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ABSTRACT 

In a multi-input multi-output nonlinear system, because the 
system is subjected to the impacts of external disturbances and 
parametric uncertainties, its output response may not be able 
to satisfy the desired specification or even may make the sys-
tem unstable.  The H-ERL sliding mode controller proposed in 
this paper is motivated to solve these problems. 

This controller utilizes the concept of sliding mode controller 
with ERL (Exponential Reaching Law) as its major framework, 
and then uses Lyapunov stability theorem to ensure the closed- 
loop stability when the system encounters prescribed external 
disturbances and parametric uncertainties.  For the optimal 
selection of the adjustable parameters in the proposed sliding 
mode controller with ERL, the H control methodology and 
the Lag-Lead compensator are formulated together in the pro-
posed control scheme to find optimal control gains, which are 
used to minimize the ill-effect of external disturbances and 
plant parametric uncertainties on the controlled output.  The 
closed-loop poles of the augmented system are then placed on 
the specified region to match the desired performance.  The 
Popov criterion is then applied to handle the uncanceled dy-
namics caused by the unmodeled uncertainties so that the sys-
tem robustness can be guaranteed. 

Finally, an ROV (Remotely Operated underwater Vehicle) 
is controlled and simulated by the proposed controller.  The 
simulation results reveal that the proposed control law is ro-
bust to plant uncertainties and disturbances while the desired 
specifications assigned by the users are matched. 

I. INTRODUCTION 

To design a controller for a multi-input multi-output non- 
linear system, we need to consider its parametric uncertainties 
and external disturbances.  The parametric uncertainties have 

direct impact on the performance of system, for example, the 
load mass of an elevator will impact its stability.  Furthermore, 
the performance of a system will be influenced by external 
disturbances, such as unstable power supply or wind on a boat.  
These disturbances and uncertainties will make the system 
response unstable or unable to achieve the desired specifica-
tion. 

Sliding mode control is an extraordinary type of variable 
structure control, it was first proposed in 1950’s in Soviet 
Union.  The famous sliding mode control was proposed by 
Slotine and Sastry (1983), the design concept is to choose a 
sliding surface and design a controller.  This controller forces 
the system states to arrive at sliding surface.  When system 
states arrive at sliding surface, it will slide into equilibrium 
points even if the system is influenced by parametric uncer-
tainties and external disturbances.  Finally, we use Lyapunov 
stability theorem to prove the stability of the closed-loop sys-
tem.  The disadvantage of sliding mode control is chattering 
phenomenon, in order to remove this disadvantage, Fallaha  
et al. (2011) proposed a novel sliding mode control.  Because 
of the advantages of sliding mode controller, it is widely used 
in industry.  Some important studies of sliding mode control 
are published in literatures (Utkin, 1977; Slotine, 1984; Hwang, 
1986; Slotine and Li, 1991; Gao, 1993; Hung et al., 1993; Park 
and Tsuji, 1999; Utkin et al., 1999; Young, 1999; Yu and 
Kaynak, 2009). 

In H control theory, there are two methods to solve H 
control problem, one is polynomial approach, and the other is 
state space method.  Polynomial approach was proposed by 
Slotine and Sastry (1983), Francis (1987) and Kimura (1989), 
it transforms the H control problem into the model matching 
problem.  The difficulty of polynomial approach is that it re-
quires complex calculation.  The state space method was pro-
posed by Doyle et al. (1989), it only needs to solve the Riccati 
equation.  However, this method has the limit of orthogonality 
assumption, so it is not easy to apply to real system.  Hwang 
(1993) proposed the variational approach to get the same 
conclusion as Doyle et al., but Hwang removed the orthogo-
nality assumption, so the state space method can easily apply 
to the real system, especially in the reduced order system 
models.  The proposed theorem by Hwang (1993) is given as 
follows: 

Consider the H standard problem form as Eq. (1). 
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where ( ) nx t R , ( ) py t R , ( ) mu t R , ( ) rw t R  and 

( ) lz t R  denote the system states, measured outputs, control 

input, exogenous input and controlled output.  Suppose that 

2( , )A B  is controllable, 1( , )C A  is observable, 12 12
TD D I .  

Then, the H optimal state feedback control law u(t) mini-
mizes 

2
( )z t  under the worst exogenous input in a prespeci-

fied set in 2[0, )L   is: 

 2 1 12 1( ) ( ) ( )T Tu t B k x D C x t    (2) 

where 1k  is the positive definite solution of the Algebraic 

Riccati Equation (ARE): 

2 12 1 1 1 2 12 1 1 1 1 2 2 1

1 12 12 12 12 1

( ) ( ) ( )

                          ( )( ) 0
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A B D C k k A B D C k B B B B k

C I D D I D D C

    

   
 (3) 

In order to unite the advantages of above controllers, we 
combine sliding mode control with H control methodology 
into a novel controller: H-ERL sliding mode controller. 

Finally a ROV is used to be an example to demonstrate the 
robustness and tracking performance of the proposed con-
troller. 

II. SYSTEM DESCRIPTION 

Consider a multi-input multi-output nonlinear system, the 
dynamic model can be written as follows: 

 
   ( ) ( ), ( ), ( ), ( ), ( )

, 1, 2, ,

i i i i

mwi

q t F q t q t B q t q t t

i n

  



 

 

  


 (4) 

where ( )iq t  is system state,  ( ), ( ),iF q t q t   and 

 ( ), ( ),q t q t   are nonlinear functions,   is uncertain pa-

rameter, )(ti  is control input, and mwi  is external disturbance.  

 ( ), ( ),oi oF q t q t   and  ( ), ( ),oi oB q t q t   are the nominal 

values of the nonlinear system,  ( ), ( ),oi oB q t q t   is invert-

ible ( 1
oiB  exists), and they can be written as: 
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( ), ( ),
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
 (5) 

Define error i i die q q  , i i die q q     and i i die q q    , 

where diq  is the reference input. 

III. THE DESIGN OF SLIDING-MODE 
CONTROLLER WITH ERL 

When we design sliding mode controller, we need to define 
the sliding surface s and the desired form of s  at first. 

Define the sliding surface s as follows: 

 , 0, 1, 2, ,i i i i is e e i n       (6) 

Define the desired form of s  as follows (Fallaha et al., 2011): 

 sgn( ) , 1, 2, ,i i i i is k s Q s i n      (7) 

where 0, 0, 0,
( )

i
i i i

i

g
k g Q

N s
     exponential variation 

0 0 0( ) (1 ) , 0, 0 1ERL x
ERLN x e          .  It is called 

the exponential reaching law (ERL). 
The purpose of controller is to make the is  change into the 

desired form as Eq. (7).  Aim at the system of Eq. (4); we can 
design a controller as follows: 

  1
( ) sgn( )i oi di i i i i i i

oi

t F q e k s Q s
B

         (8) 

In real applications, the sign function sgn(si) has the feature 
of fast switching velocity with ultrahigh frequency, and the 
feature makes the control force have the phenomenon of chat-
tering, so it can not apply to real industrial system.  In order to 
solve the above-mentioned problems, many literatures replace 
sign function sgn(s) with saturation function sat(s) (Slotine, 
1984; Slotine and Li, 1991; Utkin et al., 1999).  Therefore, the 
controller can redesign as follows: 

  1
( ) ( )i oi di i i i i i i

oi

t F q e k sat s Q s
B

         (9) 

where 
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IV. THE COMPOSITE DESIGN OF H-ERL 
SLIDING-MODE CONTROLLER 

In order to optimize the adjustable parameters of sliding 
mode control with ERL, we rewrite the controller of Eq. (9) 
into the following form: 
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  (10) 

where ,Di i i Pi i iK Q K Q    . 

We introduce H control methodology to get the optimal 
parameters KPi and KDi, where KPi and KDi minimize the 
ill-effect caused by external disturbances and plant parametric 
uncertainties on controlled output.  Aim at the control gain KPi 
and KDi of Eq. (10), we define an equivalent control input 

H iU   as: H i Di i Pi iU K e K e    .  Therefore, we can rewrite 

the controller as follows: 

 
1 1

( ) ( )i oi di i i H i
oi oi

t F q k sat s U
B B

         (11) 

In Eq. (11), there are all known parameters except for H iU  .  

For this reason, we only need to design H iU  , and then we can 

obtain actually control input ( )i t .  Substitute the controller of 

Eq. (11) into the system of Eq. (4), we can obtain: 

  1
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We define 1 2( ) , ( )i i i ix t e x t e   and ( ) ( )i
i i oi

oi

B
d t F F

B
    

( 1)( ) ( )i i
di H i i i mwi
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B B
q U k sat s
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2
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( )

( )
i

i
i

x t
X t

x t
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  
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, we can obtain the equivalent 

state space equation as follows: 

 i i i i H i i i

i i i

X A X BU G d

Y C X


   



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where 2( )iX t R  is system state, 1( )iY t R  is system output, 
1

H iU R   is equivalent control input, and 1( )id t R  is dis-

turbance.  , ,i i iA B G  and iC  are constant matrix. 

Following, we design the equivalent control input H iU   for  

Sci Ssi
rnom

+ 
− 

Pi

ρxci

ρ i

Yci

Yi

ei UH∞i

Z2iWsi

Z3i

Z1i

 
Fig. 1.  Augmented system diagram. 

 
 

the system of Eq. (13).  We add servo compensator Sci and 
stabilizing compensator Ssi to compensate the system.  Be-
cause the system states of Eq. (13) are the errors of original 
system of Eq. (4), we define the reference input 0nomr  , and 
we let integrator as servo compensator Sci.  The state space 
equation of servo compensator Sci is as follows: 

 

( )ci ci ci ci nom i

ci ci ci i

ci ci ci

X A X B r Y

A X B e

Y C X

   
  
 



 (14) 

where  

 10, 1, 1,ci ci ci ciA B C X R     and ( )i nom ie r Y  . 

This is a regular problem that the system outputs are equal 
to the errors of the original system.  As a result, we define the 
weighting function of error as siW  and the weighting function 

of Yci as xci.  We also define the weighting function of H iU   

as i, and let ( )i i H iu t U  , so the controlled output zi(t) is as 

follows: 

 
1

2

3

( )

( ) ( )

( )

i i H i

i i si i

i xci ci

z t U

z t z t W e

z t Y





   
       
      

 (15) 

The augmented system diagram is shown as Fig. 1.  In Fig. 
1, Pi represents the system of Eq. (13). 

The state space equation of weighting function siW  is as 

follows: 

 
2

si si si si i

i si si

X A X B e

z C X

  





 (16) 

where 
1 1 1 1 1 1, ,si si siA R B R C R     . 

Combine Eq. (13), Eq. (14) and Eq. (16), we can obtain the 
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standard H∞ state space equation as follows: 
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1 12
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where 4( ) [ ]T
i i ci six t X X X R   is system state.  ( )iy t   

1
2 3( ) ( )nom i i ir Y z t z t R     is measured output.  3( )iz t R  

is controlled output.  2( ) [ ( )]T
i nom iW t r d t R   is external 

input.  1 1( )i i H iu t U R 
   is control input.  1 2 1, , , ,i i i iA B B C   

12 2,i iD C  and 21iD  are constant matrix. 

In Eq. (17), if we use H∞ control methodology to get op-
timal control input ( )iu t , the poles of closed loop system 

maybe locate at the neighborhood of imaginary axis.  For this 
reason, we replace iA  with IA ii  , and it ensures that the 

poles of system locate on left half plane of ( 0)i i   .  

Therefore, we can obtain the standard H∞ state space equation 
as follows: 
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where i i iA A I   . 
Design stabilizing compensator siS  for the system of Eq. 

(18).  According to Hwang (1993), we know that if 2( , )i iA B  

is controllable, 1( , )i iC A  is observable and 12 12
T

i iD D I , the 

H optimal state feedback control law ( )iu t  minimizing 

2
( )iz t  under the worst exogenous input is: 

 ( ) ( )i i iu t K x t  (19) 

where iK  is control gain matrix: 

 )( 11212 i
T

ii
T
ii CDkBK    (20) 

where 1ik  is the positive definite symmetrical solution 

( 1 1 0T
i ik k  ) of the following Algebraic Riccati Equation 

(ARE): 
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Fig. 2.  System structure with Lag-Lead compensator. 

 
 

Because 
1

| |i ei xci xsi
i

K K K K
         and eiK   

|Pi DiK K    , we can obtain the optimal parameters PiK   

and DiK . 

Substitute the controller ( )iu t  into the system of Eq. (17), 

we will find the transfer function _ _xcd ybar iG  between ciX  and 

iY .  If the performance (Phase margin, error constant, etc.) of 

_ _xcd ybar iG  does not satisfy our design specification, we de-

sign a Lag-Lead compensator for _ _xcd ybar iG .  The perform-

ance of the system will satisfy our specification after we add 
Lag-Lead compensator.  We combine servo compensator 

( )ciS s  with Lag-Lead compensator _ _ ( )lag lead iK s  into com-

plex compensator ( )llsiK s .  The state space equation of com-

plex compensator ( )llsiK s  is as follows: 

 
( )

( ) )
llsi llsi llsi llsi i

llsi llsi llsi

X s A X B e

Y s C X
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




 (22) 

where 13RX llsi  is compensator state.  llsillsi BA ,  and llsiC  are  

constant matrix.  The diagram of system structure with Lag-Lead 
compensator is as Fig. 2 (where the thick frame represents 

( )llsiK s ). 

In order to get the optimization of whole performance, we 
need to replace servo compensator ( )ciS s  with complex com- 

pensator ( )llsiK s , and augment the system again to get optimal 

stabilizing compensator ( )siS s .  We combine Eq. (13), Eq. (16) 

and Eq. (22), and then we can obtain the following standard 
H state space Eq. (23). 
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where 6( )
T

ki i ci six t X X X R     is system state.  ( )kiy t   

1
2 3( ) ( )nom i i ir Y z t z t R     is measured output.  3( )kiz t R  

is controlled output.  2( ) [ ( )]T
i nom iW t r d t R   is external input.  

1 1( )i i H iu t U R 
   is control input.  1 2 1, , , ,ki k i k i k iA B B C  

12 2,k i k iD C  and 21k iD  are constant matrix. 

In order to ensure that the poles of system locate on left half 
plane of ( 0)i i   , we replace kiA  with ki iA I .  

Therefore, we can obtain the standard H∞ state space equation 
as follows: 

 

1 2

1 12

2 21

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ki ki ki k i i k i i

ki k i ki k i i

ki k i i k i i

x t A x t B w t B u t

z t C x t D u t

y t C x t D w t

  
  


 



 (24) 

where IAA ikiki   . 

Design stabilizing compensator siS  for the system of Eq. 

(24).  Suppose that 2( , )ki k iA B  is controllable, 1( , )k i kiC A  is ob- 

servable and 12 12
T
k i k iD D I , the H∞ optimal state feedback 

control law ( )iu t  minimizing 
2

( )kiz t  under the worst exoge-

nous input is: 

 ( ) ( )i k i kiu t K x t  (25) 

where k iK   is control gain matrix: 

 2 1 12 1( )T T
k i k i k i k i kiK B k D C     (26) 

where 1k ik  is the positive definite symmetrical solution ( 1k ik   
1 0T

k ik  ) of the following Algebraic Riccati Equation (ARE): 

 

1 1 1 1 1 2 2 1

2 12 1

12 12 1

( )

0

( )

T T T
k i k i k i k i k i k i k i k i k i k i

T
k i k i

T
k i ki k i k i k i

T
k i k i k i k i

A k k A k B B B B k

C C

A A B D C

C I D D C

 

 

 



   

  


 

  

 (27) 

Because  xsikxcikeikik
i

KKKK   ||
1


 and k eiK    

|Pi DiK K    , we can obtain the optimal parameters PiK  and 

DiK .  From the aforementioned discussions, we have the 

controller: 

 
1

( ) ( )i oi di i i Di i Pi i
oi

t F q k sat s K e K e
B

           (28) 

Sci
rnom

+ 
− 

Pi

ρxci

ρ i

Yci

Yi

ei UH∞i

Z2iWsi

Z3i

Z1i

Ssi

Soi

 
Fig. 3.  System structure with observer (Without Lag-Lead compensator). 

 
 

State Observer 

If the system state ( )ix t  of Eq. (17) or the system state 

( )kix t  of Eq. (23) is not measurable, we need to use the state 

observer oiS  to estimate states.  First, we design state observer 

oiS  for the system of Eq. (17).  The diagram of system struc-

ture with observer is as Fig. 3. 
According to Hwang (1993), we have the following ob-

server: if  1,i iA B  and  2,i iA B  are controllable,  1 ,i iC A  

and  2 ,i iC A  are observable, 12 12
T

i iD D I  and 21 21
T

i iD D I , 

the state observer is as follows: 

 

 2 2

1 _

_ 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

( )

ˆ( ) ( )

i i i i i i i i i

i i worst

T
i worst i i i

x t A x t B u t H C x t y t

B w t

w t B k x t

    

 

 



 (29) 

where the optimal observer gain iH  is: 

 1
1 2 1 21( ) ( )T T

i i i i i i iH I h k h C B D
      (30) 

where ih  is the positive definite solution of the following 

Algebraic Riccati Equation (ARE): 

 

 

 

1 1 2 2

1 1

1 21 2

1 1 21 21

0

T T T
i i i i i i i i i i

T
i i

T
i i i i i

T
i i i i

A h h A h C C C C h

B B

A A B D C

B B I D D

 

 





   
   

  


 

  

 (31) 

Substitute the controller ( )iu t  into observer, and then we 
can obtain the H∞ optimal observer as follows: 

   2 2 1 1 1ˆ ˆ( ) ( )T
i i i i i i i i i i i ix t A B K H C B B k x t H y t      (32) 
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Soi

+ − 
Klag_lead_i Sci

rnom Ssi Pi

YllsiKllsi

Yi

ei UH∞i

ρxci

ρ i

Z2iWsi

Z3i

Z1i

 
Fig. 4.  System structure with observer and Lag-Lead compensator. 

 
 
Similarly, we design state observer oiS  for the system of  

Eq. (23).  The diagram of system structure with observer and 
Lag-Lead compensator is as Fig. 4. 

According to Hwang (1993), we have the following ob-
server: if  1,ki k iA B  and  2,ki k iA B  are controllable, 

 1 ,k i kiC A  and  2 ,k i kiC A  are observable, 12 12
T

i iD D I  and 

21 21
T

i iD D I , we have the following state observer: 

 2 2

1 _

_ 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

( )

ˆ( ) ( )

ki ki ki k i i ki k i ki ki

k i ki worst

T
ki worst k i k i ki

x t A x t B u t H C x t y t

B w t

w t B k x t

    
 






 (33) 

where the optimal observer gain kiH  is as follows: 

 1
1 2 1 21( ) ( )T T

ki k i k i k i k i k i k iH I h k h C B D
      (34) 

where k ih   is the positive definite solution of the following 

Algebraic Riccati Equation (ARE): 

 

 

 

1 1 2 2

1 1

1 21 2

1 1 21 21

0

T T T
k i k i k i k i k i k i k i k i k i k i

T
k i k i

T
k i ki k i k i k i

T
k i k i k i k i

A h h A h C C C C h

B B

A A B D C

B B I D D

 

 





   
   

  


 

  

 (35) 

Substitute the controller ( )iu t  into observer, and then we 
can obtain the H∞ optimal observer as follows: 

 
 

2 2 1 1 1
ˆ ˆ( ) ( )T

ki ki k i k i ki k i k i k i k i ki

ki ki

x t A B K H C B B k x t

H y t

   




 (36) 

From aforementioned derivation, the proposed H-ERL 

Sliding-Mode Controller is designed in Theorem A shown as 
follows: 

Theorem A 

Consider a multi-input multi-output nonlinear system as  
Eq. (4) and the state space equation as Eq. (24).  The H-ERL 
sliding mode controller is  

 
1

( ) ( )i oi di i i Di i Pi i
oi

t F q k sat s K e K e
B

           (37) 

where 
 

1. 2( , )ki k iA B  is controllable, 1( , )k i kiC A  is observable and 

12 12
T
k i k iD D I . 

2. Saturation function  

 
sgn( ), , 0

( )
, , 0

i i

i i
i

s s
sat s s

s

 

 


  
 

 


 

3. max0, , 0
( )

i
i i i i i

i

g
k g

N s
        

4. max oi oi oi Pi
i oi di di i

i i i Di

B B B K
F F q q e

B B B K
       

 max
oi

mwi i
i

B

B
    

5. 0 0 0( ) (1 ) , 0, 0 1ERL x
ERLN x e           

6. Sliding surface , 0, 1, 2, ,Pi Pi
i i i

Di Di

K K
s e e i n

K K
      

7. PiK  and DiK  can be obtained by the process according to 

the performance of _ _xcd ybar iG  to determine whether we 

need to design Lag-Lead compensator for _ _xcd ybar iG .  

Therefore, there are two different situations to obtain PiK  

and DiK . 

Situation 1: 

If the performance of transfer function _ _xcd ybar iG  is satis-

fied the desired specification, we do not need to add Lag-Lead 
compensator.  Thus, the optimal control gains PiK  and DiK  

are obtained by:  

 |ei Pi DiK K K       (38) 

where eiK  is obtained by 
1

| |i ei xci xsi
i

K K K K
        , and 

iK  is solved from the following equation: 



568 Journal of Marine Science and Technology, Vol. 24, No. 3 (2016) 

 

 2 1 12 1( )T T
i i i i iK B k D C     (39) 

where 2 12, ,i i iB D  and 1iC  are shown in Eq. (18), and 1ik  is 

the positive definite symmetrical solution ( 1 1 0T
i ik k  ) of the 

Algebraic Riccati Equation (ARE) in Eq. (21). 

Situation 2: 

If the performance of the transfer function _ _xcd ybar iG  does 

not satisfy the desired specification, we need to add Lag-Lead 
compensator.  Thus, the optimal control gains PiK  and DiK  

are obtained by: 

 |k ei Pi DiK K K      (40) 

where k eiK   is obtained by  xsikxcikeikik
i

KKKK   ||
1


, 

and k iK   is given by following equation: 

 2 1 12 1( )T T
k i k i k i k i kiK B k D C     (41) 

where 2 12, ,i k i k iB D  and 1k iC  are shown in Eq. (24), and 

1k ik  is the positive definite symmetrical solution ( 1k ik   
1 0T

k ik  ) of the Algebraic Riccati Equation (ARE) in Eq. (27). 

Then, if the following assumption is satisfied: 

 max

min max max

max

0 ,

oi oi oi Pi oi
i oi di di i mwi i

i i i Di i

i i i i

B B B K B
F F q q e

B B B K B

B B B is bounded




      

    

  
 

  (42) 

The proposed H-ERL sliding mode controller shown in  
Eq. (37) will make is   in finite time and ensure that the 

closed-loop system is asymptotically stable, while it mini-
mizes the H-norm of the transfer function between the  

external inputs ( ( ) ( )
T

i nom iW t r d t    ) and the controlled out-

puts ( ( )
T

i i H i si i xci ciz t U W e Y     ).  And it guarantees that 

the desired specifications can be matched. 

Proof of Theorem A: 

Choose a Lyapunov function candidate: 

 21
( ) , 1, 2, ,

2i i iV s s i n    (43) 

where iV  satisfies: ( ) 0, 0, (0) 0.i i i iV s s V     

Differentiate Lyapunov function candidate with respect to 

time, so we can obtain .i
i i

dV
s s

dt
   

From Theorem A, we know: 

 ,Pi Pi Pi
i i i i i i i di i

Di Di Di

K K K
s e e s e e q q e

K K K
              (44) 

Substitute the system of Eq. (4) into above equation, we can 
obtain: 

 ( ) Pi
i i i i mwi di i

Di

K
s F B t q e

K
         (45) 

Substitute the controller of Eq. (37) into is , we can obtain: 

( ( ) )

( ( ) ( )

( ( ) )

i
i i oi di i i Di i Pi i

oi

Pi
mwi di i

Di

i Pi
i oi di i i Di i i

oi Di

Pi
mwi di i

Di

i Pi
i oi di i i Di i mwi di i

oi Di

i

B
s F F q k sat s K e K e

B

K
q e

K

B K
F F q k sat s K e e

B K

K
q e

K

B K
F F q k sat s K s q e

B K

B
F







      

  

      

  

        

 

  

 

 

 

  

( )

( )

(

i i i i
oi di i i Di i

oi oi oi oi

Pi
mwi di i

Di

i i Pi i
i oi di di i mwi Di i

oi oi Di oi

i
i i

oi

i i Pi i
i oi di di i mwi Di i

oi oi Di oi

i i

oi

B B B
F q k sat s K s

B B B B

K
q e

K

B B K B
F F q q e K s

B B K B

B
k sat s

B

B B K B
F F q q e K s

B B K B

B g

B N







  

  

      



      





 

  

  

( )
) i

i

sat s
s

 

  (46) 

From ii
i ss

dt

dV  , we can obtain (when is  ): 

 [

( )]
( )

i
i i

i i Pi
i i oi di di i mwi

oi oi Di

i i i
Di i i

oi oi i

dV
s s

dt
B B K

s F F q q e
B B K

B B g
K s sat s

B B N s





     

 



    



 S.-M. Wang et al.: The Composite Design of H-ERL Sliding-Mode Controller 569 

 

[ ]

( )
( )

[ ]

( )
( )

[

i i Pi
i i oi di di i mwi

oi oi Di

i i i
i i Di i i

oi i oi

i i Pi
i i oi di di i mwi

oi oi Di

i i
i i

oi i

i i Pi
i i oi di di i mwi

oi oi Di

B B K
s F F q q e

B B K

B g B
sat s s K s s

B N s B

B B K
s F F q q e

B B K

B g
sat s s

B N s

B B K
s F F q q e

B B K







     

 

     



     

  

  

   ]

( )

[ ]

[

]

[

i i
i

oi i

i i Pi
i i oi di di i mwi

oi oi Di

i
i i

oi

i oi oi oi Pi
i i oi di di i

oi i i i Di

oi i
mwi i i

i oi

i oi oi oi Pi
i i oi di di i

oi i i i Di

B g
s

B N s

B B K
s F F q q e

B B K

B
g s

B

B B B B K
s F F q q e

B B B B K

B B
g s

B B

B B B B K
s F F q q e

B B B B K







     



    

 

    



  

  

  

max

max max

max max

]

( )

oi i
mwi i i

i oi

i i
i i i i

oi oi

i i
i i i i i

oi oi

i i i
i i i i i i

oi oi oi

i
i i

oi

B B
g s

B B

B B
s g s

B B

B B
s s

B B

B B B
s s s

B B B

B
s

B











  

    

    

 

 

  (47) 

where 0, 0i
i

oi

B

B
   

From above derivation, we can obtain: 

 
( ) ( )

0, 0 and 0, 0i i i i
i i

dV s dV s
s s

dt dt
      (48) 

The result shows that the controller makes is   in finite 

time.  From Lyapunov stability theorem, we know the con-
troller which makes the closed loop system be asymptotically 
stable. 

Q.E.D. 

As for the plant with uncanceled uncertainties, the Popov 
criterion will be applied to take care of it and will be discussed 
in Theorem B. 

Theorem B 

Substitute the controller of Theorem A into the multi-input 
multi-output nonlinear system of Eq. (4), then the closed loop 
system can be written as: 

 

     
   
   ,

i i i i i

i i i

i i i

z t A z t B v t

y t C z t

v t t y

  
 
  



 (49) 

where  

 
2 1 2 2 2 1

1 2 1 1 1

( ) , , ,

, and ( ) ( ) .

T

i i i i i

i i i i i i

z t e e R A R B R

C R v R G s C sI A B

  

  

     
   


 

If the following conditions are satisfied, the point 0iz   is 
global asymptotically stable. 

 
Condition 1: The whole poles of ( )iG s  locate on the left half 

plane. 
Condition 2:  ,i iA B  is controllable and  ,i iC A  is ob-

servable. 
Condition 3:  ii yt,  belongs to the sector ],[ ii   for 

0i  and 0i . 
Condition 4: There exist a constant 0ix  , such that 

 
( )1

(1 ) 0, 0.
1 ( )

i
e i

i i i i

G jw
R jwx w

G jw  
 

       
 

Condition 5: The poles of 
( )

1 ( )
i

i i

G jw

G jw
 are all on left half 

plane. 
 

Proof of Theorem B: 

Substitute the controller of Theorem A into nonlinear sys-
tem, and then we can obtain the following equation: 

 , 1, 2, ,i Di i Pi i ie K e K e d i n       (50) 

where ie  is error, 1( )id t R  is uncertainty, PiK  and DiK  are 

optimal parameters of controller. 

Let   12)(  Reetz T
iii  , then we can obtain the fol-

lowing absolute stability problem: 

 

 

( ) ( ) ( )

( ) ( )

( ) ,

i i i i i

i i i

i i i

z t A z t B v t

y t C z t

v t t y

  



  


 (51) 
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Fig. 5.  System structure in absolute stability problems. 
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Fig. 6.  Loop transformation diagram. 

 
 

where 2 1 2 2 2 1 1 2( ) , , , ,i i i iz t R A R B R C R        1 1
iv R   

and 1( ) ( )i i i iG s C sI A B   with s jw .   ,i it y  belongs 

to the sector [ , ]i i   for 0i   and 0i   (i.e. i iy   

 , , 0, 0i i i i i it y y      ).  The whole poles of )(sGi  

locate on the left half plane.   ii BA ,  is controllable and 

 ,i iC A  is observable.  The block diagram of the absolute 

stability problem is as Fig. 5  0nomr  .  In order to use Popov 

criterion to show the stability of absolute stability problem, we 
need to transform the loop of Figure Fig. 5.  Thus, the system 
via loop transformation can satisfy the conditions in Popov 
criterion.  The diagram of loop transformation is as Fig. 6. 

From Fig. 6,    , ,i i i i it y t y     and ( )iG s 
 

( )

1 ( )
i

i i

G s

G s
, where the sector of  ii yt,

~
  is 0, i i       

0, _ iPopov k    with 0i   and 0i  .  Use Popov criterion, 

there exist a constant 0ix  , such that 

 
( )1

(1 ) 0, 0.
1 ( )

i
e i

i i i i

G jw
R jwx w

G jw  
 

       
 

And the poles of 
)(1

)(

jwG

jwG

ii

i


 are all on left half plane. 

So, these conditions are all satisfied, the point 0iz   is 
global asymptotically stable. 

Q.E.D. 

V. THE DESIGN PROCEDURES OF H-ERL 
SLIDING-MODE CONTROLLER 

Step 1: Form the nonlinear system to the general equation 
form shown in Eq. (4). 

Step 2: Define sliding surfaces is  and obtain the prototype 

of controller. 
Step 3: Define Di i Pi iK e K e   as an equivalent control in-

put H iU  . 

Step 4: Substitute the controller into the system and obtain 
an equivalent state space equation. 

Step 5: Choose the proper weighting function, i , i , and 

the upper bound upi  of i , where upi  is desired 

specification that wz upiH
T 


  ( wzT  is the transfer 

function between exogenous input and controlled 
output).  Add servo compensator and stabilizing 
compensator to augment the system into standard 
H state space Eq. (18). 

Step 6: Scale and normalize the system to adjust the 
H-norm between ( )iw t  and )(tzi  so that wz H

T


 

is squeezed to be less or equal to 1.  To do that, we 

need to adjust 1iB  into 0.5
1i iB  , adjust iB2  into 

0.5
2i iB , adjust iC1  into 0.5

1i iC   and adjust iC2  into 
0.5

2i iC . 

Step 7: Compute Eq. (21) and Eq. (31) to obtain ik1  and 

ih .  Then we get original system gain 1 1i i ik k   and 

i i ih h  . 

Step 8: If there are solutions in step 7, 1 0, 0,i ik h   the 

maximum eigenvalue of 1i ih k  is smaller than one, 

then go to next step.  Else, if i upi  , reduce i  

and go back to step 5.  Else, increase i  and go back 

to step 5. 
Step 9: If 

HwzT  already satisfies the desired specifica-

tions, then go to step 10.  Else, if i  is the minimum 

which bases on given i , then go to step 10.  Else, 

reduce i  and go back to step 5. 

Step 10: Plot the Bode plot of _ _xcd ybar iG . 

Step 11: If the performance of iybarxcdG __  do not satisfy the 

desired specifications, we have to design a Lag-Lead 
compensator ileadlagK __  for iybarxcdG __  , then aug-

ment standard H∞ state space equation again, and go 
to step 12, else, go to step 13. 

Step 12: Scale the system and compute Eq. (27) and Eq. (35) 
to obtain ikk 1  and ikh  .  If there are solutions in Eq. 

(27) and Eq. (35), 1 0, 0,k i k ik h   the maximum 

eigenvalue of 1k i k ih k  is smaller than one, then go to 

next step, else, go back to step 5. 
Step 13: Find maxi  such that the assumption of Theorem A 

is satisfied. 
Step 14: Get the H-ERL sliding mode controller, which is in 

the form of Eq. (37). 
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Step 15: Do computer simulation.  If the results do not satisfy 
the desired performance, go back to step 5. 

VI. COMPUTER SIMULATION 

Consider the depth control system of an ROV.  The dynamic 
equation of ROV can be expressed as Bessa et al. (2008): 

 ROV ROV seaM z C z z d u      (52) 

where ROVM  and ROVC  are coefficient of ROV, z is the dis-

tance between ROV and sea level, sead  is disturbance, and u  

is control input (Thrust force). 
In this simulation, we define: sead  in the range of 5 N , 

the upper bound of ROVM  is 55 KgROVM  , the lower bound 

of ROVM is 45 KgROVM  , the upper bound of ROVC  is 

275 Kg/mROVC  and the lower bound of ROVC  is ROVC   

225 /Kg m .  The nominal value of ROVM  is chosen as 

1/ 2( ) 50 KgROVROV ROVM M M    and the nominal value 

of ROVC  is chosen as 1/ 2( ) 250 Kg/mROVROV ROVC C C   .  

Our purpose is that the depth z of ROV will track dz   

1 cos(0.1 )
10

2


 . 

The desired specification for this example is described as: 
 

1. The phase margin of iybarxcdG __  is greater than 550. 

2. The velocity error constant of iybarxcdG __  is vK   

5.5 m/sec . 
 
According to the design procedures, we have the following 

controller: 

  eKeKsksatzF
B

tu PDdoi
oi

  )(
1

)(  (53) 

where sliding surface: e
K

K
es

D

P 
,
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1
5 , , , 15.1337,
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d P D

o o

s
ERL

e z z K K

g
F z z B k g

N s

N s e    

   

    

    

   

Transfer function iybarxcdG __  is as follows: 

3 2

_ _ 6 5 4 3 2

31.7 1356 14600 3480

49.9 786.1 4258 10140 588.4xcd ybar i

s s s
G

s s s s s s

  


    
 

  (54) 

The velocity error constant 5.9143 / secvK m  and . .P M    
055.1  satisfy our specification. 

The computer simulation results are as following cases: the 
case 1 is 45ROVM   and 225ROVC  , the case 2 is ROVM    

50 and 250ROVC  , and the case 3 is 55ROVM   and 

275ROVC  .  The initial state is z = 1 for all cases.  We also 

show the simulation results of sliding mode controller with 
ERL.  Therefore, we can compare the performance of H-ERL 
sliding mode controller and sliding mode controller with ERL. 

Case 1 ( 45ROVM  and 225ROVC ) 
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Fig. 7.  Depth z response. 
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Fig. 8.  Error of depth z. 
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Fig. 9.  Control input u. 
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Fig. 10.  Disturbance (dsea). 

 

Case 2 ( 50ROVM  and 250ROVC ) 
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Fig. 11.  Depth z response. 

 
 

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X: 0.94
Y: 0.07316

time (sec.)

Er
ro

r o
f d

ep
th

 z
 (m

et
er

)

Error of z

ERL-error of z
H∞-ERL-error of z

 
Fig. 12.  Error of depth z. 
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Fig. 13.  Control input u. 
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Fig. 14.  Disturbance (dsea). 

 

Case 3 ( 55ROVM  and 275ROVC ) 
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Fig. 15.  Depth z response. 
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Fig. 16.  Error of depth z. 
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Fig. 17.  Control input u. 
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Fig. 18.  Disturbance (dsea). 

 
 
Fig. 7, Fig. 11 and Fig. 15 are response plot of depth z.  Fig. 

8, Fig. 12 and Fig. 16 are error response plot.  From error 
response plot, we know the tracking performance of proposed 
controller is better than sliding mode controller with ERL.  Fig. 
9, Fig. 13 and Fig. 17 are control input.  From the control input 
plot, we know the chattering phenomenon of proposed con-
troller is less than sliding mode controller with ERL.  Fig. 10, 
Fig. 14 and Fig. 18 are hypothetical disturbance. 

Apply Theorem B to show the system robustness: 

Substitute the controller of Eq. (53) into system; we can 
obtain the following error equation: 

 ( )D Pe K e K e d t     (55) 

where e  is error, 1)( Rtd   is disturbance, 21.86PK   and 

7.25DK  .  Let 2 1( ) , ( ) ,
T

popov i i popovz t e e R y t e      

then we can obtain the following absolute stability problem: 

 

 

( ) ( ) ( )

( ) ( )

( ) ,

popov popov

popov popov

popov

z t Az t Bv t

y t Cz t

v t t y

   


 



 (56) 

where  
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1 popov
p D

A B C t y d
K K
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G s C sI A B

s s
  

 
 

The poles of ( )G s  locate at 3.625 2.973i  . 

The whole poles of ( )G s  locate on the left half plane.  
 ,A B  is controllable and  ,C A  is observable. 

In order to ensure that the poles of 
)(1

)(

jwG

jwG


 are all on  
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Fig. 19.  Popov plot of G(jw)/(1-αG(jw)). 
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Fig. 20.  Nonlinearity ϕ(t, ypopov) belongs to the sector [-α, β]. 

 
 

the left half plane, we choose 15, 385, 0.1235x    .  

The conditions of the system are satisfied to Theorem B.  In 

Fig. 19 shows that the Popov plot of 
( )

1 ( )

G jw

G jw
 lies to the 

right of the line.  From Fig. 20, we know that the point 
0popovz   is global asymptotically stable for any nonlinearity 

in the sector [-,  ], uch that the system is called asympto- 
tically stable in the given sector. 

VII. CONCLUSION 

An H-ERL sliding mode controller is proposed in this 
paper for a multi-input multi-output nonlinear system with 
parametric uncertainty and external disturbances.  The sliding 
mode controller with ERL is utilized to form the main struc-
ture of the proposed controller, which ensures that the system 
states will arrive at the sliding surface region in a finite time 
and the plant output matches the desired specifications while it 
ensures that the closed-loop system is asymptotically stable.  
The H control methodology and the Lag-Lead compensator 
are used to optimize the adjustable parameters in sliding mode 
controller with ERL.  The optimal parameters can then mini-
mize the ill-effect of external disturbances and plant paramet-
ric uncertainty on the controlled outputs.  The closed-loop 
poles of the augmented system are then located on the speci-
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fied region to match the desired performance.  Finally, Popov 
criterion is applied to ensure the system stability of unmodeled 
dynamics.  The computer simulation results reveal that the 
proposed H-ERL sliding mode controller can make the sys-
tem have excellent tracking performance and robustness.  
These results also show that the H-ERL sliding mode con-
troller may have better performance than a pure sliding mode 
controller with ERL because the extra H formulation and 
Lag-Lead compensator are formulated in the proposed control 
structure. 
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