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ABSTRACT 

In this study, experimental observations have been performed 
to understand the cyclic stress-amplitude response, the cyclic 
hardening/softening characteristics and the cyclic fatigue pro- 
perties of AISI 316 stainless steel.  Based on the experimental 
observations, these results are found so that the tested AISI 
316 stainless steel possesses cyclic hardening characteristics.  
The shape of the stable hysteresis loop is symmetrical in ten- 
sion and compression.  The Massing cyclic stress-strain beha- 
vior is obviously absent.  For the case of the absence of the 
Massing behavior, the power-law type equation is successfully 
applied to simulate the shape of the stable hysteresis loop at  
all applied levels of fully-reversed cyclic straining.  For the 
a-based and maxa-based fatigue life curves, the typical ex- 
pressions are developed via cyclic fatigue properties.  Besides, 
a power-law type relationship is also used to develop the 
fatigue life curve.  In contrast to the typical expression, it is 
found that the power-law relationship is a viable and valid 
expression in fatigue life predictions.  Similarly, the power- 
law relationship is also used to describe the correlation between 
the cumulative plastic strain energy Wf with the corresponding 
the fatigue life cycle Nf.  Based on the comparison between the 
predicted and experiment cycles, it is confirmed that the 
predicted value of Wf calculated on the basis of the simulated 
hysteresis loop is capable of yielding reasonable life predictions 
via the Wf - Nf curve. 

 

I. INTRODUCTION 

Generally, components and structures in service are often 
subjected to cyclically varying loading such as vibratory load-
ing, earthquake loading and fatigue.  Therefore, observation 
and analysis of stress-strain responses in cyclic loading con-
ditions is a basic step for designers.  Generally, for most metals 
in cyclic loading, it is found that the variation of cyclic stress- 
strain response is violent and rapid during the early stages of 
cycling and then does not vary appreciably for the majority of 
the fatigue life.  Based on this observation, the hysteresis loop 
from near half the fatigue life is usually used to represent the 
stable stress-strain behavior in design.  Generally, in order to 
assess the durability of component subjected to cyclic loading, 
the named cyclic stress-strain curve by relating the stable 
stresses amplitude a to the controlled strain amplitude a is 
usually developed.  In the regime of elastic-plastic deforma-
tion, the response of a material during a cyclic straining is in 
the form of a closed hysteresis loop and the area within the 
closed loop represents the plastic energy density Wp.  
Moreover, while the hysteresis loop curves in tension at 
various strain amplitude have the same shape, the behavior is 
named the Massing cyclic stress-strain behavior (Halford, 
1966).  In contrast to the cyclic stress-strain curve, the curve 
by expanding the cyclic stress-strain curve with a scale factor 
of two is named the Massing curve.  And, while the Massing 
cyclic stress-strain behavior reveals in material, the named 
Massing curve can be employed to simulate the shape of stable 
hysteresis loop and the corresponding value of Wp is ob-
tained.  However, the Massing cyclic stress-strain behavior is 
seldom occurred in many engineering metals.  Hence, a need 
exists to formulate the relationships on the shape of hysteresis 
loop of a material without the Massing cyclic stress-strain 
behavior.  It is agreeable that the irreversible cumulative plastic 
strain energy, Wf = Wp  Nf, would lead to fatigue failure.  
Therefore, in predicting accumulated plastic strain energy, it is 
valuable to establish a simple and accurate approach on the 
simulation of the shape of hysteresis loop. 

For a simulation on the shape of the stress-strain hysteresis 
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loop, many experimental models (Prager, 1956; Mroz, 1967; 
Garud, 1981; Bower, 1989) and cyclic plasticity models 
(Morrow, 1965; Valanis, 1980; Lefebvre and Ellyin, 1984; 
Chaboche, 1991; Wittke and Rie, 1998; Kwofie, 2003) have 
proposed.  In life prediction method, strain-based life curve 
expressed by cyclic fatigue properties is commonly used to 
predict the cycles of fatigue life.  Conventionally, the required 
cyclic fatigue properties are obtained from performing a series 
of completely reversed symmetrical cyclic straining tests.  
However, components are seldom subjected to a symmetrical 
cyclic straining.  Consequently, in considering mean stress/strain 
effects on the fatigue life, the damage parameter obtained from 
the fully reversed fatigue tests needs to be modified or developed.  
Consequently, the damage parameter maxa is proposed 
(Smith et al., 1970) and then the maxa-based life relationship 
is expressed as a function of the fatigue life, Nf, via fatigue 
properties. 

Generally, performing a fatigue life prediction, numerical 
calculations are often inevitable by using strain-based and 
maxa-based life curves expressed in fatigue properties.  
Therefore, for strain-based and maxa-based life curves, a 
simple and viable expression is required.  Besides, in con- 
sidering the load path effect on fatigue life, energy-based life 
curve is commonly used in the prediction of the cycles to 
failure.  It is well known that AISI 316 stainless steel is widely 
used as a component of pressure vessels and piping systems in 
the petrochemical and nuclear industries due to its high duc- 
tility and good resistance to corrosion.  Therefore, the defor- 
mation response of AISI 316 stainless steel subjected to cyclic 
strain-controlled and stress-controlled loading has been exten- 
sively studied (Polak et al., 1996; Abduluyahed and Kurzyd- 
lowski, 1998; Tokaji et al., 2004; Wang et al., 2005; Paiva and 
Barbosa, 2008; Kamaya, 2010; Bacon et al., 2013).  The object 
of this study is to observe and analyze the material response of 
the AISI 316 stainless steel in cyclic straining.  Simultaneously, 
the cyclic stress-strain curve, strain-based and maxa-based 
life curves expressed by cyclic fatigue properties are developed.  
For the case without the Massing behavior, the stress-strain 
relationship based on the Ramberg-Osgood type equation is 
developed to simulate the shape of hysteresis loop curve.  
Moreover, for the strain-based and the maxa-based life curves, 
a direct power-law relationship is developed in order to avoid 
the cumbersome procedure of estimating the fatigue cycle.  
The comparison in the predictions of fatigue life is performed 
in order to realize whether the power-law relationship is a 
suitable expression.  Moreover, the fatigue life curve based the 
damage parameter Wf is also developed via a power-low form 
in this study.  For all developed life-curves, life prediction 
capabilities are respectively examined in this study. 

II. EXPERIMENTAL PROCEDURES  

1. Material and Specimen 

The AISI type 316 stainless steel was used for the experi-
ments.  The chemical composition of the tested material is given  

Table 1. Chemical compositions of AISI 316 stainless steels 
(weight%). 

C Si Mn P S Ni Cr Cu Fe

0.054 0.45 1.48 0.022 0.023 10.26 16.74 2.18 bal.
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Fig. 1.  Shape and dimensions of test specimen for AISI 316 stainless steel. 

 
 

in Table 1.  The tested materials in as-received condition are 
machined from round bars by CNC lathe to produce the speci- 
men with a cylindrical shape as shown in Fig. 1.  However, for 
the fatigue specimen, a smooth surface in the gauge section is 
required.  Therefore, after machining, a fine emery paper is 
used to remove all circumferential scratches and machine marks 
on the surfaces of the fatigue specimens in this experiment. 

2. Mechanical Testing 

For the AISI type 316 stainless steels, in order to under-
stand the stress-strain response in tension, the basic fatigue 
properties and the cyclic response characteristics, the tensile 
test and the fatigue life test were performed in this study.  In 
the tensile test, the tested specimens were uniformly loaded at 
a crosshead rate of 0.01 mm/sec.  In the fatigue life test, the 
specimens were cycled using tension-compression loading 
under total strain control.  Eight levels of controlled strain 
amplitude were considered for the determinations of the basic 
fatigue properties and strain-life curve in this study.  For all 
fatigue life tests, the waveform with a triangular strain-time 
was carried out at the frequency of 0.5 Hz and the longitudinal 
strains were continuously measured using a longitudinal ex-
tensometer with a 25 mm edge separation.  The Max software, 
integrated in the testing system, was used to simultaneously 
sample 400-500 experimental points around the hysteresis 
loop in every cycle throughout the fatigue life test.  Testing 
was performed until the specimen failed in the fatigue life test.  
The number of cycles to failure, Nf, was defined as the number 
of cycles performed before the recorded peak tensile stress 
dropped to a value of approximately 10% below the plateau 
stress on the cyclic-stress-response curve.  Near half-life hys-
teresis loop data were defined as the stable response of the 
tested material for cycling loading and were used to determine 
the cyclic fatigue properties in this study.  All mechanical tests 
were performed on a closed-loop servo-hydraulic test machine. 

III. EXPERIMENTAL RESULTS  
AND OBSERVATION 

1. Monotonic and Cyclic Deformation Behavior 

In this study, firstly, monotonic and cyclic deformation  
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Fig. 2. Comparison of experimental and simulation results for the 

monotonic stress-strain curves. 
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Fig. 3.  Cyclic stress response curves for AISI 316 stainless steel. 

 
 

behaviors of the AISI 316 stainless steel subjected to the mo- 
notonic loading and cyclic straining are observed and analyzed, 
respectively.  Generally, for the strain shown in Fig. 2, it is 
separated into elastic strain, e, and plastic strain, p.  And, ela- 
stic and plastic strains can be directly calculated from e =  /E 
and p =  - e.  E is elastic modulus.  Additionally, for most 
metals, the power-law type equation is commonly used to cor- 
relate stress with plastic strain and relationship is expressed as 

 ( )n
pK   (1) 

In Eq. (1), the fitting constant K is called the strength co-
efficient and the value of n is called the strain-hardening ex-
ponent.  Furthermore, the strain can be stated as a function of 
stress using Eq. (1) and is described by 

 1// ( / ) nE K     (2) 

Table 2.  AISI 316 stainless steel cyclic fatigue properties. 

E  K'  n'  'f  b  'f  c 

MPa  MPa    MPa       

202335 899.08 0.1901 663.25  -0.0903  0.1895 -0.4657

 

 
The relationship represented as Eq. (2) is referred to as 

Ramberg-Osgood type equation.  In Eq. (1), values of K and n 
were obtained via performing a least squares fit of stress, , 
versus plastic strain, p, data in log-log scale.  In this study, the 
value for K is 506.97 and for n is 0.1247.  As shown in Fig. 2, 
obviously, the simulated curve based on Eq. (2) provides a 
good agreement with experimental data.  Fig. 3 presents stress 
amplitudes versus number of cycles to failure plots of AISI 
316 stainless steel subjected to fully reversed cycle straining at 
eight various strain amplitudes.  For each recorded cyclic 
stress curve shown in Fig. 3, it is found that the variation of the 
measured stress amplitude per cycle with cycle presents a 
rapid increase at initially about ten cycles, and then the 
measured stress amplitude per cycle gradually decreases prior 
to failure.  Based on the above observation in the Fig. 3, values 
from a hysteresis loop recorded near half of the cycles to 
failure are used as being representative of the approximately 
stable behavior in this study. 

2. Stable Stress-Strain Response and Fatigue Properties 

Essentially, for many engineering metals, the Ramberg- 
Osgood type equation is capable of yielding highly accurate 
correlation between stable stress amplitude and strain ampli-
tude.  Therefore, the expression which is analogous to Eq. (2) 
is also applied to develop the cyclic stress-strain curve in this 
study and is expressed as: 

 
1/ n

a a
a E K

 



     

 (3) 

In Eq. (3), K' is called the cyclic strength coefficient and n' 
is cyclic strength coefficient.  Similarly, both parameters of K' 
and n' could be determined by the least-squares technique and 
presented in Table 2.  As shown in Fig. 4, a good agreement 
exists between the solid line of simulation by Eq. (3) and those 
measured data from the stable hysteresis loops.  Moreover, it is 
found in this figure that cyclic stress-strain is above the 
monotonic tension curve.  The observation indicates that the 
tested AISI 316 stainless steel is a cyclic hardening material.  
Generally, experimental stable hysteresis loops were plotted 
with shifted axes such that their compressive loops all fall at 
the same origin.  The link curve of the tips of experimental 
stable hysteresis loops plotted in a common stress-strain dia-
gram is called the Massing curve. 

According the definition on the Massing curve, the curve 
can be obtained by doubling the cyclic stress-strain curve and 
the equation of the Massing curve can be formulated as 
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Fig. 4.  Comparison of the monotonic and cyclic stress-strain curves. 
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Generally, when stable hysteresis loops plotted in a com-
mon stress-strain diagram and loading curves for all of the 
used hysteresis loops fall on the corresponding Massing curve, 
the specific stress-strain behavior is named as Massing cyclic 
stress-strain behavior.  Obviously, when a material exhibits 
the Massing cyclic stress-strain behavior at all of the consid-
ered strain amplitudes, Eq. (4) can be applied to simulate the 
stable hysteresis loop curve in tension.  Furthermore, the 
simulation on the shape of the stable hysteresis loop can be 
completed for a material that exhibits symmetric behavior in 
tension and compression.  For this case, by integrating the area 
within the simulated loop, the stable plastic strain energy 
density, Wp, can be predicted.  As shown in Fig. 5, the com-
parison between the Massing curve and eight actual hysteresis 
loops simultaneously plotted in relation coordinates was also 
carried out to determine whether the tested AISI 316 stainless 
steel possess Massing cyclic stress-strain behavior.  It is found 
that the Massing curve correspond not well with all hysteresis 
loops in tension.  The observation indicates the Massing cyclic 
stress-strain behavior was not exhibited in the tested AISI 316 
stainless steel.  In other words, Eq. (4) could not provide an 
accurate simulation on the hysteresis loop curve in tension in 
the strain ranges from 0.50 % to 1.80 %. 

In determination of fatigue properties, the plastic and elas-

tic amplitudes ( p
a and e

a ) of hysteresis loops at half fatigue 

life are respectively plotted versus the number of reversals to 
failure, 2Nf, on a log-log scale and are linearized.  For the 

correlation between e
a  and 2Nf, the corresponding equation is 

given by 

 (2 )p c
a fN    (5) 
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Fig. 5. Comparison of experimental stable hysteresis loops and the solid 

curve from expanding cyclic stress-strain curve with a scala factor 
of two. 

 
 
The relationship is often called the Coffin-Mason equation.  

And, for the 2e
a fN   curve, the relationship which is often 

named the Basquin equation is given by 

 (2 )fe b
a fN

E





  (6) 

Since the total strain amplitude is the sum of the plastic and 
elastic amplitudes, the relationship between total strain ampli-
tude and the number of reversals to failure can be rearranged as 

 (2 ) (2 )f b c
a f f fN N

E


 


   (7) 

According to the Eqs. (5) and (6) and the fatigue data of 
AISI 316 stainless steel, by performing a least-square fit on 

log-log plots of p
a  versus 2Nf and e

a  versus 2Nf, then, the 

four constants, N'f, c, 'f and b are evaluated and are present in 
Table 2.  Fig. 6 shows a superimposed plot of elastic, plastic 
and strain-life curves as the basis of the fatigue data.  As 
shown in Fig. 6, it is clear that those fitted curves have good 
correlations with the experimental results.  It is noted that the 
plotted data values in Fig. 6 are obtained by performing a 
mean value calculation on the results under the same experi-
mental conditions. 

V. DISCUSSIONS 

1. Model of Stable Hysteresis Loop Curve via the Ram-
berg-Osgood Type Equation 

As shown in Fig. 5, Massing cyclic stress-strain behavior 
was absent in the stable stress-strain response of the tested 
material.  Consequently, the named Massing curve obtained from  



430 Journal of Marine Science and Technology, Vol. 24, No. 3 (2016 ) 

 

103 104 105
0.1

0.3

0.5

0.7
0.9
1.1
1.3
1.5
1.7
1.9

Numbers of Reversals to Failure, 2Nf

AISI 316 Stainless Steel

St
ra

in
 A

m
pl

ifi
de

,  
 a 

(%
)

  a (mm/mm) = 0.0033 × (2Nf)-0.0903 + 0.1895 × (2Nf)-0.4657 

Plastic (Coffin-Manson): 
Elastic (Bosquin):

ε

ε

 
Fig. 6. Elastic, plastic and total strain versus reversals curves for AISI 

316 stainless steel. 
 
 

the expanded cyclic stress-strain curve could not provide an 
accurate description on the hysteresis loop curve in tension 
shown in Fig. 5.  However, considering the fatigue fracture 
mechanics and the life assessment, a reasonable accuracy de- 
scription on the shape of stable hysteresis loop is important to 
evaluate the stable plastic strain energy density Wp.  For the 
tested material without the Massing behavior, in this study the 
Ramberg-Osgood type equation is employed to describe the 
shape of hysteresis loop curve since the type equation has the 
characteristic that provides a single smooth curve for stress- 
strain response in metal.  Similar to Eq. (2), the correlation of 
the stress and strain corresponding to any point on the stable 
hysteresis loop curve in tension is expressed as: 

 
1/

E H

      
 

 (8) 

Apparently, in Eq. (8), the term 
1/

H

 
 
 

 presents the plas-

tic strain and E is the modulus of elasticity.  In essence, both 
parameters H and  must be obtained while Eq. (8) is em-
ployed to perform a simulation on the stable hysteresis loop 
curve in tension.  In terms of the determination of both pa-
rameters H and , both symbols H and Hip present the stress 
and plastic strain located on the tips of the stable hysteresis 
loop in a common stress-strain diagram.  Essentially, corre-
sponding to a controlled strain range , the magnitudes of H 
and Hip are respectively equal to the values of  and p and 
are also determined via the Massing curve.  It is known that the 
area within the stable hysteresis loop represents the plastic 
strain energy density Wp when stable.  Additionally, for a ma- 
terial that exhibits symmetric in tension and compression, the 
stable plastic strain energy density corresponding to the spe- 
cified strain range  is calculated via Eq. (8) and the parameter 
 can be related by: 
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Fig. 7. Compasion of the fitting curve and the experimental plastic 

energy density data for AISI 316 stainless steel. 
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Apparently, the specific parameter  is also determined 
once those values of Wp, H(= ) and Hip (= p) are given.  
For the parameter H, it is rewritten as 

 
( ) ( )

H

Hip p

H  

 
 


 


 (10) 

According Eq. (10), the parameter H is obtained while 
those values of H , Hip  and  are known.  In contrast to the 
procedures in determination of parameters used in the mono-
tonic and cyclic stress-strain curves, it is obvious that the 
procedure in Eq. (8) is different.  According the above dis-
cussion, both parameters H and  in Eq. (8) can be determined 
from the value of Wp and the Massing curve known for a 
material with symmetric behavior in tension and compression.  
Once both parameters H and  have been determined, Eq. (8) 
can be employed to calculate the values of strain and stress 
corresponding to any point on the stable hysteresis curve in 
tension.  Simultaneously, the data from Eq. (8) is used to gen-
erate the stable hysteresis curve in compression.  Under this 
condition, the stable hysteresis loop can be further constructed.  
Here, based on the observation in Fig. 5, it is accepted that the 
stable hysteresis loops are symmetrical with respect to tension 
and compression in the strain ranges from 0.50 % to 1.80 %.  
Moreover, in order to perform a series of simulation on the 
stable hysteresis curve in tension in the whole range of strain 
amplitudes tested, it is necessary to develop the correlation 
between Wp and .  In the form of Wp -  relationship, an 
expression of algebraic form is set up to describe the correla-
tion in the strain range from 0.50 % to 1.80 %.  As shown in 
Fig. 7, the correlation seems appropriate to represent the vari- 
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Fig. 8. Comparison of the experimental and simulated the hysteresis 

loop curves. 

 
 

ation of Wp with  in the form of a quadratic Equation.  
According to the above discussion, for a specified value of , 
the empirical relations between Wp and  shown in Fig. 7 
and the Massing curve are used to calculate the corresponding 
values of H and  via Eq. (9) and Eq. (10).  Table 3 summa-
rizes the calculated results via the Massing curve and the re-
lationships presented on Fig. 7 at each of the specified strain 
range.  By using Eq. (8) and Table 3, the stress and strain 
corresponding to any point on the stable hysteresis loop curve 
in tension presented in Fig. 5 is calculated.  As expected, the 
shape of the stable hysteresis loop at each of the eight strain 
amplitudes considered in this study is completed by the data 
generated from Eq. (8).  Fig. 8 presents a comparison between 
the experimental and simulation results.  It can be seen that 
experimentally measured data and the fitted curve based on Eq. 
(8) are in close agreement in Fig. 8. 

2. Fatigue Life Predictions 

In contrast to the Basquin-Coffin-Manson relationship, a 
direct power-law relationship between a and 2Nf is commonly 
used to describe the strain-life curve since it provides a simple 
calculation on the determination of the number of reversals to 
failure.  In a manner analogous to Eq. (5) and Eq. (6), by using 
the log-log linear regression analysis of the applied strain 
amplitude a with respect to the corresponding reversals to 
failure 2Nf, the values of constant and exponent used in the 
power-law relationship are 0.0939 and -0.3409.  In this study, 
the experimental reversal 2Nf was compared with the reversal 
calculated according to both the relationships presented in Fig.  
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Fig. 9. Fatigue life predictions based on the strain-life curves of AISI 

316 stainless steel. 

 
 

9.  As shown in Fig. 9, it can be seen that all of the data points 
fall within a factor of two scatter bands and it is found that  
the power-law relationship gave better predictions than the 
Basquin-Coffin-Manson relationship.  Consequently, the power- 
law relationship is a viable and valid expression for the strain- 
life curve of the tested AISI 316 stainless steel.  For the damage 
parameter maxa, the fatigue curve is expressed by fatigue 
constants as 

 

2
2

a max

( )
(2 ) (2 )f b b c

f f f fN N
E


    


    (11) 

Essentially, the magnitude of max stress max shown in Eq. 
(11) is equal to the value of stress amplitude a for a material 
subjected completely reversed cyclic straining.  Apparently, 
for Eq. (11) presented in Fig. 10, it is inevitable to perform a 
numerical operation in the prediction of the number of rever-
sals to failure.  Similarly, the amax-based life curve, ex-
pressed as a power law function, has also developed in 
avoiding the cumbersome procedure of estimating the rever-
sals to failure.  The required constant and exponent are deter- 
mined via a least-square fit on the log-log plots of the meas-
ured maxa against 2Nf and are also presented in Fig. 10.  
Using both life curves presented in Fig. 10, the predictions of 
the number of reversals to failure have been performed and the 
comparison between the experimental data and the predicted 
value has also shown in Fig. 10.  It can be seen that the pre-
dicted results are in good agreement with the experimental 
data and there is not a significant difference in making reversal 
prediction.  Besides both a and maxa damage parameters, the  
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Fig. 10. Fatigue life predictions based on the maxa-life curves of AISI 

316 stainless steel. 
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Fig. 11. Fatigue life predictions based on the Wf - Nf curve of AISI 316 

stainless steel. 

 
 

cumulative plastic strain energy approach is usually used to 
perform the fatigue prediction in low cycle fatigue regimes.  
However, for cyclic loading, the cyclic stress-strain response 
of metals is often drastically altered in early fatigue cycles and 
then remains almost constant for the majority of the fatigue 
life.  Therefore, in applying the total plastic strain energy Wf to  

Table 4.  Summary of the calculated results for . 

Life curve  

a = 0.0033  (2Nf)-0.0933  0.1895  (2Nf)-0.4857 0.3072

a = 0.0714  (Nf)-0.3408 0.2860

amax = 2.1741  (2Nf)-0.3808  125.6864  (2Nf)-0.9224 0.2820

amax = 46.3532  (Nf)-0.4320 0.2717

Wf = 326.4831  (Nf)0.4098 0.2929

 
 

perform fatigue life prediction, the magnitude of Wf is essen-
tial considered as the product of Wp and Nf.  Similarly, in this 
study, the relationship between Wf and Nf is expressed as a power- 
low relationship and is found to be 

 0.4096326.4831 ( )f fW N   (12) 

In this study, on the basis of the simulated hysteresis loop, 
the value of Wf is calculated and then the corresponding pre-
dicted fatigue life is determined via Eq. (12), and plotted 
against the experimental data, as shown in Fig. 11.  Based on the 
comparison presented in Fig. 11, it is found that the predicted 
results are in good agreement with the experimental lives and 
the data fall within the factor 2 bound.  In contrast to the com- 
parison shown in Fig. 8, based on the cumulative plastic strain 
energy approach, it reveals that an accurate description of the 
shape of stable hysteresis loop would lead to a satisfactory 
fatigue life prediction. 

In this study, in order to realize which of those used life 
curves provides the best prediction performance, the following 
format is applied: 

 
2

1

( )

1

n i

i n

  
 

  (13) 

where i represents the ratio of the predicted result to the 
experimental value, and " is the average value of all calcu-
lated i.  In Eq. (13), the value for n is the total number of data.  
Based on the data presented on Figs. 9-11, the calculated re-
sults for  are presented in Table 3.  According the calculated 
results presented in Table 4, it is found that the value for  due 
to the amax-based life curve expressed as a power law func-
tion is minimum.  The observation indicates that the relationship 
between amax and 2Nf expressed as a power-low relationship 
provides the best prediction performance in this study.  More-
over, for the case of data presented in Fig. 9, the calculated 
value for  based on the power-law relationship is less than 
that of the Basquin-Coffin-Manson relationship.  Therefore, the 
power-law relationship provides better life prediction than the 
Basquin-Coffin-Manson relationship. 

V. CONCLUSIONS 

This paper has presented an experimental investigation into 
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the monotonic and cyclic deformation behavior of AISI 316 
stainless steel.  The monotonic stress-strain curve, cyclic stress- 
strain curve, the shape of stable hysteresis loop are simulated 
and the fatigue life curves based on the damage parameters a, 
maxa and Wf are developed.  Based on the experimental ob-
servations and the comparison between the experimental and 
simulated results, the following conclusions are drawn: 

 
1. At all applied strain amplitudes, it is observed that the va- 

riation of the measured stress amplitude per cycle with cy-
cle presents a rapid increase at initially about ten cycles, 
then the stress response per cycle gradually decreases prior 
to failure. 

2. The tested AISI 316 stainless steel is a cyclic hardening 
material via the comparison between the monotonic and cy-
clic stress-strain curves. 

3. According the compassion between the Massing cyclic stress- 
strain behavior and eight actual hysteresis loops plotted in 
relation coordinates, the fact is observed that the Massing 
cyclic stress-strain behavior is absent in the tested AISI 316 
stainless steel. 

4. For the absence of Massing cyclic stress-strain behavior, 
based on the Ramberg-Osgood type Equation, the shape of 
hysteresis loop is modeled and obtained well simulated 
results with the aid of the Massing stress-strain curve and 
the well fitted Wp -  curve. 

5. For the tested AISI 316 stainless steel, the power-law rela-
tionship for the life curves based on the damage parameters 
a and maxa is a viable and valid expression. 

6. Based on the observation in Fig. 11, the predicted values of 
the damage parameter Wf calculated on the basis of the si- 
mulated hysteresis loop provide reasonably good life pre-
dictions when compared with experimental lives. 
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