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ABSTRACT 

Discovering frequent itemsets is an essential task in asso-
ciation rules mining and it is considered to be computationally 
expensive.  To find the frequent itemsets, the algorithm of fre-
quent pattern growth (FP-growth) is one of the best algorithms 
for mining frequent patterns.  However, many experimental 
results have shown that building conditional FP-trees dur-
ing mining data using this FP-growth method will consume 
most of CPU time.  In addition, it requires a lot of space to save 
the FP-trees.  This paper presents a new approach for mining 
frequent item sets from a transactional database without build-
ing the conditional FP-trees.  Thus, lots of computing time and 
memory space can be saved.  Experimental results indicate 
that our method can reduce lots of running time and memory 
usage based on the datasets obtained from the FIMI repository 
website. 

I. INTRODUCTION 

Association rules mining (ARM) suggested by (Agrawal  
et al., 1993) is one of main pillars of data mining and knowl-
edge discovery (Bashir and Baig, 2006).  It discovers the cor-
relations among items in transactional database that reveals 
interesting relations between items.  It can be applied to many 
applications such as Web usage mining, intrusion detection, 
production, bioinformatics, market basket analysis, and so on.  
In general, ARM includes two essential steps: (1) finding the 
frequent itemsets in the training dataset; (2) generating rules 
based on the discovered itemsets.  The first step requires ex-
tensive computation time and storage and thus becomes a chal-
lenging problem in ARM (Liu et al., 1998).  Many algorithms 
were proposed to find various frequent itemsets to reduce CPU 
time and memory consumption (Agrawal and Srikant, 1994; 
Savasere et al., 1995; Zaki et al., 1997; Han et al., 2000; Leung 

et al., 2008; Sohrabi and Barforoush, 2013).  Because it requires 
more computations and memory, the first step is relatively 
more hard and important than the second one, (Thabtah, 2007; 
Schlegel et al., 2011). 

In the literature, many frequent itemsets mining algorithms 
have been proposed during last two decades.  Among them, 
four most popular mining algorithms are Apriori (Agrawal  
and Srikant, 1994), FP-growth (Han et al., 2000), FPgrowth* 
(Grahne, 2003), and Ascending Frequency Ordered Prefix-Tree 
(AFOPT) (Lu et al., 2003), respectively.  Apriori algorithm 
tries to mine frequent items at different stages in which each 
one represents a different length of the itemsets.  The first stage 
scans the whole dataset to count the frequency of each item 
and gets a list of frequent items with length “1” (1- items).  
After that, the list of frequent items of stage one will be used to 
generate the list of candidates for stage two and then infre-
quent items will be pruned.  However, another scan for the 
dataset is required again to check the frequencies for each 
candidate to obtain the frequent items with length “2” (2- 
items).  The algorithm moves from one stage to another until no 
frequent items are existed.  The bottleneck of Apriori algorithm 
is that it needs to scan the whole dataset many times and thus 
consumes a lot of memory and CPU time especially if the mi- 
nimum support is low (Zaki et al., 2004). 

As to FP-growth method, it is faster than Apriori algorithm 
according to many other evaluation reports (Han et al., 2000), 
because it does not generate any candidates and scans the 
database only twice.  In FP-growth, the first scan is to find the 
frequent items with length “1” based on a given minimum 
support, and then sorts the frequent items in ascending order 
according to their supports.  The second scan builds the FP-tree 
which is a prefix tree structure for sorting compressed and 
useful information about frequent patterns.  After that, without 
mining the whole database, it needs to mine only the FP-tree.  
The last step is mining the frequent patterns using a pattern 
growth method which builds various conditional FP-trees 
recursively.  Because FP-tree is much smaller than the original 
database, the FP-growth method is more effective than Apriori 
algorithm. 

The FPgrowth* approach uses FP-tree structure in con-
junction with the FP-array structure to reduce the number of 
iterations for traversing the FP-tree.  Building each conditional 
FP-tree in the original FP-growth requires scanning the FP-trees 
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twice: the first scan is to find out the support of items in the 
conditional database and the second scan is to build a new 
conditional FP-tree according to the new ordered frequent 
items.  However, the FPgrowth* method uses the FP-array 
technique to omits the first scan for building the conditional 
FP-trees and thus drastically speeds up its efficiency.  The con-
structed array can be accessed in O (1).  Additionally, building 
the FP array for building any conditional FP-tree is performed 
simultaneously while building the upper-level of the condi-
tional FP-tree.  In summary, FPgrowth* works very well for 
sparse and very large datasets but the FP-growth outperforms 
the FPgrowth* for dense datasets. 

CT-PRO (Sucahyo and Gopalan, 2004) proposes a new data 
structure called CFP-Tree instead of FP-tree for mining data.  
Depending on the dataset characteristics, the CFP-Tree makes 
the FP-tree highly compacted and thus can use only half of the 
nodes to mine data.  The scheme uses a bottom-up method to 
traverse the CFP-Tree to generate frequent patterns in a non- 
recursive approach. 

Another improvement in FP-growth is called Ascending 
Frequency Ordered Prefix-Tree (AFOPT).  Three key factors 
to influence the performance of generating frequent items are: 
the total number of conditional FP-trees, time, and memory 
for traversing trees, the order of the items in the conditional 
database, and the way of traversing it.  AFOPT rearranges the 
frequent items in ascending order to present a compact Prefix- 
tree data structure for data mining.  The dynamically ascend-
ing order will minimize the number of conditional databases.  
Additionally, AFOPT traverses the conditional databases in a 
top-down rather than a bottom-up order.  As a result, the cost 
of traversing the conditional databases will be significantly 
reduced. 

Many evaluation results have shown that building a condi-
tional FP-trees recursively to mine frequent patterns will con-
sume most of CPU time.  Each conditional FP-tree requires 
scanning the FP-tree twice.  The first scan needs to build the 
header table to find items frequencies; while the second scan 
builds the conditional FP-tree according to the new order of 
item frequencies after eliminating infrequent items.  The FP- 
growth method will build many conditional FP-trees recursively 
until reaching single node and thus consumes a lot of CPU time 
and space especially when dataset is huge and sparse. 

This paper proposes a new algorithm called FP-growth+ for 
extracting the frequent items without building conditional 
FP-trees.  The proposed algorithm improves the inefficiency 
of FP-growth method; it first scans the database to find all 
frequent items and the second scan is for inserting the frequent 
items from each transaction into the FP-tree as a branch.  This 
method uses a new data structure for traversing the FP-tree 
based on set of arrays instead of building the conditional 
FP-trees.  Experimental results have been conducted on many  
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Fig. 1.  Header table for min_sup = 2. 

 
 

synthetic and real data sets (from FIMI repository website1) 
and show that the proposed method can significantly reduce 
the usages of CPU time and memory. 

The rest of paper is organized as follows: Section 2 describes 
details of FP-growth algorithm in mining frequent patterns.  Our 
“FP-growth+” algorithm for mining frequent patterns is pro-
posed in section 3.  Section 4 shows the experimental results.  
Finally, we conclude this paper in section 5. 

II. FP-GROWTH ALGORITHM 

The FP-tree is a compact representation for mining various 
frequent items from databases.  The FP-growth algorithm uses 
it to mine data more efficiently than the Apriori approach.  
Firstly it scans the database to find the occurrence of each item, 
then sorts and gets higher frequent items if they exceed the 
minimum support threshold in descending order and then to be 
recorded inside a header table according to their frequencies.  
Fig. 1(b) shows the header table for the given transactions  
in Fig. 1(a).  After that, it uses the second scan to build the 
FP-tree.  As shown in Fig. 2(b), if some transactions share a 
common prefix with the same order, all the shared parts are 
then merged in the same path to construct the FP-tree.  By 
sorting the transactions in a descending order, the shared paths 
are used to facilitate the process of traversing the FP-tree items.  
The items with the same labels will be connected together via 
a linked list.  The beginning of this linked list is marked in the 
above mentioned header table.  Fig. 2 shows how the header 
table links together all the nodes having the same label in the 
FP-tree. 

A crucial task in the FP-growth algorithm is building the 
conditional FP-trees for mining frequent items.  At the begin-
ning, all the items in the header table will be visited from the 
bottom of the header table.  Then, we will follow the path 
containing the target item such as ai starting from ai’s head in  

1 http://fimi.ua.ac.be/data/ 
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Fig. 2.  An example of FP-tree with min_sup = 2. 

 
 

(a) The set of paths ending in E 
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Fig. 3.  Building conditional FP-tree. 

 
 

the FP-tree header table to determine the new counts of items 
to build a new header table as shown in Fig. 3(b).  Branches 
that contains item ai will be visited one more times to find its 
corresponding item set in the tree and insert them into the 
conditional FP-tree according to its new order in the new  

Table 1. Mining patterns by creating conditional pattern 
base. 

Item Conditional patterns Conditional FP-tree 

E {(BC:1), (ACD:1), (AD:1)} {(A:2), (C:2), (D:1)}| E 

D {(BAC:1), (BA:1), (BC:1), 
(AC:1), (A:1)} 

{(A:4), (B:3), (C:3)}| D 

C {(BA:3), (B:3), (A:1)} {(A:4), (B:6)}| C 

A {(B:5)} {(B:5)}| A 

B   

 
 
header table after removing all infrequent items.  Note that, we 
rebiuld the conditional FP-tree because the order of the items 
is not like the original FP-tree order; thus, if the items do not 
statisfy the minimum support (min_sup), they will be removed 
iterativly until we reach the root.  Fig. 3(c) shows an example 
of conditional FP-tree which is obtained by visting branches 
along the linked list beginning from E in the FP-tree shown in 
Fig. 2.  This procedure is recursively applied for the set of all 
possible paths in the E-conditional FP-tree, ending at D, C, 
and A.  The taks of building the conditonal FP-tree for any 
items will stop in case that the new FP-tree includes only one 
single path.  Then all of the subsets will be reduced along this 
path and then merged together with the corresponding suffex.  
Table 1 summarizes the set of conditional patterns and the 
conditional FP-trees. 

Finding frequent patterns by building and traversing the 
conditional FP-trees will consumes a lot of CPU time and 
memory.  According to the experiments conducted by (Grahne, 
2003), almost 80% of CPU time is spent for traversing the 
FP-tree.  If the traversing time of the FP-tree can be reduced, 
the overall time in mining patterns can be much speeded up.  
To achieving this goal, a new traveling technique will be 
proposed without building the time-expensive conditional 
FP-trees.  The proposed method takes advantages of arrays 
and their pointers to make traversing the FP-tree easier and 
more efficient during the process of building the FP-tree.  
Details of this algorithm will be explained in the next section. 

III. THE PROPOSED METHOD 

There are two steps during mining data using the FP-growth 
algorithm: (1) building the FP-tree, and (2) traversing the 
FP-tree for mining the database.  Our approach shares the first 
step with FP-growth and utilizes the overlapping information 
between two transactions.  We use a new method for traversing 
the FP-tree instead of building conditional FP-trees.  This can 
make mining the FP-tree more efficient than mining the da-
tabase.  In the following sections, we will describe the two 
steps of our proposed method in more details. 

1. FP-tree Constructing 

The proposed method starts by scanning transactions in a 
given dataset to count the support of each item.  If a frequent  
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Fig. 4.  FP-tree (min_sup = 2) using the proposed algorithm. 

 
 

item exceeds the minimum support threshold, it will be used to 
build the FP-tree.  Then, according to the supports, the items 
will be sorted in a descending order.  After that, the FP-tree can 
be constructed using these sorted transactions.  While building 
the FP-tree for each item (node), two operations are performed.  
For the first one, each node will associate with a specific 
identifier called node-id to indicate the node location in the 
FP-tree.  For the second operation, an array of pointers, called 
node-head, is used to record the pointer of each node in the 
FP-tree and is indexed by the node-id.  This header table can 
link all the items with the same labels together.  The two data 
structures can make traversing the FP-tree easier without 
building the conditional FP-trees.  Because only an additional 
attribute (node-id) is added to each node in the FP-tree by 
using an 1-D array to keep all locations for different nodes, the 
new data structure does not consume much memory and CPU 
time. 

Fig. 4 shows an example to illustrate how the FP-tree is 
built via our proposed method from the set of transactions 
shown in Fig. 1.  An Identifier number (node-id) is tagged to 
each node in the second scan for building the FP-tree.  The 
order of each node-id in the FP-tree is arranged by the order 
when it is inserted into the FP-tree.  Its value starts from “1” 
and is increased when a new node is inserted into the FP-tree.  
Clearly, the total number of locations is equal to the total 
number of nodes in the FP-tree.  Algorithm 1 summarizes 
details of our proposed method to build the FP-tree. 

 
Algorithm 1: FP-tree Construction 

FP-tree Construction (D, min_sup) 
Input: Transactional data set D; 

Minimum support min_sup. 
Output: FP-tree 
1. Scan D to generate the set L1 of frequent items.  
2. Sort the items of each transaction in D according to the 

descending order of L1. 
3. Create counter with name node-id and initialize it with 0.
4. Create array of pointers with name node-head. 
5. Create the root of FP-tree T and denote it as “null” (0th root)
6. For each t  D and l = 1 to | t | 

If [ ] ( 1)t l CN l  , 
a) Denote the child node as temporary lth node;  
b) Increase the frequency of this child node by one, 

where CN(l-1) is the set of item-names for child 
nodes of the (l-1)th root. 

If [ ] ( 1)t l CN l  ;  
(a) Denote this child node as temporary lth node with 

frequency = 1; 
(b) Set the item name of the child node as t[l]; 
(c) Set the id for this node as node_id + = 1, and 

node-head[node-id] points to this child node; 
(d) Update ( 1) ( 1) { [ ]}CN l CN l t l CN    . 
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Fig. 5.  Constructing the locations list for item E. 

 

2. Frequent Pattern Generation 

After building the FP-tree, the next task is to mine frequent 
patterns from it.  The first step is to trace the linked list of the 
item ai in the header table H and then visit the paths that in-
clude item ai in the FP-tree to count its visited times.  Fig. 5(a) 
shows an example that the set of all paths include item E.  
After scanning the paths, three frequent items can be found, 
i.e., nodes C, A, D.  Item B is ignored because it is not frequent.  
Fig. 5(b) shows the new header table New_H for frequent 
items ending with E.  Another scan on the FP-tree is performed 
to find the locations of frequent items in New_H according to 
their supports.  If the item has more than one children with the 
label E, its support will be the sum of its children supports.  
For example, item A in location “5” has two children; each one 
with frequency “1”.  Thus, the support of A in this case is “2”. 

After scanning the FP-tree, we can get the suffixes {CE, AE, 
DE }.  Fig. 6 shows the set of paths that include these suffixes.  
Their locations and frequencies are recorded as the sets CE 
{3:1, 6:1}, DE {7:1, 9:1}, AE {5:2}, whereas {3, 6} are the set 
of locations for suffix CE, and {1, 1} represents the frequen-
cies for their locations.  After that, our approach uses the list of 
locations to generate all the frequent items that end with CE, 
AE and DE, recursively.  To obtain the frequent items that end  
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Fig. 6.  Generating frequent patters with suffix E. 

 
 

D {12:1, 13:1, 4:1, 7:1, 9:1}
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ACD {2:1, 5:1}BCD {1:2}BAD {1:2}
 

Fig. 7.  Finding frequent patterns from Item D. 

 
 

with CE, the paths that include the item CE from the locations 
{3, 6) are used to determine their new counts along these paths.  
Fig. 6(a) shows the patterns {ACE, BCE} with frequency “1” 
which is less than the minimum support.  However, suffix DE 
has one frequent item, i.e., ADE.  Finally, for suffix AE we stop 
calculating the frequent items because its parent is null. 

Fig. 7 explains another example of how can we recursively 
find the frequent patterns from the item D using the proposed 
method.  The first set of frequent items with length “2” are 

obtained by following the linked list of item D starting from 
the main header table and the results are {BD, AD, CD}.  The 
remaining set with length greater than “2” can also be gener-
ated.  For example, the locations {11, 3, 6} are used to find all 
frequent patterns that end with CD as shown in Fig. 7.  Algo-
rithm 2 to Algorithm 4 show three pseudocodes of our ap-
proach used to generate the frequent patters. 

 
Algorithm 2: FP-growth+ phase one. 

FP-growth+_ phase1(FP-tree, H , min-sup) 
Input: FP-tree constructed by Algorithm 1. 

H is the Header_table for FP-tree. 
 min-sup is the minimum support threshold. 
Output: The complete set of frequent patterns. 
1. Begin 
2.   For each item x in H do 
3.        Get the node n pointed by the link of x in H; 
4.       While n  null 
5.           Find a path x1, x2, ..., xm  from the parent  

node of n to the child node of the root; 
6.           Count the frequency for each item z along  

this path 
7.           Reset a new node n to the next node pointed  

by the link of current node .  n
8.       End while  
9.       For each counted item z 
10.         If the frequency count of z  min-sup then 
11.           Insert z into a frequent item list Fx. 
12.           Add the set of locations for item z to  the 
13.                   list Lx[z] 
14.           Print {zx} 
15.         End if  
16.       End for 
17.    suffix = “x” 
18.    FP-growth+_ phase2 (Fx, Lx, suffix); 
19. End for 
20. End 

 
Algorithm 3: FP-growth + Phase two. 

Procedure FP-growth+ Phase2 (Fx, Lx, suffix-x) 
Input: 

Fx: the list of frequent items traced from node x; 
Lx is the list of locations for the frequent items in Fx; 
Suffix-x is the previous Frequent items with item x. 
min-sup is the  minimum support threshold. 

Output: Full set of frequent patterns. 
1. Begin 
2. For each element z in list Fx 
3.      If z exists in one location in the tree 
4.           Let P is the single path for z and   
                     a = z  Suffix-x. 
5.           Single_Path (P, a);  
6.      Else if z exists in many locations  
7.         Use the list of locations for z (Lx[z]) to  
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             traverse FP-tree;  
8.         Find the frequent list of items from z nodes; 
9.         Denote this list as FZ and their locations as LZ. 
10.          For each frequent item such as y in FZ 
11.              Print {yz  suffix-x}  
12.          End for 
13.             suffix-y = z  suffix-x 
14.          FP-growth+_ phase2 (FZ, LZ, suffix-y);} 
15.      ENDIF 
16.    End for 
17. End 

 
Algorithm 4: Frequent items generating from single path. 

Single_Path (Tree, a) 
1. Let P be the single prefix-path part of Tree; 
2. For each combination (denoted as  ) of the nodes in the

path P 
3. Do 

Generate pattern   a with support = minimum support
of nodes in  ; 
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Fig. 8.  Execution time on dataset retail. 

 

IV. EXPERIMENTAL RESULTS 

This section will present the performance comparison be-
tween the proposed algorithm and other algorithms.  All ex-
periments were conducted on Intel® Core (TM) i5 CPU 1.6 
GHz and 4 GB memory using C programming language and 
they were all running on Microsoft windows 8 environments.  
To make the comparisons, the synthetic dataset T10I4D100K 
taken from IBM Almaden Research Centre and three real 
datasets connect, chess and retail taken from FIMI repository 
website were adopted.  The source codes for the algorithms 
used for comparison were downloaded from FIMI repository 
website.  Fig. 8 to Fig. 10 show the comparisons of execution 
time among the proposed algorithm, FP-growth, FP-growth* 
and CT-PRO algorithms on the above datasets with different 
minimum supports.  We used the same output formats like the 
original FP-growth algorithm without any optimizations on  
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Fig. 10.  Execution time using T1014D100K data set. 

 
 

the output.  The solid black line refers to the proposed algo-
rithm whereas the dotted black lines refer to other algorithms.  
Fig. 8 shows that the computing time for the proposed algo-
rithm in dataset retail.  From Fig. 8, clearly the computing 
time for the proposed algorithm is less than the execution 
time for FP-growth.  When the min_sup is set to 4, the pro-
posed method gains 49% improvement (compared with the FP- 
growth method).  This percentage decreases gradually when the 
value of min_sup increases until the min_sup is equal to 20.  
Clearly, the proposed algorithm outperforms the FP-growth 
method in all cases especially when the min_sup is small.   
In addition, FP-growth+ has the best running time compared  
with other algorithms, i.e., FP-growth* and CT-PRO algorithms 
when min_sup is from 2 to 8.  If min_sup is larger than 8, FP- 
growth+ will have the same running time like FP-growth* and 
CT-PRO algorithms. 

Fig. 9 shows the comparisons about CPU time consuming 
among the four algorithms in dataset chess.  We see that 
FP-growth+ has the best running time.  The running time 
improvements for all min_sup cases are 7%-10% than the 
FP-growth method. 

Fig. 10 shows the comparison for the T10I4D100K dataset.  
The “FP-growth+” algorithm reduced CPU time up to 18%  
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Fig. 11.  Main memory usages on dataset “retail”. 
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Fig. 12.  Main memory usages on dataset “Connect”. 

 
 

compared with FP-growth when the minimum support equals 
“4”.  After min_sup exceeds “8”, the FP-growth and “FP- 
growth+” algorithms have similar running time.  Comparing 
with the CT-PRO algorithm, our algorithm has the best run-
ning time for all cases of minimum supports.  The FP-growth* 
has the best running time compared with other approaches. 

In addition to time consuming, the memory usages of the 
four algorithms were also conducted.  Their comparison re-
sults are shown in figures from Fig. 11 to Fig. 14.  It is clear 
that the proposed algorithm is indeed much more effective in 
reducing the memory consumption than other three algorithms 
especially when the minimum support is small.  In addition, 
the amount of memory saving increases clearly when the size 
of dataset increases.  For all the tested datasets, the proposed 
method consumes less memory for all minimum support 
thresholds.  If the minimum support is higher, the FP-growth 
consumes less memory because the number of conditional 
FP-trees to be created decreases gradually when the minimum 
support increases.  It means that the main memory usage in 
FP-growth decreases gradually by increasing the minimum 
support.  Our proposed approach uses arrays for traversing the 
FP-tree.  The array structure can be frequently reused without 
allocating additional memory space by overwriting their con-
tents many times.  Compared with the FP-growth, the memory 
usage of our proposed method is not increased too much  
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Fig. 13.  Main memory usages on dataset “chess”. 
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Fig. 14.  Main memory usages on the dataset “T10I4D100K”. 

 
 

during the mining process.  For the dataset T10I4D100K, the 
proposed method can reduce the memory consumption from 
10% to 94%.  Fig. 13 shows that the FP-growth+ is the best 
among all compared algorithms.  The FP-growth+ method 
reduced up to 88% for chess dataset when the minimum 
support is “1300”.  In retail dataset, our algorithm is the best 
when the minimum support threshold is low.  When the mini-
mum support is larger than 100, the four algorithms consume 
less than 5 MB.  The FP-growth+ consumes memory less than 
the FP-growth algorithm with the amounts 98%, 66% and 6% 
when the supports are “4”, “30”, and “60”, respectively.  The 
Connect dataset is the largest one among these datasets.  Fig. 
12 shows the memory usages when mining the connect dataset 
over all minimum support thresholds.  For the FP-growth 
method, it consumes from 20 MB to 75 MB.  This indicates that 
the proposed method saves more memory by increasing the 
dataset size, especially when the values of minimum support 
are low. 

From the above experiments, we conclude that the pro-
posed algorithm is indeed more effective and efficient to re-
duce the running time and memory usage than other three 
methods on most popular datasets in data mining.  Also, the 
proposed algorithm uses less memory because it does not use 
linked list data structure for building conditional FP-trees.  
Our array technique is more efficient than using the tree 
technique because each node in the conditional FP-tree has 
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many attributes associated with it.  Additional advantage is the 
direct access for the data in the array compared with tree 
(usually takes constant time O (1)). 

V. CONCLUSIONS 

We have introduced a novel algorithm to find the frequent 
patterns based on the well-known algorithm FP-growth.  The 
proposed method uses a new data structure based on the arrays 
to generate the frequent item sets instead of constructing 
conditional FP-trees.  We applied our experiments in many 
synthetic and real datasets from FIMI repository website.  
Experimental results show the success of our algorithm to 
reduce the running time and the memory usage because it uses 
a set of arrays for traversing the FP-tree instead of recursively 
generate mass number of conditional FP-trees. 

REFERENCES 

Agrawal, R. and R. Srikant (1994). Fast algorithms for mining association rule. 
In Proceedings of the 20th International Conference on Very Large Data 
Bases, Morgan Kaufmann, Santiago, Chile, 487-499. 

Agrawal, R., T. Imielinski and A. Swami (1993). Mining Association Rules 
between Sets of Items in Large Databases. ACM SIGMOD Record 22(2), 
207-216. 

Bashir, S. and A. Baig (2006). Ramp: High Performance Frequent Itemset 
Mining with Efficient Bit-vector Projection Technique. Advances in 
Knowledge Discovery and Data Mining, 3918, 504-50. 

Grahne, G. and J. Zhu (2003). Efficiently Using Prefix-trees in Mining Fre-
quent Itemsets. In Proceeding of the ICDM’03 international workshop on 
frequent itemset mining implementations (FIMI’03), Melbourne, FL, 
123-132. 

Han, J., J. Pei and Y. Yin (2000). Mining frequent patterns without candidate 
generation. In Proceedings of the 2000 ACM SIGMOD International 
Conference on Management of Data. Dallas, TX: ACM Press, 1-12. 

Leung, C., M. Mateo and D. Brajczuk (2008). A Tree-Based Approach for 
Frequent Pattern Mining from Uncertain Data. Advances in Knowledge 
Discovery and Data Mining Lecture Notes in Computer Science 5012, 
653-661. 

Liu, B., W. Hsu and Y. Ma (1998). Integrating classification and association 
rule mining. In Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining. New York, NY: AAAI Press, 80-86. 

Liu, G., H. Lu, Y. Xu and J. X. Yu (2003). Ascending frequency ordered 
prefix-tree: efficient mining of frequent patterns. Proceedings of Eighth 
International Conference on Database systems for advanced applications, 
65-72. 

Savasere, A., E. Omiecinski and S. Navathe (1995). An efficient algorithm for 
mining association rules in large databases. VLDB '95 Proceedings of the 
21th International Conference on Very Large Data Bases, San Francisco, 
CA, USA, 432-444. 

Schlegel, B., R. Gemulla and W. Lehner (2011). Memory-Efficient Fre-
quent-Itemset Mining”, EDBT/ICDT '11 Proceedings of the 14th Interna-
tional Conference on Extending Database Technology, New York, NY, 
USA, 461-472. 

Sohrabi, M. K. and A. A. Barforoush (2013). Parallel frequent itemset mining 
using systolic arrays. Knowledge-Based Systems 37, 462-471. 

Sucahyo, Y. G. and R. P. Gopalan (2004). CT-PRO: A Bottom-Up Non Re-
cursive Frequent Itemset Mining Algorithm Using Compressed FP-Tree 
Data Structure. In FIMI. 4, 212-223. 

Thabtah, F. (2007). A review of associative classification mining. The Knowl-
edge Engineering Review 22(1), 37-65. 

Zaki, M. J. (2004). Mining non-redundant association rules. Data mining and 
knowledge discovery 9(3), 223-248. 

Zaki, M., S. Parthasarathy, M. Ogihara and W. Li (1997). New algorithms for 
fast discovery of association rules. In Proceedings of the 3rd International 
Conference on Knowledge Discovery and Data Mining. Menlo Park, CA: 
AAAI Press, 283-286. 

 


	EFFICIENTLY MINING FREQUENT ITEMSETS IN TRANSACTIONAL DATABASES
	Recommended Citation

	JMST

