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ABSTRACT 

In the paper, we develop a two-phase design approach for  
a fuzzy logic controller (FLC) of an active vibration isolation 
system, which adopts two components of soft computing 
techniques, namely fuzzy logic control theory and neural 
networks.  First, we design a fuzzy logic controller for an active 
vibration isolation system using fuzzy logic control theory.  
We conduct numerical simulations of an active vibration iso-
lation system with three kinds of exciting loads.  The results in- 
dicate that the performance of the fuzzy logic controller is  
very good, but its control rule surface does not measure up in 
practical terms.  Secondly in the neural network, trained by 
Quick-prop with Newton's method, is used to model an ap-
proximation of this fuzzy logic controller, termed the neural 
network fuzzy controller (NNFC).  The control performance 
indicates that the NNFC has the same performance as the FLC 
designed in the first phase and its control rule surface is im-
proved and more suitable for actual use.  The results indicate 
that the proposed design approach provides a robust, control-
lable, practical, and low-cost solution for a FLC of an active 
vibration isolation system. 

I. INTRODUCTION 

The vibration isolation systems with higher performance 
are in great demand in many scientific and industrial fields 
such as integrated circuit (IC) manufacturing, engine mounts 
for automobiles and ships, etc.  For precision machining and 
measuring, precision instruments and vehicle safety and 
comfort, it is essential that mechanical systems have strict 
constraints on vibration and shock in their environment.  For 
this purpose, vibration control technologies are of great im-

portance and have become a significant research topic. 
Currently, vibration isolators and vibration absorbers are 

commonly employed in dynamic systems to reduce vibration 
(Cheung et al., 2015).  This paper focuses on the vibration 
isolation method, i.e. an isolator that is installed between the 
ground and the main system with vibration excitation designed 
to reduce the transmission of the excitation loads.  Passive vi-
bration isolation is a typical example and the most common 
method used to satisfy this requirement.  It uses springs, dampers, 
and other dynamic parameters to provide a controlled damping 
system and has the advantages of simple structure, effective-
ness, reliability, and no additional equipment.  However, its per- 
formance regarding isolation of low frequency and ultra-low 
frequency vibrations is not satisfactory.  Moreover, given the 
fixed eigenvalues of dynamic systems, relatively slow re-
sponse time, and lack of a flexible control method, this ap-
proach is not suitable for vibration control that requires high 
precision.  In contrast, active vibration isolation enables closed- 
loop control of dynamic systems in random, external, and ex- 
citing load conditions, achieving a strong anti-interference 
ability, and therefore, a more robust isolation effect. 

The vibration isolation controller is the kernel of an active 
vibration isolation system (AVIS).  It not only receives the 
signal of the sensor, transports the signal of the actuator unit, 
but must also select the control method for the different ac-
tuator.  So far, there are many frequently used classical control 
methods: Narendra et al. (1997), proposed the multiple model 
switching tuning (MMST) control method to tackle the prob-
lem of remarkable and rapid variation in plant parameters.   
Bai et al. (2002) studied control design of active vibration 
isolation using linear quadratic Gaussian (LQG) control and 
-synthesis.  Engels et al. (2006), examined the performance 
of centralized and decentralized feedback controllers.  These 
control methods have common characteristics: the controller 
is designed based on mathematical models and performance 
requirements of the controlled system, and the control method 
is described analytically using mathematics.  In real words, it 
is not easy to establish a clear mathematical model for com-
plex structural dynamic vibration systems with factors such as 
structural nonlinearities, uncertainties of structural models, 
and time-variant dynamic parameters.  The established mathe- 
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Fig. 1.  Framework of soft computing. 

 
 

matical models are often too complex and do not enable ef-
fective isolation control.  These motivate us to consider intel-
ligent control theory, also known as soft computing techniques, 
to propose an effective and feasible control technique for 
active vibration isolation systems. 

Soft computing is a concept proposed by Zadeh (1994).  It 
is not a single computing method, but rather a collection of 
various hybrid algorithms that simulate biological behaviour 
and thinking activities, as shown in Fig. 1.  Elements of soft 
computing include artificial Neural Networks (NN), Fuzzy 
Systems (FS), Evolutionary Computation (EC), Swarm Intel-
ligence and Chaos Theory. 

Fuzzy logic control theory was proposed by Zadeh (1965) 
in his work on fuzzy set theory.  Zadeh (1973) researched the 
soft computing technique.  Mamdani (1976) applied fuzzy 
logic control theory in a study of simple control systems.  The 
main steps for developing a fuzzy controller are: (1) fuzzifi-
cation, (2) selection of the suitable linguistic control rule base, 
(3) design of a suitable control algorithm, and (4) defuzzifi-
cation.  Extensive research and application of fuzzy set theory 
and fuzzy logic controller has been conducted, and good re-
sults have been achieved.  Song and Chen (2010) designed the 
fuzzy active vibration isolation control algorithm base on 
neural networks to forecast the vibration of next moving state.  
Ricardo et al. (2014) studied the fuzzy logic controller of 
non-singleton type for automatic design and tested the con-
troller by using the trajectory tracking of an autonomous mo-
bile.  Lin et al. (2015) applied the design process of fuzzy logic- 
based algorithm to the seismic isolator system for structural 
control. 

Early study on neural networks includes research by Ru-
melhart et al. (1986) and Hebb (1989).  Hornik et al. (1990) 
proposed multi-layer feed-forward networks; they used neural 
networks to describe a model mapping input to output, which 
does not need a physical or mathematical model and is a type 
of universal approximator.  Neural networks is an information 
processing paradigm that mimics the way the densely inter-

connected, parallel structure of the human brain processes 
information.  In this domain, a popular fast learning algorithm 
known as back-propagation learning algorithm (Backprop) is 
trained by the steepest descent method (Rumelhart et al. 1986).  
Fahlman and Lebiere (1988) followed with a new learning 
process called Quickprop, a modification of Backprop that 
uses Newton’s method, a second order weight update function, 
to accelerate the convergence over simple first-order (steepest) 
gradient descent. 

Nastac (2008) developed a fuzzy logic controller for a vi-
bration isolation device driver.  In his work, the final remark 
he made was that the biggest difficulty in developing a fuzzy 
logic controller was setting the initial values for the linguistic 
rules base, which depends on the empirical experience of the 
designers; the computational complexity and the number of 
rules increase exponentially as the number of system variables 
increases.  As a result, hybrid soft computing technology may 
be an important approach to improving control performance 
and reducing difficulties in developing the linguistic rules base 
of the FLCEker and Torun (2006) proposed PID-Fuzzy logic 
control in nonlinear industrial systems.  Kim et al. (2006) used 
the genetic algorithm (GA) for optimization of the fuzzy logic 
controller.  Their purpose in employing a GA was to determine 
appropriate fuzzy control rules and to adjust parameters of the 
membership functions.  Cheong et al. (2007), applied differ-
ential evolution (DE) to the automatic design of a hierarchical 
fuzzy logic controller.  The cost in computer time is currently 
the biggest concern for designers in using evolutionary com-
putations (ECs) such as GAs, DEs, etc. to automatically deve- 
lop the FLC. 

In this paper, a two-phase design approach is proposed, 
which uses fuzzy logic control theory and neural networks to 
develop a fuzzy logic controller for active vibration isolation 
systems.  In the first phase of the present approach, fuzzy logic 
control theory is adopted to develop a feasible FLC by using 
expert experiences through trial and error with limited time 
cost.  In the second phase, we use neural networks to build an 
approximate model of the FLC (developed in the first phase) 
to ensure the necessary adjustment is proposed so that the 
imprecise prediction of the NN can be used to achieve a robust, 
controllable, practicable, and low-cost solution.  The approxi-
mator of this fuzzy logic controller is called the neural network 
fuzzy controller (NNFC).  In this paper, the Quickprop learn-
ing algorithm, which has good convergence speed, is used to 
train the neural networks.  And in conclusion, the control 
performances of FLC and NNFC are highlighted and discussed 
using a numerical simulation of an active vibration isolation 
system. 

II. FUZZY LOGIC CONTROLLER 

There is increasing demand for precision machining and 
measuring, precision instruments and vehicle safety and com-
fort.  The fuzzy logic controller can play an important role in 
meeting this need because knowledge-based control rules can 
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easily be implemented in systems, and it is going to be a con- 
ventional control method since the control design strategy is 
simple and practical and is based on linguistic information. 

Fuzzy logic control theory uses IF-THEN clauses, similar 
as in human experience, to express events.  It has the following 
characteristics: (1) the use of fuzzy linguistic variables rather 
than numerical values and mathematical models to describe a 
system, (2) the use of conditional propositions to represent the 
characteristics of the system and its actions, and (3) the use of 
fuzzy inference methods to express control algorithms.  The 
fuzzy logic controller (FLC) has four main parts: fuzzifier, 
fuzzy rule base, fuzzy inference engine and defuzzifier.  These 
are set up as described: 

 
(1) Select a fuzzifier (fuzzification): The fuzzifier maps crisp 

values of input variables selected from the controlled 
system into fuzzy sets, i.e. the input variables have to be 
transformed into linguistic variables, i.e. variables whose 
values are words or sentences in a natural language, and 
not a number.  A fuzzy set is characterized by a linguistic 
variable.  Every linguistic variable has to be expressed by 
a suitable membership function.  The most commonly 
used functions are the triangular, Gaussian, trapezoidal 
and piecewise linear.  The main function of the fuzzifier is 
to activate rules associated (through linguistic variab1es) 
with fuzzy sets. 

(2) Set-up a fuzzy knowledge base: The fuzzy knowledge 
base consists of rule bases and databases.  These bases are 
built using the expert experiences of the designer through 
trial and error. 

(3) Design a fuzzy inference (control algorithm) based on the 
controlled system variables: Fuzzy inference is expressed 
in terms of linguistic variables.  Depending on the input 
values, linguistic variables become active and the infer-
ence engine produces a fuzzy set for the output linguistic 
variables.  The inference engine is the kernel of the fuzzy 
logic controller and it handles the manner in which rules 
are combined, representing the knowledge base of the 
system. 

(4) Choose a defuzzifier (Defuzzification): The output fuzzy 
set inferred from fuzzy inference engine is given as input 
to a defuzzyfier, which transforms the set into crisp values 
to the controlled system. 

 
The framework diagram of design a fuzzy logic controller 

is shown in Fig. 2. 

III. NEURAL NETWORKS 

Neural networks (Rumelhart et al., 1986, Hebb, 1989) are 
intended to simulate the human brain which consists of a large 
number of neurons (1011) interconnected via a larger number 
of synapses (1014), resulting in a highly non-linear, fault- 
tolerant, and parallel processing system.  Neural networks can  
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Fig. 2.  Framework of fuzzy logic controller. 

 
 

be seen as information processing systems that simulate bio-
logical neural networks.  To date, many types of neural net 
work architectures have been proposed (Hornik et al.,1990).  
In this paper, two popular neural networks, Back-propagation 
and Quickprop, are briefly described. 

1. Back-Propagation Networks (BPN) 

Back-propagation Networks (BPN) (Rumelhart et al., 1986), 
also known as Multi-Layer Perceptrons (MLP), are multilayer 
feed-forward networks.  They are formed by an input layer, an 
output layer, and several hidden layers in between.  A back- 
propagation algorithm is used to adjust the values of the net-
work nodes.  In the first phase, signals are fed from the input 
layer and passed through the hidden layers to the output layer 
in the feed-forward way.  The output value is then calculated.  
The second phase is the back-propagation of adjustments.  The 
values of network nodes are adjusted according to the delta 
rule, such that the network output value will converge to the 
expected value.  This iterative process for updating node values 
is called network learning.  The corresponding network archi-
tecture is shown in Fig. 3. 

In a neural network, multiple hidden layers are used to in-
crease its capacity for processing non-linear problems.  In 
theory, if there are enough neurons in the hidden layers of the 
perceptron, a two-layer structure will be sufficient to enable 
the output of the perceptron to approximate any continuous 
function, and thus it becomes a “universal approximator” 
(Hornik et al., 1990). 

An output of a neuron is a linear or nonlinear transfer 
function ( )j  .  Usually in the hidden layers it is a sigmoid 

function 
1

1 exp( )j
j

y
v


 

, and in the output layer it is a 

linear transfer function. 
The back-propagation algorithm is described below: 
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1. Initial value setting: the setting of initial network structure 
(number of layers, number of neurons), transfer function, 
node weights, learning rate, learning cycles (Epochs) and 
the threshold. 

2. Input of the sample set: samples are divided into training 
samples and test samples, used for training and testing the 
network, respectively. 

3. Feed-forward computation: for each neuron, calculate in 
order the output value for the input vector of a training 
sample. 

 ( ) ( ( ))j j jy n v n  (1) 

If the j - th neuron is in the first hidden layer, then yi(n) = 
xi(n), otherwise, yi(n) is the output of the previous layer at the 
n-th epoch, where 

 
0

( ) ( ) ( )
m

j ji i
i

v n w n y n


   (2) 

where vj(n) is called the transfer function.  m is the neuron’s 
input dimension and wij(n) is the node weight. 

 
4. Back-propagation: updating node weights. 

First, the definition of error is 

 ( ) ( ) ( )j j je n d n y n   (3) 

where dj(n)
 
is the expectation. 

Thus, in the n-th epoch, the total error function E or the 
mean square error, MSE, is expressed as 

 21
( ) ( )

2 j
j c

E n e n


   (4) 

or 

 
( )

( )
E n

MES n
N

  

where c is the set of the output resulting from the training 
samples and N is the number of samples in the collection c. 

Using the steepest descent method to adjust the node 
weights by ( )jiw n , the error gradient ( ) / ( )jiE n w n   can be 

expressed according to the chain rule: 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )
j j j

ji j j j ji

e n y n v nE n E n

w n e n y n v n w n

   


    
 (5) 

 0

( ) ( )
( )

( )
( ) ( )

m

ji i
j i

i
ji ji

w n y n
v n

y n
w n w n



      
 


 (6) 

The definition of error correction is 

 
( )

( )
( )j

j

E n
n

v n
 

 


 (7) 

Adjustment of weight ( )jiw n
 
is then 

 ( ) ( ) ( )ji j iw n n y n   (8) 

where  is the learning rate. 
Thus, the new weight on the network is 

 
( 1) ( ) ( )

( ) ( ) ( )

ji ji ji

ji j i

w n w n w n

w n n y n





  

 
 (9) 

5. Iteration computations: repeat steps 3 and 4 until the MSE 
is smaller than the convergence threshold or the number of 
training epochs meets the setting maximum value.  In the 
paper, the convergence threshold is set to 0.001. 

2. Quickprop Algorithm 

In the back-propagation network, its nonlinear transfer 
function is differentiable, and the steepest descent method is 
used to update the node weights.  However, back-propagation 
learning is too slow and it scales up poorly as tasks become 
larger and more complex.  Selection of the back-propagation 
learning parameters is something of a black art, and small 
differences in these parameters can lead to large differences in 
learning times (Fahlman and Lebiere, 1988).  In order to let the 
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error quickly converge to a local minimum, there are two com- 
monly used methods.  One is to dynamically adjust the learning 
rate, and the other is the second-order gradient method (New-
ton’s method).  Quickprop is a BPN using the latter.  In training 
the networks, Quickprop uses the second-order gradient to cal- 
culate the adjustment of the weights (Fahlman and Lebiere, 
1988).  The adjustment of weights is as follows. 

 

( )
( ) ( 1)

( 1) ( )ji ji

S n
w n w n

S n S n
   

   (10) 

where 

 

( ) ; ( 1)
( ) ( 1)ji ji

E E
S n S n

w n w n

 
  
  

 (11) 

The coefficient in the Eq. (10) is based on two assumptions: 
(1) the error function is a parabolic approximation and it opens 
upwards; (2) the weight can be adjusted independently, i.e. the 
weights will not affect each other in the learning process of the 
gradient value of the error function.  The update rules of weights 
are: 

 
(1) If S(n)S(n  1) < 0, Quickprop obtains the minimum of the 

function, which means that the search direction obtained 
from Eq. (10) is right. 

(2) Since S(n)S(n  1) > 0, this means that the nth search di- 
rection is the same as the previous one.  If S(n)S(n  1) > 
S(n)2, then the weight should be updated in the same search 
direction.  Therefore, Eq. (10) should be used or reinforced 
by: 

 
( ) ( ) ( )ji jiw n w n S n   

 (12) 

where the parameter , which is called the maximum growth 
factor, in this paper, is set to 1.75  (Fahlman and Lebiere, 1988). 

 
(3) If S(n)S(n  1) > 0 and S(n)S(n  1) < S(n)2, then Eq. (10) 

does not preserve the sign of the search direction and it 
should adopt the steepest descent method, i.e. 

 ( ) ( )jiw n S n    (13) 

IV. ACTIVE VIBRATION ISOLATION SYSTEMS 

In this paper, the active vibration isolation system shown  
in Fig. 4 is a two-mass dynamic system in which the main 
structure is placed on the isolator.  The main structure, which un- 
dergoes the exciting load, f0(t), consists of the mass, m1, stif- 
fness, k1 and damping coefficient, c1.  The isolator has mass, 
m2, stiffness, k2 and damping coefficient, c2.  An auxiliary force, 
known as the control force, fa(t), is imposed on the vibration 
isolator. 

FT(t)

fa(t)

fo(t)

c1

c2

Main System Mass
m1

Isolator Mass
m2

k1

x1

x2

k2

 
Fig. 4.  Active vibration isolation system. 

 

 
Assuming that the active vibration isolation system is a 

linear time-invariant dynamic system, its motion equation is as 
follows. 

 
   2 2 2 1 2 2 1 2 1 1 1 1

1 1 1 1 1 1 1 2 1 2 0

am x c c x k k x c x k x f

m x c x k x c x k x f

       


    

  
    (14) 

where ix , ix , and ix , are the displacement, velocity, and acce- 

leration of the main structure, i = 1, and the isolator, i = 2. 
As the exciting load and the control force impose on the 

two-mass dynamic system, the system produces a force, which 
is the transmissibility force, FT, imposed on the ground, 
composed of the spring force, 

IspringF  and the damping force, 

IdampingF  on the isolator: 

 
I IT spring dampingF F F   (15) 

In this paper, the control performance of the active vibra-
tion isolation system is defined as the transmissibility force, 
FT(t).  For the active vibration isolation system, we examine 
the control performance of (1) the fuzzy controller in the first 
phase, and (2) the neural network fuzzy controller in the sec-
ond phase.  The observations of the controlled system that are 
displacement, x2 and velocity, 2x  of the isolator are input to 
the fuzzy logic rules base for analysis of control force.  The 
fuzzy logic control model for the active vibration isolation 
system is shown in Fig. 5.  In the flowchart, the BPN algorithm 
is used to construct the rule surface of fuzzy logic controller 
shown in Fig. 6. 
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Fig. 6.  Rule surface of the fuzzy logic controller. 

 

V. SIMULATIONS OF ACTIVE VIBRATION 
ISOLATION CONTROL 

Simulation of the active vibration isolation control for the 
AVIS of the two-mass dynamic system is conducted to assess 
the control performance of the approach presented in the paper.  
The dynamic parameters of the numerical example of AVIS 
are set as follows: 

Main structure: mass m1 = 15 kg; stiffness k1 = 60 N/m; 
damping c1 = 3 N·s/m. 

Isolator: m2 = 3 kg; stiffness k2 = 60 N/m; damping c2 = 3 
N·s/m. 

The exciting loads applied to the main structure have three 
load types, namely, shock, periodic and stochastic, as follow: 

 
(1) Shock load shown in Fig. 7(a): Exciting force is 10 N, in 

the downward direction, in effect for 0.01 s. 
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Fig. 7. The time histories of (a) shock exciting load and (b) transmissi-

bility force in the vibration isolation system (without control 
force). 
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Fig. 8. The time histories of (a) periodic exciting load and (b) transmis-

sibility force in the vibration isolation system (without control 
force). 

 
 

(2) Periodic load shown in Fig. 8(a): Amplitude of the excit-
ing force is f0 = 10 N, frequency  = 10 rad/s and sinu-
soidal waveform is represented by f0(t) = f0 sin(10t) N. 
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Fig. 9. The time histories of (a) stochastic exciting load and (b) trans-

missibility force in the vibration isolation system (without con-
trol force). 

 
 

(3) Stochastic load shown in Fig. 9(a): The range of the ex-
citing force is -10 N  f0(t)  10 N. 

 
When shock, periodic and stochastic loads are applied to 

the main structure as an exciting load, the time histories of the 
transmissibility force of the dynamic vibration system are as 
shown in Figs. 7(b)-9(b), respectively. 

Figs. 7(b)-9(b) show that the transmissibility force response 
of the dynamic vibration system has large values, not close to 
zero.  Of the three exciting cases, the largest value of ampli-
tude the transmissibility force FT(t) achieves is 4 N at 48 
second for the stochastic exciting case; other values are 1.6 N 
at 1 second or so for the periodic case and 0.14 N at 1 second 
or so for the shock case.  In the paper, the proposed two-phase 
design approach aims to designate a vibration isolation con-
troller to achieve a better performance for the transmissibility 
force response.  The numerical simulations for control per-
formances of a vibration isolation controller designated in the 
two-phase procedure are described as follows:  

1. The Fuzzy Logic Controller  

1) Design of Fuzzy Logic Controller 

Design of a fuzzy logic controller has the following steps: 
 

(a) The choice of input and the input variables: 

Table 1.  Fuzzy linguistic variables and their values. 

Linguistic 
variables 

Meaning 
Membership function and 

ranges 

PB positive big [0.284,0.833,1,1] 

PM positive medium [0.042,0.284,0.833] 

PS positive small [0,0.042,0.284] 

ZR Zero [-0.042,0,0.042] 

NS negative small [-0.284,-0.042,0] 

NM negative medium [-0.833,-0.284,-0.042] 

NB negative big [-1,-1,-0.833,-0.284] 

 
 

Table 2.  Fuzzy control rules base. 

displacement of isolator x2 (m) control Force 
fa(N) PB PM PS ZR NS NM NB

PB NB NB NB NM NS ZR PB

PM NB NB NB NM NS PS PB

PS NB NB NM NS ZR PM PB

ZR NB NB NS ZR PS PB PB

NS NB NM ZR PS PM PB PB

NM NB NS PS PM PB PB PB

speed of 
isolator 

2x  (m/sec)

NB NB ZR PS PM PB PB PB

 
 
To solve this problem, a fuzzy logic control method is de-

signed which uses the isolator displacement 2x  and velocity 

2x  as multi-input variables while the control force fa is the 
single output.  In the paper, the values of isolator’s displacement, 

2x  and velocity, 2x  are set to 2 0.006x m  and 2x   

0.002 m/s , respectively.  The range of output control force is set 

to -2.5 N  fa(t)  2.5 N.  Sampling time is set to 0.01 s. 
(b) Segmentation of the domain and choice of the member-

ship function: 
Negative Big (NB), Negative Medium (NM), Negative 

Small (NS), Zero (ZR), Positive Small (PS), Positive Medium 
(PM), and Positive Big (PB) are used to represent the fuzzy 
value of the controller input and output as linguistic variables.  
In the paper, their values are between -1 and 1.  The membership 
function of the linguistic variables adopts the triangular func-
tion, except in the case of NB and PB, which use the trapezoid 
ones; and their corresponding values are listed in Table 1. 
(c) Fuzzy control rule base:  

The rules of fuzzy control and the method of consequence 
are regular.  The rules of fuzzy control are listed in Table 2.  In 
the fuzzy logic control system, the consequence methods used 
are as such: the method is either minimum or maximum, the 
implication is minimum, aggregation maximum, and the de-
fuzzification is centroid.  The rule surface of the controller is 
illustrated in Fig. 6. 

2) Evaluation of the Control Performance of FLC: 

Three exciting loads, such as shock, periodic and stochastic  
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Fig. 10. The time histories of (a) control force of FLC and (b) transmis-

sibility force in the AVIS under shock exciting load without 
control force (dashed line) and with control force (solid line). 
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Fig. 11. The time histories of (a) control force of FLC and (b) transmis-

sibility force in the AVIS under periodic exciting load without 
control force (dashed line) and with control force (solid line). 
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Fig. 12. The time histories of (a) control force of FLC and (b) transmis-

sibility force in the AVIS under random exciting load without 
control force (dashed line) and with control force (solid line). 

 
 

loads, and control force inferred from FLC, the AVIS are car-
ried out, respectively.  The time histories of the control force 
and transmissibility force of the AVIS are presented in Figs. 
10-12, both with and without control force.  Figs. 10(b)-12(b) 
show that the FLC designed in the paper achieves good control 
performance when the main structure is under either of the 
three kinds of exciting load.  The three maximum transmissi-
bility forces are 0.0005 N at 1.5 second or so for the shock 
exciting case, 0.15 N at 0.6 second or so for the periodic case, 
and 0.04 N at 5 second or so for the stochastic case.  The con-
trol effects of FLC for three cases are close to 100% for the 
shock exciting case, 91.0% for the periodic case, and 99% for 
the stochastic case, respectively.  From Figs. 10(a)-12(a), the 
maximum amplitudes of control force are far lower than 10 N, 
i.e. the amplitude of the exciting force, ad also lower than the 
maximum given value of fa(t), which is determined in de-
signing the FLC.  The maximum values are 0.3 N at 4 second 
or so for the shock exciting case, 1.8 N at 2.7 second or so for 
the periodic case, and 1.1 N at 1.5 second or so for the sto-
chastic case, respectively. 

From Figs. 10(a)-12(a), however, the histories of control 
force inferred from FLC have several large jumps during the 
controlling process and these could weaken its practical ap-
plication even for a mechanical actuator.  Fig. 6 shows that the 
control rule surface too has a large change around the isolator 
displacement, 2x , and velocity, 2x , near the ZR.  These jumps 
are due to empirical results of the tests and experimental ex-
periences of the designer.  Hence, it is expensive and difficult  



 J.-T. Chiu and C.-C. Fang: Soft Computing Technologies in Design of Fuzzy Controller for Active Vibration Isolation Systems 527 

 

Exciting Force
Spring-Mass System

Output

Neural Network Controller

Fa

Fo

× 1
× 2

d × 1
d × 2

Ft

 
Fig. 13.  Neural network fuzzy controller. 
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Fig. 14.  Convergence of Quickprop learning error. 

 

 
to improve the rule surface by modifying the membership 
functions and rules base of FLC. 

In view of this, based on this FLC, the neural networks 
approach adopted in the second phase of the proposed ap-
proach will improve the weakness and achieve robust, con-
trollable, and low-cost solutions. 

2. The Neural Network Fuzzy Controller 

In this phase, we use the Quick-prop algorithm to train the 
back-propagation neural network model of the fuzzy logic 
controller (also termed the neural network fuzzy controller 
(NNFC)).  The trained model is applied to the active vibration 
isolation system as shown in Fig. 13.  The parameter settings 
for training the neural network model are as follows: the 
number of node in the input layer is 2, the number of nodes in 
the hidden layer is 6, the learning rate  is 0.05, the active 
function adopts Tagent-sigmoid, the convergence criteria 
(denoted by ) is 0.001, the number of training samples is 500, 
and the maximum number of training epochs is 1000.  The 
convergence diagram of the mean square error (MSE) is pre-
sented in Fig. 14, and it finally converges to the value 0.0124 
as the number of training epochs meets the maximum setting 
value, 1000.  The rule surface of the neural network fuzzy  
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Fig. 15.  The control surface of neural network controller. 
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Fig. 16. The time histories of (a) control force of neural network fuzzy 

controller and (b) transmissibility force in the AVIS under shock 
exciting load without control force (dashed line) and with con-
trol force (solid line). 

 
 

controller is shown in Fig. 15.  The rule surface at the isolator 
displacement, x2, velocity, 2x and in the vicinity of ZR has no 
jumps and is quite smooth. 

With the three exciting loads applied on the main structure 
and the control force obtained from the neural network fuzzy 
controller, the numerical simulations have been conducted.  
The history diagrams of the control force and the transmissi-
bility force are presented in Figs. 16-18.  Figs. 16(a)-18(a) 
reveal that the control force during controlling process has no 
large jumps.  From Figs. 16(a)-18(a), the maximum control 
forces are the same as those of FLC in the previous phase, 
except for the value 0.15 N at 0.8 second or so for the shock  
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Fig. 17. The time histories of (a) control force of the neural network 

fuzzy controller and (b) transmissibility force in the AVIS under 
periodic exciting load without control force (dashed line) and 
with control force (solid line). 
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Fig. 18. The time histories of (a) control force of the neural network 

fuzzy controller and (b) transmissibility force in the AVIS under 
stochastic exciting load without control force (dashed line) and 
with control force (solid line). 

 
 

exciting case.  Figs. 16(b)-18(b) indicate their control per-
formances are also good and correspond to that of the fuzzy 

logic controller developed in the previous phase.  From Figs. 
16(b)-18(b), the maximum transmissibility forces are also the 
same as those of the FLC, except for the value of 0.005 N at 
1.5 second or so that is greater than that of the FLC.  The 
results also indicate that the neural network approach adopted 
in the second phase of the proposed approach completely 
eliminates the problem of the large jumps of the FLC during 
the controlling. 

With the above simulations of ACVIS in the two phases, the 
results demonstrate that the two-phase design approach pro-
posed in the paper provides robust, controllable, practicable, 
and low-cost solutions for FLC design. 

VI. CONCLUSION 

In this paper, we propose a two-phase design approach, 
which integrates the soft computing technologies of fuzzy 
logic control theory and the neural networks, to design a fuzzy 
logic controller for active vibration isolation systems that 
achieves a very good control performance and is practical. 

In fuzzy logic control theory, the control rules are based on 
expert knowledge and experiences using linguistic variables 
with specified membership functions to describe the charac-
teristics of the controlled system.  To construct the rule bases, 
the greater the understanding of the characteristics of the con- 
trolled system, the better will be the performance the fuzzy 
logic controller. 

Control performance of the fuzzy logic controller devel-
oped in the first phase of the proposed approach is very good 
in simulations of an active vibration isolation system with the 
two-mass dynamic system under three kinds of external ex-
citing loads, but it has a weak point in that the control force 
imposed on the isolator often has large jumps during control-
ling. 

The proposed approach, in the second phase, aims to im-
prove this drawback of the FLC, by using the Quick-prop 
algorithm with Newton’s method to train a neural network 
model of FLC, termed a neural network fuzzy controller.  
Simulation results show that the control performance is of the 
same good quality as the FLC designed in the first phase, the 
control surface of the FLC is improved, and the jumps have 
been eliminated.  It is clearly demonstrated in this paper that 
neural networks trained by Quick-prop algorithm with New-
ton’s method can achieve a robust and fault-tolerant solution 
to the FLC of AVIS. 
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