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ABSTRACT 

This study developed an analytical solution in the frequency 
domain that considers the interactions among waves, floating 
structures, and mooring lines.  The proposed solution was ap-
plied to investigate a problem involving a moored floating 
structure subjected to incident waves.  The floating structure 
was considered as moving with three degrees of freedom, 
namely surge, heave, and roll.  The mooring lines were simpli-
fied as springs, and the springs were assumed to be subjected 
to a Morison-type wave force.  In the proposed solution, the 
wave field is first expressed as a problem involving a super-
position of scattering and radiation waves.  The wave field to 
be solved is expressed in terms of unknown structural motions, 
and wave forces acting on the floating structure and mooring 
springs are expressed in terms of the unknown wave fields.  
The solution to the coupling problem is obtained by solving 
the equations of motion of the floating structure with moorings.  
The proposed solution was simplified for evaluating cases 
without moorings, and its results are consistent with those of  
a solution in the literature.  The presented solution was also 
used to investigate the effects of the mooring springs with 
added wave forces on wave fields and structural motions.  The 
resonant amplitudes associated with the structure’s motion de- 
creased, and the peaks of resonant frequencies shifted slightly 
toward lower frequencies.  The added mass and radiation dam- 
ping coefficients versus dimensionless wave frequencies are also 
presented. 

I. INTRODUCTION 

The problems of incident waves acting on large moored 
floating structures include scattering and radiation problems 

induced by the motions of the structures; wave forces acting 
on small mooring lines; and interactions among incident waves, 
large floating structures, and small mooring structures (Sarpkaya 
and Isaacson, 1981).  When floating structures and mooring 
lines are subjected to incident waves simultaneously, the sur-
rounding wave fields engendered by the motions of the float-
ing structures are unknown; moreover, the structural motions 
produced when floating structures attached to mooring lines 
are subjected to wave forces are unknown.  Therefore, deriv-
ing a solution to the entire problem entails simultaneously 
solving the wave fields, motions of the floating structures, and 
motions of the mooring lines. 

Wave forces acting on small structures can be calculated 
using the Morison equation because such structures do not 
influence incident wave forms.  Solving the wave fields sur-
rounding floating structures typically involves the superposi-
tion of scattering waves and radiation waves.  The unknown 
amplitudes of the radiation waves are calculated by solving 
equations of motions of the floating structures, where the wave 
forces acting on the structures are calculated by combining 
scattering waves and radiation waves (Mei, 1983). 

Calculations of wave radiation problems provide solutions 
to inhomogeneous boundary value problems, especially heave 
and roll radiation problems.  Lee (1995) proposed a solution  
to heave radiation problems of rectangular floating structures.  
Chen et al. (2006) extended this solution to roll radiation prob-
lems and solved the problems of rectangular floating structures 
subjected to incident waves without moorings.  The hydro-
dynamic effects of various floating structure types have been 
investigated.  Weng and Chou (2007) studied the responses of 
floating dual pontoon structures subjected to incident waves.  
Karmakar et al. (2013) proposed using multiple floating break- 
waters to reduce the wave height in a transmitted region.  
Finnegan and Goggins (2012) modeled the interactions of 
waves and floating cylinders in a numerical wave tank.  Zhao 
and Hu (2012) numerically and experimentally studied non- 
linear interactions between extreme waves and a floating body, 
in which highly nonlinear wave-body interactions were em-
phasized. 

Regarding the problems of incident waves acting on moored 
floating structures, Ijima et al. (1972) presented a representative 
article.  They used eigenfunction expressions for wave poten-
tials to express the wave fields; specifically, they used series 
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expressions for nonhomogeneous boundary conditions in the 
problem.  Moreover, simple elastic springs were used to simu-
late the mooring lines; however, wave forces acting on the 
mooring lines were not considered.  When examining prob-
lems of floating structures subjected to incident waves, Lee 
(1994) first considered wave forces acting on mooring lines.  
A tension-leg structure was considered, and only the surge 
motion of the structure was included.  Lee (1994) also found that 
the resonant frequencies were not changed; however, the am-
plitudes of the structural motions were damped.  Lee and Wang 
(2001) also studied the dynamic behaviors of tension-leg 
platform systems; however, they included flow-induced drag 
forces acting on the tethers as well as wave-induced drag 
forces in their study.  Lee and Wang (2003) extended their re- 
search to tension-leg structure systems with twin platforms.  In 
addition, Lee and Wang (2005) studied tension-leg-type fish 
cage systems subjected to incident waves.  Tabeshpour et al. 
(2006) presented an analytical solution to the heave vibration 
of tension-leg platforms.  Tabeshpour et al. (2013) further inves- 
tigated the hydrodynamic- damped pitch motion of tension-leg 
platforms. 

The current study investigated a two-dimensional problem 
of a moored floating structure subjected to incident waves.  
The floating structure was considered to move with three 
degrees of freedom (i.e., surge, heave, and roll motions), and 
the mooring lines were simulated using linear springs.  This 
study also developed an analytical solution in the frequency 
domain, and this solution entails assessing the interactions 
between waves and the moored floating structure.  Because wave 
forces acting on the mooring lines were considered, coupling 
effects induced by the mooring lines were also evaluated. 

II. PROBLEM DESCRIPTION 

The investigated problem involved a floating rectangular 
structure subjected to incident waves.  Fig. 1 illustrates a de- 
finition sketch of the problem involving a floating structure 
with cross moorings.  This figure shows a Cartesian coordinate 
system with the origin located at the still water level.  The po- 
sitive x-axis points to the right, and the positive z-axis points 
upward.  In addition, h is the water depth, 2b is the structure’s 
width, d is the draft, e is the protruding height above the still 
water level, d0 is the diameter of the mooring line, and Ks is the 
stiffness of the mooring line.  The incident wave propagates in 
the negative x direction with free surface elevation  I.  Because 
of the existence of the floating structure, reflected waves 1 
are generated in front of the structure, and transmitted waves 
3 are generated behind the structure.  Moreover, the wave 
fields enforce the motions of the floating structure.  The 
mooring lines then move along with the floating structure. 

To describe the wave field, a potential function  is used, 
and is defined as follows (Dean and Dalrymple, 1991): 

 V  
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Fig. 1. Incident waves acting on a floating rectangular structure with 

cross moorings. 

 
 

where V


is the velocity and  is the gradient operator.  The 
wave fields for the aforementioned problem involve unknown 
disturbed wave fields in addition to incident waves.  Because 
linear wave theory was used, the wave potentials must satisfy 
the Laplacian governing equation 

 2 0    (2) 

 

2
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and the bottom boundary condition 

 0, z h
z
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  


 (4) 

The radiation condition specifies the wave propagation di-
rection.  Moreover, a continuous normal velocity is assumed 
on the structural surface.  The incident wave potential I can 
be expressed as follows: 

 ( )cosh ( )
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I
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where IA  is the wave amplitude, K is the wave number,  is 
the angular frequency, g is the gravitational constant, and 

1i   . 
The equations of motion of the floating structure with three 

degrees of freedom and constrained by the mooring lines can 
be expressed as (Mei, 1983) 
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and the mass matrix [M] and stiffness matrix [K] can be ex-
pressed as follows: 

   0
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where m  is the mass of the floating structure, ,( )o ox z  is the 

center of the geometric center, and ,( )c cx z  is the center of 

rotation.  In addition, 1 2 3, ,    are the displacements of the 

floating structure in the surge, heave, and roll motions, re-
spectively.  The area moment of inertia in each direction for 
the rectangular floating structure can be expressed as 
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The first term on the right side of Eq. (6) represents the 
wave forces acting on the floating structure, the second term 
represents the restoring forces from the mooring springs, and 
the third term represents the wave force acting on the mooring 
lines.  The restoring forces from the mooring springs can be 
expressed using displacements of the floating structure: 
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III. ANALYTIC WAVE SOLUTIONS 

The wave fields induced by the incident wave and motions 
of the floating structure can be expressed by the superposition 
of scattering waves D and radiation waves R.  The radiation 
waves can be further decomposed, as follows, into three com- 
ponents corresponding to the three degrees of freedom of the 
structure’s motion: 

 
3

1

R j
j

j

s


    (26) 

where js  is the amplitude of the j-th degree of freedom, and 
j  is the radiation wave potential of the j-th degree of freedom 

of the unit amplitude.  The index j = 1, 2, 3 represents the surge, 
heave, and roll motions, respectively.  The scattering and 
radiation waves can be obtained using the method of separa-
tion of variables and by dividing the problem domain into 
three regions (Fig. 1).  According to the approach used by 
Chen et al. (2006), the scattering and radiation waves of a unit 
amplitude for the three regions can be expressed as 
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where kn satisfy the dispersion equation 
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The first subscripts of the wave potentials in Eqs. (27)-(43) 
represent the region associated with the evaluated wave po-
tential.  The undetermined coefficients in Eqs. (27)-(43) can be 
determined using the matching conditions between neighboring 
regions at boundaries x = b and x = -b. 

The wave forces acting on the mooring lines can be calcu-
lated using the Morison equation.  A linearized form of this equa- 
tion can be written as follows (Sollitt and Cross, 1972): 
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where Cm is the inertia coefficient,  is the fluid density; D is 
the projection area per unit length;  is the volume per unit 
length; U and U/t are the flow velocity and acceleration 

normal to the mooring lines, respectively, and   and   are 

the velocity and acceleration of the mooring lines, respectively. 
The linear drag coefficient Rd is defined as 
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where Cd is the drag coefficient. 

The wave forces acting on mooring lines AB  and CD  can 
be expressed as 
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where c

GB
F  and c

AG
F  are the wave forces acting on mooring 

line AB  and are calculated according to the wave potentials in 
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regions III and II, respectively.  Moreover, c

HD
F  and c

CH
F  are 

the wave forces acting on mooring line CD  and are calculated 
according to the wave potentials in regions I and II, respectively. 
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The flow velocities in Eqs. (48)-(51) can be calculated us-
ing the expressions derived for the scattering and radiation 
waves [i.e., Eqs. (27)-(43)]: 
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where the subscript commas indicate differentiation.  The no- 
tation Uj represents the flow velocity located in the j-th region.  
The displacements of mooring lines AB and CD can be readily 
calculated according to geometrical deployments of the moor-
ing lines. 
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 (55) 

After the substitutions of the wave potentials [Eqs. (27)-(43)], 

mooring forces [Eqs. (13)-(25)], and wave forces on the mooring 
lines [Eqs. (46)-(51)] and the consideration of a periodic function 
in time, the structure’s equations of motion [Eq. (6)] can be re- 
written as follows: 
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 (56) 

where [ ]raF  and [ ]waF  are coefficient matrices derived on 

the basis of wave forces, which are calculated according to the 
unit amplitude of the radiation waves, acting on the floating 

structure and mooring lines, respectively.  Furthermore, { }wDF  

and { }DF  are column matrices obtained on the basis of the 

wave forces, which are calculated according to the scattering 
waves (including incident waves), acting on the floating struc-
ture and mooring lines, respectively.  The term {s} in Eq. (56) 
is a column vector equivalent to the transpose of {s1 s2 s3}.  In 

Eq. (56), the coefficient matrix [ ]raF  can be rearranged further.  

The imaginary part is used to define the added mass coeffcients. 
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The corresponding real part is used to define the radiation 
damping. 
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 (58) 

Eq. (56) can be solved for the three degrees of freedom of 
the structure’s motion.  The radiation waves can then be calcu-
lated using Eq. (26).  Once the wave potentials are determined, 
the surface elevations can be obtained by applying Bernoulli’s 
equation.  Subsequently, the reflected and transmitted surface 
elevations can be used to calculate the wave amplitudes, fol-
lowed by the reflecting and transmitting coefficients Kr and Kt. 

IV. RESULTS AND DISCUSSION 

To demonstrate the accuracy of the proposed solution, this 
study assessed the problem of a floating rectangular structure 
with spring moorings evaluated by Ijima et al. (1972).  The pro- 
posed solution was simplified for cases involving mooring 
lines without wave loadings.  Fig. 2 shows comparisons of re- 
flection coefficients between the proposed analytical solution 
and that presented by Ijima et al. (1972).  The calculation con- 
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Fig. 2. Comparisons of the reflection coefficients between the proposed 

analytical solution and that of Ijima et al. (1972) for various drafts. 
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ditions are outlined as follows: water depth = 10 m; structure 
width = 10 m; structure material density = 0.8; spring stiffness 
K = wgb; and floating structure submergence d/h = 0.2, 0.3, 
0.4, and 0.5.  The comparisons in Fig. 2 indicate that without a 
mooring drag consideration, the results of the proposed solu-
tion effectively reflect the simulation results.  Fig. 3 illustrates 
transmission coefficients corresponding to the results shown 
in Fig. 2.  The reflection and transmission coefficients can also 
be used to examine the conservation of energy for the problem 
system involving no energy dissipation.  Fig. 3 also indicates 
that shorter incident waves result in smaller transmitted waves. 

To investigate the effects of mooring drags on the problem,  
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Fig. 5.  Effects of mooring line diameters on the total energy. 
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the parameters of the friction coefficients, added mass coeffi-
cients, and mooring line diameters were considered.  The calcu-
lation conditions are outlined as follows: water depth = 10 m, 
floating structure width = 2 m, submergence depth d = 2 m, 
mooring line spring stiffness K = wgb, mooring line diameter = 
0.05 m, inertia coefficient = 1.0, and friction coefficients = 1.0 
and 2.0.  Fig. 4 shows the effects of various friction coeffi-
cients on the total energy expressed in terms of reflection and 
transmission coefficients, indicating that an increased friction 
drag induces discernible energy damping in the vicinity of re- 
sonant frequencies and that a higher friction drag results in a 
higher energy damping magnitude.  Fig. 5 illustrates the effects 
of various mooring line diameters on the total energy, signifying 
that a larger mooring line diameter engenders a higher friction 
drag on the mooring lines, consequently inducing higher en-
ergy damping.  This figure also indicates that heavier mooring 
lines cause the resonant frequency to shift slightly toward 
lower values.  Fig. 6 shows the effects of diverse inertia coef-
ficients on the total energy of the wave field.  In this compu-
tation, the friction coefficient was set to 2.0 and the mooring 
line diameter was set to 0.05 m.  The results revealed that the 
inertia coefficients did not alter the energy magnitude of the 
wave-structure system and that the friction coefficient induced 
energy damping in the vicinity of the resonant frequency. 

The effects of friction coefficients on the motions of the 
floating structure are presented subsequently.  Fig. 7 shows the 
floating structure’s surge motions corresponding to various  
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friction coefficients without drag; this figure shows a plot of 
dimensionless surge amplitudes versus dimensionless wave fre- 
quencies.  The inertia coefficient was set to 1.0 and the mooring 
line diameter was set to 0.05 m.  The results indicated that in- 
creasing the friction coefficient changed the response curve 
only at the resonant peak.  In addition, when the mooring drag 
was considered, the friction coefficient did not induce a change 
in the structural motion response curve, except in the vicinity of 
the resonant peak. 

Fig. 8 illustrates the effects of various friction coefficients on 
the floating structure’s heave motion, showing a plot of dimen- 
sionless heave amplitudes versus dimensionless wave frequen-
cies.  The results revealed that when the friction coefficient was 
increased, the response curves tended to demonstrate a de-
creasing trend in the vicinity of resonant peaks, whereas they 
remained unchanged elsewhere.  For the evaluated conditions, 
the structure’s motion in the heave direction was smaller than 
the surge motion shown in Fig. 7.  Fig. 9 shows the effects of di- 
fferent friction coefficients on the floating structure’s roll mo-
tion.  Similar to the surge and heave motion results (Figs. 7 and 
8, respectively), the response curves of the floating structure 
decreased in the vicinity of resonant peaks and remained con- 
stant elsewhere.  On the basis of the response curves correspon- 
ding to the three degrees of freedom of the floating structure,  
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Fig. 9. Effects of friction coefficients on the dimensionless roll ampli-

tudes of the floating structure. 

 
 

0.0 1.0 2.0 3.0 4.0
0.0

1.0

2.0

3.0
A

dd
ed

 M
as

s C
of

.
μ11

μ22

μ33

μ31

μ13

2h/gω  
Fig. 10. Added mass coefficient versus dimensionless wave frequencies 
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one can conclude that when the mooring drag is considered, 
the structure’s motions are damped only in the vicinity of 
resonant peaks, with limited changes occurring elsewhere.  
Furthermore, when the inertia coefficients are included in the 
Morison equation, the resonant frequency tends to shift slightly 
toward lower values. 

The added mass and radiation damping coefficients for the 
moored floating structure was calculated using the presented 
analytical solution.  Fig. 10 shows plots of the added mass 
coefficients versus dimensionless wave frequencies for the 
structure’s motion along each degree of freedom; the added 
mass coefficients correspond to the surge ( 11 ), heave ( 22 ), 

and roll ( 33 ) motions in addition to the effect of roll motion 

on surge motion ( 13 ) and the effect of surge motion on roll 

motion ( 31 ).  The results revealed that the added mass coef-

ficients were monotonic functions of dimensionless depth.  The 
added mass coefficients for the surge and roll motions increased 
monotonically at shallower waters and peaked at 2h/g = 1.2, 
and they decreased monotonically for deeper waters.  By con-
trast, for the heave motion, the variation of the added mass 
coefficient was within a narrow range.  The minimum value of 
the coefficient was 2h/g = 1.5, and it subsequently increased 
monotonically with respect to the dimensionless water fre- 
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quency.  The increase in the added mass coefficients indicated 
that the floating structure had a high virtual mass, thereby 
raising the difficulty of the structure in responding to external 
wave forces.  Therefore, for the heave motion, the floating struc- 
ture encountered greater difficulty moving in deeper waters; 
nevertheless, for the surge and roll motions, the floating struc- 
ture more easily responded to wave forces.  Fig. 10 also shows 
the added mass coefficients representing the effect of roll mo-
tion on surge motion ( 13 ), and vice versa ( 31 ).  The added 

mass coefficient 31  is higher than 13 , indicating that the surge 

motion exerts higher effects on the roll motion (instead of the 
other way around) for the entire range of water depths. 

The radiation damping of the ocean structure represents 
scattered and/or radiated outgoing waves, which transmit wave 
energy from the floating structure, and is expressed as energy 
damping of the structure system.  Higher radiation damping 
indicates a higher amount of waves that propagate away from 
the structure system.  Fig. 11 shows plots of radiation damping 
coefficients versus dimensionless wave frequencies for com-
ponents of the damping matrix of the floating structure.  The 
radiation damping coefficient for the heave motion decreased 
monotonically with respect to the dimensionless wave fre-
quency, implying that for deeper depth incident waves, the ra- 
diated waves are smaller.  However, for the surge and roll 
motions, the radiation damping coefficients increased with the 
water depth and peaked at 2h/g = 3.18.  Similar to the results 
shown in Fig. 10.  Fig. 11 also shows the radiation damping co- 
efficients representing the effect of the roll motion on the surge 
motion ( 13 ), and vice versa ( 31 ).  The radiation damping 

coefficient 31  is higher than 13 , indicating that the surge mo-

tion has a higher effect on the roll motion (instead of the other 
way around) for the entire range of water depths. 

V. CONCLUSIONS 

This study developed an analytical solution to a problem 
involving the interaction of wave forces with a moored float-
ing structure.  In this solution, wave forces acting on mooring 
lines are considered.  The proposed solution was simplified to 

evaluate cases without mooring drags, and the results it yielded 
were highly consistent with those reported by Ijima et al. (1972).  
When wave forces acting on the mooring lines were included, 
the examination of the energy conservation of the wave system 
revealed that increasing the friction drag induced discernible 
energy damping in the vicinity of the resonant frequencies and 
that a higher friction drag resulted in a higher energy damping 
magnitude.  However, the inertia coefficients did not alter the 
energy magnitude of the wave system.  The effects of various 
friction coefficient values on the motions of the floating struc- 
ture were also observed, and the results indicated that when 
the friction coefficient was high, the response curves dropped 
only at the resonant peak and remained constant elsewhere.  
The analytical solution was also used to determine the added 
mass and radiation damping coefficients for the moored float-
ing structure. 
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