty runs under different particle 
numbers.  From this result, the average cost of thirty runs de- 
creased when the particle number increased.  It is also observed 
that the total operation cost is not sensitive to the particle 
number.  In fact, several different cases were studied and the 
results show that the final results of DPSO*-EDSM are better 
than those of PSOIW, DPSO, EDSM and DPSO-EDSM.  The 
encouraging simulation results clearly show that the proposed 
DPSO*-EDSM is capable of obtaining higher quality solutions 
to tackle the difficult NED problems.  The efficient approach 
also makes it an attractive method for the solution of the 
large-scale NED problem in these test cases.  The suitableness 
of the algorithm presented in this paper to the solution of the 
optimal NED problem is, thus, confirmed. 

VI. CONCLUSIONS 

This paper presents a modified hybrid algorithm based on a 
combination of DPSO and EDSM to solve the NED problems 
with valve-point effects.  Adding the Pbestap item with a di-
versity based judgment mechanism, the proposed DPSO al-
gorithm can give a good direction to generate high quality 
initial solutions for the EDSM.  The EDSM incorporates the 
parallel searching mechanism of evaluation programming into 
the direct search procedure to enhance its search capacity about 

global exploration and local optimization.  The global searching 
capability has been improved significantly by the proposed 
heuristic mechanism in the three test systems.  It is observed 
that obtaining the global optimal solution for the NED problem 
is possible by using the proposed hybrid DPSO*-EDSM algo-
rithm.  Numerical experiments also demonstrate that the pro-
posed algorithm is more practical and valid than many existing 
techniques for the solution of the large-scale NED problem. 
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