
Volume 24 Issue 2 Article 12

EFFICIENTLY MINING FREQUENT ITEMSETS IN TRANSACTIONAL EFFICIENTLY MINING FREQUENT ITEMSETS IN TRANSACTIONAL
DATABASES DATABASES

Salah Alghyaline
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan,
salahshaman2007@gmail.com

Jun-Wei Hsieh
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.

Jim Z. C Lai
Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, Taiwan.

Follow this and additional works at: https://jmstt.ntou.edu.tw/journal

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Alghyaline, Salah; Hsieh, Jun-Wei; and Lai, Jim Z. C (2016) "EFFICIENTLY MINING FREQUENT ITEMSETS IN
TRANSACTIONAL DATABASES," Journal of Marine Science and Technology: Vol. 24: Iss. 2, Article 12.
DOI: 10.6119/JMST-015-0709-1
Available at: https://jmstt.ntou.edu.tw/journal/vol24/iss2/12

This Research Article is brought to you for free and open access by Journal of Marine Science and Technology. It has been
accepted for inclusion in Journal of Marine Science and Technology by an authorized editor of Journal of Marine Science and
Technology.

https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/
https://jmstt.ntou.edu.tw/journal/vol24
https://jmstt.ntou.edu.tw/journal/vol24/iss2
https://jmstt.ntou.edu.tw/journal/vol24/iss2/12
https://jmstt.ntou.edu.tw/journal?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol24%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol24%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://jmstt.ntou.edu.tw/journal/vol24/iss2/12?utm_source=jmstt.ntou.edu.tw%2Fjournal%2Fvol24%2Fiss2%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

184 Journal of Marine Science and Technology, Vol. 24, No. 2, pp. 184-191 (2016)
DOI: 10.6119/JMST-015-0709-1

EFFICIENTLY MINING FREQUENT ITEMSETS
IN TRANSACTIONAL DATABASES

Salah Alghyaline, Jun-Wei Hsieh, and Jim Z. C. Lai

Key words: data mining, frequent pattern, frequent itemsets, FP-
growth.

ABSTRACT

Discovering frequent itemsets is an essential task in asso-
ciation rules mining and it is considered to be computationally
expensive. To find the frequent itemsets, the algorithm of fre-
quent pattern growth (FP-growth) is one of the best algorithms
for mining frequent patterns. However, many experimental
results have shown that building conditional FP-trees dur-
ing mining data using this FP-growth method will consume
most of CPU time. In addition, it requires a lot of space to save
the FP-trees. This paper presents a new approach for mining
frequent item sets from a transactional database without build-
ing the conditional FP-trees. Thus, lots of computing time and
memory space can be saved. Experimental results indicate
that our method can reduce lots of running time and memory
usage based on the datasets obtained from the FIMI repository
website.

I. INTRODUCTION

Association rules mining (ARM) suggested by (Agrawal
et al., 1993) is one of main pillars of data mining and knowl-
edge discovery (Bashir and Baig, 2006). It discovers the cor-
relations among items in transactional database that reveals
interesting relations between items. It can be applied to many
applications such as Web usage mining, intrusion detection,
production, bioinformatics, market basket analysis, and so on.
In general, ARM includes two essential steps: (1) finding the
frequent itemsets in the training dataset; (2) generating rules
based on the discovered itemsets. The first step requires ex-
tensive computation time and storage and thus becomes a chal-
lenging problem in ARM (Liu et al., 1998). Many algorithms
were proposed to find various frequent itemsets to reduce CPU
time and memory consumption (Agrawal and Srikant, 1994;
Savasere et al., 1995; Zaki et al., 1997; Han et al., 2000; Leung

et al., 2008; Sohrabi and Barforoush, 2013). Because it requires
more computations and memory, the first step is relatively
more hard and important than the second one, (Thabtah, 2007;
Schlegel et al., 2011).

In the literature, many frequent itemsets mining algorithms
have been proposed during last two decades. Among them,
four most popular mining algorithms are Apriori (Agrawal
and Srikant, 1994), FP-growth (Han et al., 2000), FPgrowth*
(Grahne, 2003), and Ascending Frequency Ordered Prefix-Tree
(AFOPT) (Lu et al., 2003), respectively. Apriori algorithm
tries to mine frequent items at different stages in which each
one represents a different length of the itemsets. The first stage
scans the whole dataset to count the frequency of each item
and gets a list of frequent items with length “1” (1- items).
After that, the list of frequent items of stage one will be used to
generate the list of candidates for stage two and then infre-
quent items will be pruned. However, another scan for the
dataset is required again to check the frequencies for each
candidate to obtain the frequent items with length “2” (2-
items). The algorithm moves from one stage to another until no
frequent items are existed. The bottleneck of Apriori algorithm
is that it needs to scan the whole dataset many times and thus
consumes a lot of memory and CPU time especially if the mi-
nimum support is low (Zaki et al., 2004).

As to FP-growth method, it is faster than Apriori algorithm
according to many other evaluation reports (Han et al., 2000),
because it does not generate any candidates and scans the
database only twice. In FP-growth, the first scan is to find the
frequent items with length “1” based on a given minimum
support, and then sorts the frequent items in ascending order
according to their supports. The second scan builds the FP-tree
which is a prefix tree structure for sorting compressed and
useful information about frequent patterns. After that, without
mining the whole database, it needs to mine only the FP-tree.
The last step is mining the frequent patterns using a pattern
growth method which builds various conditional FP-trees
recursively. Because FP-tree is much smaller than the original
database, the FP-growth method is more effective than Apriori
algorithm.

The FPgrowth* approach uses FP-tree structure in con-
junction with the FP-array structure to reduce the number of
iterations for traversing the FP-tree. Building each conditional
FP-tree in the original FP-growth requires scanning the FP-trees

Paper submitted 12/15/14; revised 06/30/15; accepted 07/09/15. Author for
correspondence: Salah Alghyaline (e-mail: salahshaman2007@gmail.com).
Department of Computer Science and Engineering, National Taiwan Ocean
University, Keelung, Taiwan.

http://en.wikipedia.org/wiki/Web_usage_mining
http://en.wikipedia.org/wiki/Intrusion_detection
http://en.wikipedia.org/wiki/Bioinformatics
mailto:salahshaman2007@gmail.com

 S. Alghyaline et al.: Efficiently Mining Frequent Itemsets 185

twice: the first scan is to find out the support of items in the
conditional database and the second scan is to build a new
conditional FP-tree according to the new ordered frequent
items. However, the FPgrowth* method uses the FP-array
technique to omits the first scan for building the conditional
FP-trees and thus drastically speeds up its efficiency. The con-
structed array can be accessed in O (1). Additionally, building
the FP array for building any conditional FP-tree is performed
simultaneously while building the upper-level of the condi-
tional FP-tree. In summary, FPgrowth* works very well for
sparse and very large datasets but the FP-growth outperforms
the FPgrowth* for dense datasets.

CT-PRO (Sucahyo and Gopalan, 2004) proposes a new data
structure called CFP-Tree instead of FP-tree for mining data.
Depending on the dataset characteristics, the CFP-Tree makes
the FP-tree highly compacted and thus can use only half of the
nodes to mine data. The scheme uses a bottom-up method to
traverse the CFP-Tree to generate frequent patterns in a non-
recursive approach.

Another improvement in FP-growth is called Ascending
Frequency Ordered Prefix-Tree (AFOPT). Three key factors
to influence the performance of generating frequent items are:
the total number of conditional FP-trees, time, and memory
for traversing trees, the order of the items in the conditional
database, and the way of traversing it. AFOPT rearranges the
frequent items in ascending order to present a compact Prefix-
tree data structure for data mining. The dynamically ascend-
ing order will minimize the number of conditional databases.
Additionally, AFOPT traverses the conditional databases in a
top-down rather than a bottom-up order. As a result, the cost
of traversing the conditional databases will be significantly
reduced.

Many evaluation results have shown that building a condi-
tional FP-trees recursively to mine frequent patterns will con-
sume most of CPU time. Each conditional FP-tree requires
scanning the FP-tree twice. The first scan needs to build the
header table to find items frequencies; while the second scan
builds the conditional FP-tree according to the new order of
item frequencies after eliminating infrequent items. The FP-
growth method will build many conditional FP-trees recursively
until reaching single node and thus consumes a lot of CPU time
and space especially when dataset is huge and sparse.

This paper proposes a new algorithm called FP-growth+ for
extracting the frequent items without building conditional
FP-trees. The proposed algorithm improves the inefficiency
of FP-growth method; it first scans the database to find all
frequent items and the second scan is for inserting the frequent
items from each transaction into the FP-tree as a branch. This
method uses a new data structure for traversing the FP-tree
based on set of arrays instead of building the conditional
FP-trees. Experimental results have been conducted on many

(a) database (b) Header table

TID

1

2

3

4

5

6

7

8

9

10

{A, B}

{B, C, D}

{A, C, D, E}

{A, D, E}

{A, B, C}

{A, B, C, D}

{B, C}

{A, B, C}

{A, B, D}

{B, C, E}

Item

B 8

7

7

5

3

A

C

D

E

Items

Support

Fig. 1. Header table for min_sup = 2.

synthetic and real data sets (from FIMI repository website1)
and show that the proposed method can significantly reduce
the usages of CPU time and memory.

The rest of paper is organized as follows: Section 2 describes
details of FP-growth algorithm in mining frequent patterns. Our
“FP-growth+” algorithm for mining frequent patterns is pro-
posed in section 3. Section 4 shows the experimental results.
Finally, we conclude this paper in section 5.

II. FP-GROWTH ALGORITHM

The FP-tree is a compact representation for mining various
frequent items from databases. The FP-growth algorithm uses
it to mine data more efficiently than the Apriori approach.
Firstly it scans the database to find the occurrence of each item,
then sorts and gets higher frequent items if they exceed the
minimum support threshold in descending order and then to be
recorded inside a header table according to their frequencies.
Fig. 1(b) shows the header table for the given transactions
in Fig. 1(a). After that, it uses the second scan to build the
FP-tree. As shown in Fig. 2(b), if some transactions share a
common prefix with the same order, all the shared parts are
then merged in the same path to construct the FP-tree. By
sorting the transactions in a descending order, the shared paths
are used to facilitate the process of traversing the FP-tree items.
The items with the same labels will be connected together via
a linked list. The beginning of this linked list is marked in the
above mentioned header table. Fig. 2 shows how the header
table links together all the nodes having the same label in the
FP-tree.

A crucial task in the FP-growth algorithm is building the
conditional FP-trees for mining frequent items. At the begin-
ning, all the items in the header table will be visited from the
bottom of the header table. Then, we will follow the path
containing the target item such as ai starting from ai’s head in

1 http://fimi.ua.ac.be/data/

186 Journal of Marine Science and Technology, Vol. 24, No. 2 (2016)

(a) Header table

Item

B

null

B:8

A:5

C:3 D:1

D:1

D:1 E:1
E:1

E:1

D:1

C:3
C:1

D:1

A:2

A

C

D

E

Head of
node-links

(b) FP-tree
Fig. 2. An example of FP-tree with min_sup = 2.

(a) The set of paths ending in E

null

B:1 A:2

C:1

D:1

D:1C:1

E:1 E:1

E:1

null

A:2

C:1

C:1

D:1

D:1

(c) Conditional FP-tree for suffix E

(b) New Header table

Item

A 2

2

2

C

D

Support

Fig. 3. Building conditional FP-tree.

the FP-tree header table to determine the new counts of items
to build a new header table as shown in Fig. 3(b). Branches
that contains item ai will be visited one more times to find its
corresponding item set in the tree and insert them into the
conditional FP-tree according to its new order in the new

Table 1. Mining patterns by creating conditional pattern
base.

Item Conditional patterns Conditional FP-tree

E {(BC:1), (ACD:1), (AD:1)} {(A:2), (C:2), (D:1)}| E

D {(BAC:1), (BA:1), (BC:1),
(AC:1), (A:1)}

{(A:4), (B:3), (C:3)}| D

C {(BA:3), (B:3), (A:1)} {(A:4), (B:6)}| C

A {(B:5)} {(B:5)}| A

B  

header table after removing all infrequent items. Note that, we
rebiuld the conditional FP-tree because the order of the items
is not like the original FP-tree order; thus, if the items do not
statisfy the minimum support (min_sup), they will be removed
iterativly until we reach the root. Fig. 3(c) shows an example
of conditional FP-tree which is obtained by visting branches
along the linked list beginning from E in the FP-tree shown in
Fig. 2. This procedure is recursively applied for the set of all
possible paths in the E-conditional FP-tree, ending at D, C,
and A. The taks of building the conditonal FP-tree for any
items will stop in case that the new FP-tree includes only one
single path. Then all of the subsets will be reduced along this
path and then merged together with the corresponding suffex.
Table 1 summarizes the set of conditional patterns and the
conditional FP-trees.

Finding frequent patterns by building and traversing the
conditional FP-trees will consumes a lot of CPU time and
memory. According to the experiments conducted by (Grahne,
2003), almost 80% of CPU time is spent for traversing the
FP-tree. If the traversing time of the FP-tree can be reduced,
the overall time in mining patterns can be much speeded up.
To achieving this goal, a new traveling technique will be
proposed without building the time-expensive conditional
FP-trees. The proposed method takes advantages of arrays
and their pointers to make traversing the FP-tree easier and
more efficient during the process of building the FP-tree.
Details of this algorithm will be explained in the next section.

III. THE PROPOSED METHOD

There are two steps during mining data using the FP-growth
algorithm: (1) building the FP-tree, and (2) traversing the
FP-tree for mining the database. Our approach shares the first
step with FP-growth and utilizes the overlapping information
between two transactions. We use a new method for traversing
the FP-tree instead of building conditional FP-trees. This can
make mining the FP-tree more efficient than mining the da-
tabase. In the following sections, we will describe the two
steps of our proposed method in more details.

1. FP-tree Constructing

The proposed method starts by scanning transactions in a
given dataset to count the support of each item. If a frequent

 S. Alghyaline et al.: Efficiently Mining Frequent Itemsets 187

(a) (b)

null
1

3 62

4

B:8 A:2

D:1

D:1D:1D:1

D:1

C:3

C:3A:5

E:1

E:1

E:1

C:1

5

9

10
8

7
14

12

1311

Item

B

A

C

D

E

Link

Fig. 4. FP-tree (min_sup = 2) using the proposed algorithm.

item exceeds the minimum support threshold, it will be used to
build the FP-tree. Then, according to the supports, the items
will be sorted in a descending order. After that, the FP-tree can
be constructed using these sorted transactions. While building
the FP-tree for each item (node), two operations are performed.
For the first one, each node will associate with a specific
identifier called node-id to indicate the node location in the
FP-tree. For the second operation, an array of pointers, called
node-head, is used to record the pointer of each node in the
FP-tree and is indexed by the node-id. This header table can
link all the items with the same labels together. The two data
structures can make traversing the FP-tree easier without
building the conditional FP-trees. Because only an additional
attribute (node-id) is added to each node in the FP-tree by
using an 1-D array to keep all locations for different nodes, the
new data structure does not consume much memory and CPU
time.

Fig. 4 shows an example to illustrate how the FP-tree is
built via our proposed method from the set of transactions
shown in Fig. 1. An Identifier number (node-id) is tagged to
each node in the second scan for building the FP-tree. The
order of each node-id in the FP-tree is arranged by the order
when it is inserted into the FP-tree. Its value starts from “1”
and is increased when a new node is inserted into the FP-tree.
Clearly, the total number of locations is equal to the total
number of nodes in the FP-tree. Algorithm 1 summarizes
details of our proposed method to build the FP-tree.

Algorithm 1: FP-tree Construction

FP-tree Construction (D, min_sup)
Input: Transactional data set D;

Minimum support min_sup.
Output: FP-tree
1. Scan D to generate the set L1 of frequent items.
2. Sort the items of each transaction in D according to the

descending order of L1.
3. Create counter with name node-id and initialize it with 0.
4. Create array of pointers with name node-head.
5. Create the root of FP-tree T and denote it as “null” (0th root)
6. For each t  D and l = 1 to | t |

If [] (1)t l CN l  ,
a) Denote the child node as temporary lth node;
b) Increase the frequency of this child node by one,

where CN(l-1) is the set of item-names for child
nodes of the (l-1)th root.

If [] (1)t l CN l  ;
(a) Denote this child node as temporary lth node with

frequency = 1;
(b) Set the item name of the child node as t[l];
(c) Set the id for this node as node_id + = 1, and

node-head[node-id] points to this child node;
(d) Update (1) (1) { []}CN l CN l t l CN    .

(a) The set of paths ending in E.

item

C

D

A
(c) Frequent items ending in E.

item
null

B:1

C:1 C:1

1

3

14

8

7
6

5
9

10D:1

D:1E:1

E:1

E:1

A:1
C 2

2
2

D
A

support

(b) Header table for E

Locations list

{7:1,9:1}

{5:2}

{3:1,6:1}

Fig. 5. Constructing the locations list for item E.

2. Frequent Pattern Generation

After building the FP-tree, the next task is to mine frequent
patterns from it. The first step is to trace the linked list of the
item ai in the header table H and then visit the paths that in-
clude item ai in the FP-tree to count its visited times. Fig. 5(a)
shows an example that the set of all paths include item E.
After scanning the paths, three frequent items can be found,
i.e., nodes C, A, D. Item B is ignored because it is not frequent.
Fig. 5(b) shows the new header table New_H for frequent
items ending with E. Another scan on the FP-tree is performed
to find the locations of frequent items in New_H according to
their supports. If the item has more than one children with the
label E, its support will be the sum of its children supports.
For example, item A in location “5” has two children; each one
with frequency “1”. Thus, the support of A in this case is “2”.

After scanning the FP-tree, we can get the suffixes {CE, AE,
DE }. Fig. 6 shows the set of paths that include these suffixes.
Their locations and frequencies are recorded as the sets CE
{3:1, 6:1}, DE {7:1, 9:1}, AE {5:2}, whereas {3, 6} are the set
of locations for suffix CE, and {1, 1} represents the frequen-
cies for their locations. After that, our approach uses the list of
locations to generate all the frequent items that end with CE,
AE and DE, recursively. To obtain the frequent items that end

188 Journal of Marine Science and Technology, Vol. 24, No. 2 (2016)

(a) The set of paths ending in CE with the header table.

null

A:2

C:1 D:1

D:1

E:1

E:1

5

9

8

10

7

6

(b) The set of paths ending in DE with the header table.

A:2

C:1

D:1

E:1

E:1

5

9

8

10

7

6

(c) The set of paths ending in AE with the header table

null

B:1 A:1

C:1 C:1

D:1E:1

E:1

1 5

6

7

8

3

14

Item

B 1

1A

support

item

A 2

1C

support

item support

null

D:1

Fig. 6. Generating frequent patters with suffix E.

D {12:1, 13:1, 4:1, 7:1, 9:1}

BD {1:3} AD {2:2, 5:2} CD {11:1, 3:1, 6:1}

ACD {2:1, 5:1}BCD {1:2}BAD {1:2}

Fig. 7. Finding frequent patterns from Item D.

with CE, the paths that include the item CE from the locations
{3, 6) are used to determine their new counts along these paths.
Fig. 6(a) shows the patterns {ACE, BCE} with frequency “1”
which is less than the minimum support. However, suffix DE
has one frequent item, i.e., ADE. Finally, for suffix AE we stop
calculating the frequent items because its parent is null.

Fig. 7 explains another example of how can we recursively
find the frequent patterns from the item D using the proposed
method. The first set of frequent items with length “2” are

obtained by following the linked list of item D starting from
the main header table and the results are {BD, AD, CD}. The
remaining set with length greater than “2” can also be gener-
ated. For example, the locations {11, 3, 6} are used to find all
frequent patterns that end with CD as shown in Fig. 7. Algo-
rithm 2 to Algorithm 4 show three pseudocodes of our ap-
proach used to generate the frequent patters.

Algorithm 2: FP-growth+ phase one.

FP-growth+_ phase1(FP-tree, H , min-sup)
Input: FP-tree constructed by Algorithm 1.

H is the Header_table for FP-tree.
 min-sup is the minimum support threshold.
Output: The complete set of frequent patterns.
1. Begin
2. For each item x in H do
3. Get the node n pointed by the link of x in H;
4. While n  null
5. Find a path x1, x2, ..., xm from the parent

node of n to the child node of the root;
6. Count the frequency for each item z along

this path
7. Reset a new node n to the next node pointed

by the link of current node . n
8. End while
9. For each counted item z
10. If the frequency count of z  min-sup then
11. Insert z into a frequent item list Fx.
12. Add the set of locations for item z to the
13. list Lx[z]
14. Print {zx}
15. End if
16. End for
17. suffix = “x”
18. FP-growth+_ phase2 (Fx, Lx, suffix);
19. End for
20. End

Algorithm 3: FP-growth + Phase two.

Procedure FP-growth+ Phase2 (Fx, Lx, suffix-x)
Input:

Fx: the list of frequent items traced from node x;
Lx is the list of locations for the frequent items in Fx;
Suffix-x is the previous Frequent items with item x.
min-sup is the minimum support threshold.

Output: Full set of frequent patterns.
1. Begin
2. For each element z in list Fx
3. If z exists in one location in the tree
4. Let P is the single path for z and
 a = z  Suffix-x.
5. Single_Path (P, a);
6. Else if z exists in many locations
7. Use the list of locations for z (Lx[z]) to

 S. Alghyaline et al.: Efficiently Mining Frequent Itemsets 189

 traverse FP-tree;
8. Find the frequent list of items from z nodes;
9. Denote this list as FZ and their locations as LZ.
10. For each frequent item such as y in FZ
11. Print {yz  suffix-x}
12. End for
13. suffix-y = z  suffix-x
14. FP-growth+_ phase2 (FZ, LZ, suffix-y);}
15. ENDIF
16. End for
17. End

Algorithm 4: Frequent items generating from single path.

Single_Path (Tree, a)
1. Let P be the single prefix-path part of Tree;
2. For each combination (denoted as ) of the nodes in the

path P
3. Do

Generate pattern   a with support = minimum support
of nodes in  ;

To
ta

l T
im

e
(s

ec
)

2.5

1.5

2

1

0.5

0
4 6 8 10 12

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
14 16 18 20

Fig. 8. Execution time on dataset retail.

IV. EXPERIMENTAL RESULTS

This section will present the performance comparison be-
tween the proposed algorithm and other algorithms. All ex-
periments were conducted on Intel® Core (TM) i5 CPU 1.6
GHz and 4 GB memory using C programming language and
they were all running on Microsoft windows 8 environments.
To make the comparisons, the synthetic dataset T10I4D100K
taken from IBM Almaden Research Centre and three real
datasets connect, chess and retail taken from FIMI repository
website were adopted. The source codes for the algorithms
used for comparison were downloaded from FIMI repository
website. Fig. 8 to Fig. 10 show the comparisons of execution
time among the proposed algorithm, FP-growth, FP-growth*
and CT-PRO algorithms on the above datasets with different
minimum supports. We used the same output formats like the
original FP-growth algorithm without any optimizations on

14

12

10

8

6

4

2

0
1300 1400 1500 1600 1700

To
ta

l T
im

e
(s

ec
)

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
Fig. 9. Execution time on dataset chess.

To
ta

l T
im

e
(s

ec
)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
3 6 9 12 15

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
18 21

Fig. 10. Execution time using T1014D100K data set.

the output. The solid black line refers to the proposed algo-
rithm whereas the dotted black lines refer to other algorithms.
Fig. 8 shows that the computing time for the proposed algo-
rithm in dataset retail. From Fig. 8, clearly the computing
time for the proposed algorithm is less than the execution
time for FP-growth. When the min_sup is set to 4, the pro-
posed method gains 49% improvement (compared with the FP-
growth method). This percentage decreases gradually when the
value of min_sup increases until the min_sup is equal to 20.
Clearly, the proposed algorithm outperforms the FP-growth
method in all cases especially when the min_sup is small.
In addition, FP-growth+ has the best running time compared
with other algorithms, i.e., FP-growth* and CT-PRO algorithms
when min_sup is from 2 to 8. If min_sup is larger than 8, FP-
growth+ will have the same running time like FP-growth* and
CT-PRO algorithms.

Fig. 9 shows the comparisons about CPU time consuming
among the four algorithms in dataset chess. We see that
FP-growth+ has the best running time. The running time
improvements for all min_sup cases are 7%-10% than the
FP-growth method.

Fig. 10 shows the comparison for the T10I4D100K dataset.
The “FP-growth+” algorithm reduced CPU time up to 18%

190 Journal of Marine Science and Technology, Vol. 24, No. 2 (2016)

M
em

or
y

(M
B

)

10000

100

1000

10

1
0 10 20 30 40

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
50 60 908070 100

Fig. 11. Main memory usages on dataset “retail”.

M
em

or
y

(M
B

)

1000

100

10

1
40000

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
475004500042500 50000

Fig. 12. Main memory usages on dataset “Connect”.

compared with FP-growth when the minimum support equals
“4”. After min_sup exceeds “8”, the FP-growth and “FP-
growth+” algorithms have similar running time. Comparing
with the CT-PRO algorithm, our algorithm has the best run-
ning time for all cases of minimum supports. The FP-growth*
has the best running time compared with other approaches.

In addition to time consuming, the memory usages of the
four algorithms were also conducted. Their comparison re-
sults are shown in figures from Fig. 11 to Fig. 14. It is clear
that the proposed algorithm is indeed much more effective in
reducing the memory consumption than other three algorithms
especially when the minimum support is small. In addition,
the amount of memory saving increases clearly when the size
of dataset increases. For all the tested datasets, the proposed
method consumes less memory for all minimum support
thresholds. If the minimum support is higher, the FP-growth
consumes less memory because the number of conditional
FP-trees to be created decreases gradually when the minimum
support increases. It means that the main memory usage in
FP-growth decreases gradually by increasing the minimum
support. Our proposed approach uses arrays for traversing the
FP-tree. The array structure can be frequently reused without
allocating additional memory space by overwriting their con-
tents many times. Compared with the FP-growth, the memory
usage of our proposed method is not increased too much

M
em

or
y

(M
B

)

1000

100

10

1
1300

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
160015001400 1700

Fig. 13. Main memory usages on dataset “chess”.

M
em

or
y

(M
B

)

1000

100

10

1
3

FP-growth
FP-growth+
FP-growth*
CT-PRO

Minimum Support
332313 43 53

Fig. 14. Main memory usages on the dataset “T10I4D100K”.

during the mining process. For the dataset T10I4D100K, the
proposed method can reduce the memory consumption from
10% to 94%. Fig. 13 shows that the FP-growth+ is the best
among all compared algorithms. The FP-growth+ method
reduced up to 88% for chess dataset when the minimum
support is “1300”. In retail dataset, our algorithm is the best
when the minimum support threshold is low. When the mini-
mum support is larger than 100, the four algorithms consume
less than 5 MB. The FP-growth+ consumes memory less than
the FP-growth algorithm with the amounts 98%, 66% and 6%
when the supports are “4”, “30”, and “60”, respectively. The
Connect dataset is the largest one among these datasets. Fig.
12 shows the memory usages when mining the connect dataset
over all minimum support thresholds. For the FP-growth
method, it consumes from 20 MB to 75 MB. This indicates that
the proposed method saves more memory by increasing the
dataset size, especially when the values of minimum support
are low.

From the above experiments, we conclude that the pro-
posed algorithm is indeed more effective and efficient to re-
duce the running time and memory usage than other three
methods on most popular datasets in data mining. Also, the
proposed algorithm uses less memory because it does not use
linked list data structure for building conditional FP-trees.
Our array technique is more efficient than using the tree
technique because each node in the conditional FP-tree has

 S. Alghyaline et al.: Efficiently Mining Frequent Itemsets 191

many attributes associated with it. Additional advantage is the
direct access for the data in the array compared with tree
(usually takes constant time O (1)).

V. CONCLUSIONS

We have introduced a novel algorithm to find the frequent
patterns based on the well-known algorithm FP-growth. The
proposed method uses a new data structure based on the arrays
to generate the frequent item sets instead of constructing
conditional FP-trees. We applied our experiments in many
synthetic and real datasets from FIMI repository website.
Experimental results show the success of our algorithm to
reduce the running time and the memory usage because it uses
a set of arrays for traversing the FP-tree instead of recursively
generate mass number of conditional FP-trees.

REFERENCES

Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association rule.
In Proceedings of the 20th International Conference on Very Large Data
Bases, Morgan Kaufmann, Santiago, Chile, 487-499.

Agrawal, R., T. Imielinski and A. Swami (1993). Mining Association Rules
between Sets of Items in Large Databases. ACM SIGMOD Record 22(2),
207-216.

Bashir, S. and A. Baig (2006). Ramp: High Performance Frequent Itemset
Mining with Efficient Bit-vector Projection Technique. Advances in
Knowledge Discovery and Data Mining, 3918, 504-50.

Grahne, G. and J. Zhu (2003). Efficiently Using Prefix-trees in Mining Fre-
quent Itemsets. In Proceeding of the ICDM’03 international workshop on
frequent itemset mining implementations (FIMI’03), Melbourne, FL,
123-132.

Han, J., J. Pei and Y. Yin (2000). Mining frequent patterns without candidate
generation. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data. Dallas, TX: ACM Press, 1-12.

Leung, C., M. Mateo and D. Brajczuk (2008). A Tree-Based Approach for
Frequent Pattern Mining from Uncertain Data. Advances in Knowledge
Discovery and Data Mining Lecture Notes in Computer Science 5012,
653-661.

Liu, B., W. Hsu and Y. Ma (1998). Integrating classification and association
rule mining. In Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining. New York, NY: AAAI Press, 80-86.

Liu, G., H. Lu, Y. Xu and J. X. Yu (2003). Ascending frequency ordered
prefix-tree: efficient mining of frequent patterns. Proceedings of Eighth
International Conference on Database systems for advanced applications,
65-72.

Savasere, A., E. Omiecinski and S. Navathe (1995). An efficient algorithm for
mining association rules in large databases. VLDB '95 Proceedings of the
21th International Conference on Very Large Data Bases, San Francisco,
CA, USA, 432-444.

Schlegel, B., R. Gemulla and W. Lehner (2011). Memory-Efficient Fre-
quent-Itemset Mining”, EDBT/ICDT '11 Proceedings of the 14th Interna-
tional Conference on Extending Database Technology, New York, NY,
USA, 461-472.

Sohrabi, M. K. and A. A. Barforoush (2013). Parallel frequent itemset mining
using systolic arrays. Knowledge-Based Systems 37, 462-471.

Sucahyo, Y. G. and R. P. Gopalan (2004). CT-PRO: A Bottom-Up Non Re-
cursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree
Data Structure. In FIMI. 4, 212-223.

Thabtah, F. (2007). A review of associative classification mining. The Knowl-
edge Engineering Review 22(1), 37-65.

Zaki, M. J. (2004). Mining non-redundant association rules. Data mining and
knowledge discovery 9(3), 223-248.

Zaki, M., S. Parthasarathy, M. Ogihara and W. Li (1997). New algorithms for
fast discovery of association rules. In Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining. Menlo Park, CA:
AAAI Press, 283-286.

	EFFICIENTLY MINING FREQUENT ITEMSETS IN TRANSACTIONAL DATABASES
	Recommended Citation

	JMST

